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A major source of diversity in flowering plant form is the extensive variability of leaf shape

and size. Leaf formation is initiated by recruitment of a handful of cells flanking the

shoot apical meristem (SAM) to develop into a complex three-dimensional structure. Leaf

organogenesis depends on activities of several distinct meristems that are established

and spatiotemporally differentiated after the initiation of leaf primordia. Here, we review

recent findings in the gene regulatory networks that orchestrate leaf meristem activities

in a model plant Arabidopsis thaliana. We then discuss recent key studies investigating

the natural variation in leaf morphology to understand how the gene regulatory networks

modulate leaf meristems to yield a substantial diversity of leaf forms during the course of

evolution.
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INTRODUCTION

A leaf is a flat lateral organ of the stem, and grows along three-dimensional axes: proximal-
distal, medial-lateral, and adaxial-abaxial axes (Steeves and Sussex, 1989). In general, the leaf
consists of a leaf blade and a leaf petiole, and the leaf is composed of different cell types including
epidermal cells, palisade cells, spongy mesophyll cells, and xylem/phloem cells (Esau, 1977).
Because cell proliferation and cell differentiation occur concurrently during leaf development
(Donnelly et al., 1999), a single leaf maintains cells in different developmental stages such as mitotic
cells, differentiating cells, and endoreduplicating cells. Therefore, an elaborated spatiotemporal
regulation of organ and cellular morphologies should underpin the leaf formation.

Plants acquire the bulk of their energy from light capture by leaves, and for this reason the
leaf is specialized for photosynthesis, respiration, and photoperception. Leaf shape has direct
consequences on the efficiency of light capture, photosynthetic carbon fixation, and gas exchange
(Nicotra et al., 2011; Chitwood et al., 2012). As a result, leaf morphology must be optimized in
response to variations in environmental conditions. In addition, plant leaves are equipped with an
array of structural, chemical and protein-based defenses against herbivores and pathogens, which
often target leaves (Agrios, 2005). These multiple functions are accomplished by the heterologous
organ and cellular morphologies in a single leaf.

Due to their sessile lifestyle, plants exhibit a variety of morphological and physiological leaf
traits that have allowed adaptation to different natural habitats. Indeed, leaf structural traits such
as shape, size, and venation pattern, and physiological traits such as photosynthetic mechanisms
are diversified in angiosperms (Flood et al., 2011; Sack et al., 2012; Tsukaya, 2014a). There are
pressing research questions regarding leaf formation and variation: How do cellular activities
cause leaf formation? What are the gene regulatory networks controlling leaf development? How
were the gene regulatory networks altered during evolution? In this review, we highlight recent
findings on the activities of leaf meristem and their gene regulatory networks in the model plant
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Arabidopsis thaliana. Knowledge gained from studies of
A. thaliana has facilitated evolutionary developmental studies
of leaf morphology, and we discuss recent investigations of the
natural variation in leaf morphology.

LEAF MERISTEMS

What Are Leaf Meristems?
Plants have three major organs: leaves, stems, and roots. Stems
and roots are directly derived from the shoot apical meristem
(SAM) and the root apical meristem (RAM), respectively. The
SAM and RAM maintain stem cells and exhibit indeterminate
growth, which is an open-ended growth plan. On the other
hand, leaves exhibit determinate growth, which is growth with
a finite period of development. Meristems are defined, in a
broad sense, as proliferating tissues regardless of presence of
self-renewing stem cells, although the meristems have been
controversial concept: Most molecular developmental biologists
narrowly adopt a definition of meristems as proliferating tissues
that maintain self-renewing stem cells, while meristematic tissues
in leaves or stems are excluded by this definition at present
because no stem cells have been observed in these tissues. (Esau,
1977; Tsukaya, 2014b). Notably WOX genes, which are key for
sustaining stem cells both in SAM and RAM, are also important
for the meristemactic activities in leaf primordia (Nardmann
and Werr, 2013). The proliferative activity in leaf primordia is
much stronger than that in the SAM, but cells that make a leaf
come from restricted area of the primordium in angiosperms.
Cell differentiation occurred subsequent to cell division makes
the proliferative region in leaf separated spatially from SAM
(Figure 1A). Therefore, leaf meristems producing leaf mesophyll
cells as well as initial cells of stomata and veins are classified
into intercalary meristems, that are meristematic tissues reside
in a differentiating organ. Botanist Katherine Esau described in
her textbook Plant Anatomy that a series of organogenesis steps
in the leaf primordium depends on several distinct meristematic
tissues including the plate meristem and the marginal meristem
(Esau, 1977). The plate meristem consists of parallel layers of
cells dividing anticlinally to play a major role in leaf growth.
The marginal meristem, which is located at the edge of the
leaf between the adaxial and abaxial surfaces, contributes to the
establishment of tissue layers within the leaf.

These leaf meristems coordinate the orientation of the cell
division plate, produce the main compartments of the leaf
(the leaf blade and leaf petiole), and determine the proximal-
distal gradient where the switch from cell proliferation to cell
differentiation occurs in developing leaves (Donnelly et al., 1999;
Ichihashi et al., 2011). This boundary is known as the cell
cycle arrest front, and was assumed to progress with basipetal
polarity, from the tip to the base of the leaf blade (Donnelly
et al., 1999; Nath et al., 2003; White, 2006). However, recent
detailed characterizations of the kinetics of cell division during
leaf development have indicated that the cell-cycle arrest front
does not progress gradually, but rather remains at an almost
constant position, and is abolished abruptly (Kazama et al., 2010;
Andriankaja et al., 2012; Figure 1A). Like the SAM or RAM, the
leaf meristematic region maintains a constant size, but unlike the

FIGURE 1 | Leaf meristems of Arabidopsis thaliana. (A) Leaf

developmental stages showing the proliferative region (red). This meristematic

region localizes at the leaf blade/petiole junction and produces both leaf-blade

and leaf-petiole cells in a bidirectional manner. The region maintains a constant

size over a limited time period. (B) Left image: A leaf primordium at 7 days

after sowing with cell lineages indicated by blue staining (sectors were induced

at 4 days after sowing). The middle and right images indicate the spatial

differentiation of leaf meristems. The plate meristem is marked by AN3 and

WOX1 gene expression domains and the marginal meristem is marked by the

SPT enhancer, PRS/WOX3, and the promoter of CYCD4;2.

apical meristems, cell division ceases in the leaf after a certain
time period. This leaf meristematic region is localized at the
junction between the leaf blade and leaf petiole, and produces
both the leaf-blade and leaf-petiole cells via cell divisions in
a bidirectional manner (Ichihashi et al., 2011). In addition,
leaf meristematic activity differs between tissue layers, and cell
divisions directly related to the formation of veins and stomata
occur throughout the period of leaf development (Donnelly et al.,
1999; White, 2006; Ichihashi et al., 2011). Taken together, these
studies reveal that leaves maintain their own meristems, and
that the tightly controlled activity of these meristems directs the
complex process of leaf tissue development.

Regulatory Mechanisms of Leaf Meristems
Molecular markers have been used to identify distinct regions
within the leaf proliferative region of A. thaliana. (Figure 1B).
The ANGUSTIFOLIA3 (AN3) gene promoter is active in
mesophyll cells just above the leaf blade/petiole junction within
the leaf proliferating region (Horiguchi et al., 2005; Ichihashi
et al., 2011; Kawade et al., 2013). AN3 encodes a putative
transcriptional coactivator homologous to human synovial
sarcoma translocation protein, and is a positive regulator of
cell proliferation in the leaf blade and leaf petiole (Kim and
Kende, 2004; Horiguchi et al., 2005; Ichihashi et al., 2011).
AN3 transcripts accumulate only in mesophyll cells, but the
AN3 protein moves across different leaf layers to coordinate
proliferation between clonally independent leaf cells (Kawade
et al., 2013). Although the exact spatiotemporal distribution
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of AN3 protein has to be characterized, AN3 could mark the
position of the plate meristem in leaf primordia. On the other
hand, an enhancer trap line with T-DNA insertion in the 5′

region of SPATULA (SPT), along with other studies of the
SPT promoter, show that SPT is expressed at the margin of
the proliferative region in leaf primordia (Groszmann et al.,
2010; Ichihashi et al., 2010). The promoter of a D-type cyclin
gene, CYCD4;2, is active in a small number of cells directly
adjacent to the marginal cells of the leaf primordia. Although
the actual expression pattern of CYCD4;2 is not identical to that
observed in pCYCD4;2 promoter studies (Kono et al., 2007),
a specific cis-element seems to allow expression in this small
cell population. SPT limits the size of the leaf proliferative
region independently of AN3 activity (Ichihashi et al., 2010),
and overexpression of CYCD4;2 promotes cell proliferation in
leaves (Kono et al., 2007). Therefore, it appears that the promoter
activities of SPT and CYCD4;2mark the position of the marginal
meristem in leaf primordia. In addition, two WUSCHEL-
RELATED HOMEOBOX (WOX) genes, PRESSED FLOWER
(PRS)/WOX3 andWOX1, which encode homeobox transcription
factors, also redundantly promote leaf blade outgrowth (Nakata
et al., 2012). PRS/WOX3 is expressed mainly near the leaf margin
(Nardmann et al., 2004) andmay play a role inmarginalmeristem
activity. WOX1 is expressed within the two middle mesophyll
layers located exactly between the adaxial and abaxial sides of the
leaf blade (Nakata et al., 2012), and might be involved in plate
meristem activity. Thus, leaf development depends on multiple
leaf meristem activities with local controls of gene expression.

In addition to the local regulation factors, organ-level
regulation of leaf meristem activity has also been identified in
A. thaliana. KLUH (KLU) encodes the cytochrome P450 enzyme
CYP78A5, which promotes organ growth, including growth of
leaves, in a non-cell autonomous manner (Anastasiou et al.,
2007; Adamski et al., 2009; Eriksson et al., 2010). This suggests
that KLU is involved in generating a mobile growth factor.
Computer simulation predicts that the KLU-dependent mobile
growth factor might have less permeability or be regulated at the
physical/biochemical level (Kazama et al., 2010). Computational
modeling and time-lapse clonal analyses suggest that growth
orientations are specified by a tissue polarity system that changes
during leaf development, and that a basic pattern of growth rates
across the leaf is established from an early developmental stage
(Kuchen et al., 2012). Thus, organ-level regulation coordinates
growth patterns at the cellular level to form leaf shape. Taken
together, the studies discussed above indicate that leaf meristem
activities are tightly controlled by both the local regulation
systems in the plate and marginal meristem, and by mobile
growth factor and tissue polarity information that functions at
the organ level.

GENE REGULATORY NETWORKS OF LEAF
MERISTEMS

Genes Functioning in Cell Proliferation
A number of genes responsible for cell proliferation in leaf
primordia have been identified in studies of A. thaliana mutants

(Gonzalez et al., 2012; Kalve et al., 2014; Figure 2A). As
previously mentioned, AN3 functions at the plate meristem
to produce cells of both the leaf blade and the leaf petiole
(Kim and Kende, 2004; Horiguchi et al., 2005; Ichihashi
et al., 2011; Kawade et al., 2013). AN3 shows protein-protein
interaction with GROWTHREGULATING FACTOR5 (GRF5)
to promote cell proliferation (Horiguchi et al., 2005). AN3 is
also known as GRF-INTERACTING FACTOR1 (GIF1), and other
members of the GIF family, GIF2 and GIF3, also promote cell
proliferation in a redundant fashion (Lee et al., 2009). AN3 binds
to the SWITCH/SUCROSE NONFERMENTING (SWI/SNF)
chromatin remodeling complexes to regulate transcription
during leaf development (Vercruyssen et al., 2014). AN3 is also
involved in the establishment of leaf identity in cotyledons
via the repression of root fate during embryogenesis (Kanei
et al., 2012). On the other hands KLU is expressed in the
basal region of leaf primordia and generates a mobile growth
factor (Anastasiou et al., 2007). PRS/WOX3 and WOX1 are
also classified as activators of cell proliferation (Nakata et al.,
2012). The auxin inducible gene AUXIN-REGULATED GENE
INVOLVED IN ORGAN SIZE (ARGOS) increases the expression
level of the D-type cyclin CYCD3;1 gene through the regulation
of the AINTEGUMENTA genes (Krizek, 1999; Mizukami and
Fischer, 2000; Hu et al., 2003; Nole-Wilson et al., 2005).
APC10 and CDC27a are subunits of the anaphase-promoting
complex/cyclosome (APC/C), which functions at the G2 toM

FIGURE 2 | Gene regulatory networks of leaf development.

(A) Regulators of leaf structural identification and leaf cell proliferation in

Arabidopsis thaliana. Arrows, T bars, and lines indicate positive regulation,

negative regulation, and protein-protein interactions, respectively.

(B) Schematic diagram representing the gene regulatory networks controlling

tomato leaf development, which consists of several peripheral gene network

modules and a core network having highly interconnected genes. KNOX

appears as a bottleneck in the network, suggesting that KNOX was an

evolutionary hot spot that was repeatedly recruited for generating natural

variation in leaf shape. KNOX regulation occurs at multiple levels including (1)

modulation of trans-acting factors regulating KNOX (Ichihashi et al., 2014), (2)

promoter changes at KNOX (Piazza et al., 2010), (3) changes in KNOX

expression patterns (Bharathan et al., 2002), and (4) changes in effective

KNOX protein concentration (Kimura et al., 2008).
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transition of the cell cycle and is also reported to regulate leaf cell
proliferation (Rojas et al., 2009; Eloy et al., 2011). In addition,
the C2H2 zinc finger protein JAGGED (JAG) and a subunit
of the Mediator complex STRUWWELPETER (SWP) are also
constituent factors that positively control cell proliferation in
leaves (Autran et al., 2002; Ohno et al., 2004). All of these genes
function mainly in the control of lateral organ growth and not
in the SAM and RAM. Therefore, a specialized set of genes is
utilized to maintain leaf meristem activities.

Negative regulators of cell proliferation are important for
conferring determinate growth in the leaves. As previously
mentioned, SPT is expressed in the marginal meristem of leaf
primordia to restrict the size of the leaf proliferative region
(Ichihashi et al., 2010). Given that SPT may also help to
restrict the size of the RAM (Makkena and Lamb, 2013), SPT
might play a general role in the control of meristematic sizes
in roots and leaves. MicroRNA396 represses cell proliferation
through regulation of the GRF family (Jones-Rhoades and Bartel,
2004; Liu et al., 2009; Rodriguez et al., 2010). The AUXIN
RESPONSE FACTOR2 (ARF2) is a repressor of auxin signaling
that represses ANT gene expression to inhibit cell proliferation
(Horiguchi et al., 2006; Schruff et al., 2006; Lim et al., 2010).
The short polypeptide ROTUNDIFOLIA4 (ROT4) also functions
to repress cell proliferation, especially along the proximal-distal
axis (Narita et al., 2004; Ikeuchi et al., 2011; Guo et al., 2015).
Therefore, a microRNA, auxin and a short peptide, all of which
can potentially move across cell layers, underlie the delicate
mechanisms needed to shut down leaf meristem activities. In
addition, the RING-finger protein BIG BROTHER (BB); two
putative ubiquitin receptors, DA and DA-RELATED (DAR);
two TIFY-type transcription factors, PEAPOD1 and PEAPOD2;
and the cyclin-dependent kinase inhibitor gene KIP-RELATED
PROTEIN2 (KRP2) are also known to negatively regulate leaf cell
proliferation (De Veylder et al., 2001; Disch et al., 2006; White,
2006; Ferjani et al., 2007; Li et al., 2008).

Genes Functioning in Leaf Cell Identity and
Polarity
Several genes playing a role in the coordination of the above
cell proliferation regulators have been identified in A. thaliana
(Figure 2A). The BLADE-ON-PETIOLE (BOP) genes and their
direct target ASYMMETRIC LEAVES2 (AS2), which interacts
with AS1, are involved in the recruitment of the leaf founder cells
from the SAM and in the establishment of all three-dimensional
axes of the leaf (Semiarti et al., 2001; Iwakawa et al., 2002, 2007;
Ha et al., 2003, 2004, 2007, 2010; Xu et al., 2003; Hepworth et al.,
2005; Norberg et al., 2005; Zgurski et al., 2005; Fu et al., 2007;
Ikezaki et al., 2010; Jun et al., 2010; Ichihashi et al., 2011; Kojima
et al., 2011; Ishibashi et al., 2012; Chen et al., 2013). BOP and
AS1/2 repress the expression of class I KNOTTED-like homeobox
(KNOX) genes, which help maintain the indeterminate growth
of the SAM (Semiarti et al., 2001; Byrne et al., 2002; Ha et al.,
2003; Lin et al., 2003; Phelps-Durr et al., 2005; Guo et al.,
2008). Interestingly, the chromatin-remodeling protein HIRA
and the Polycomb-repressive complex2 interact with AS1/2 to
bring about KNOX gene silencing (Phelps-Durr et al., 2005;
Ueno et al., 2007; Guo et al., 2008; Lodha et al., 2013). In

addition, the microRNA JAW regulates the class II TEOSINTE
BRANCHED1/CYCLOIDEA/PCF (TCP) genes, which are
heterochronic regulators of the leaf maturation schedule and
determine the developmental window for organogenesis (Nath
et al., 2003; Palatnik et al., 2003; Efroni et al., 2008). Like AN3,
the TCPs also interact with SWI/SNF chromatin remodeling
complex components (Efroni et al., 2013), suggesting that
dynamic reorganization of chromatin architecture might play an
important role throughout leaf development.

An array of genes responsible for the regulation of the adaxial-
abaxial axis has been identified. These genes competitively
regulate of adaxial and abaxial identity, required for flat
outgrowth of the lamina. The regulators of adaxial identity
are BOP, AS1/2, a family of class III HOMEODOMAIN
LEUCINE ZIPPER (HD-ZIP) transcription factors, and a trans-
acting small-interfering RNA (tasiRNA) (McConnell et al., 2001;
Garcia et al., 2006). The regulators of abaxial identity are
microRNA165/166 and LITTLE ZIPPER (ZPR), which both
repress HD-ZIP (Mallory et al., 2004; Wenkel et al., 2007);
KANADI (KAN), which is repressed by AS2 (Wu et al., 2008);
ETTIN/ARF3, which is repressed by AS2 and tasiRNA (Garcia
et al., 2006; Iwasaki et al., 2013; Takahashi et al., 2013). YABBY
(YAB) genes also interact with the abaxial identity systems, but
they are essential in switching from the SAM program to the
leaf-specific program (Sawa et al., 1999; Siegfried et al., 1999;
Sarojam et al., 2010). Moreover, various metabolites, ribosomal
proteins, and plastid signals have been reported to affect the
establishment of the leaf adaxial-abaxial axis (Pinon et al., 2008;
Yao et al., 2008; Horiguchi et al., 2011; Toyokura et al., 2011, 2015;
Tameshige et al., 2013). Thus, housekeeping genes working in
basic metabolic and cellular functions might play specific roles
in leaf development (Tsukaya et al., 2013).

In addition to three-dimensional axes of whole leaf, additional
growth axes are formed to develop leaf serrations in case of
Arabidopsis thaliana. Auxin maxima along leaf margins are
required for the outgrowth of serrations, and automatically
formed through the activity of auxin efflux carrier PIN-
FORMED1 (Kawamura et al., 2010; Bilsborough et al., 2011).
CUP-SHAPED COTYLEDON (CUC) genes, which are generally
required for boundary formation between two organs, are
also key players in the serration formation (Nikovics et al.,
2006). CUC2 is essential for robustly positioning and indenting
individual serrations (Bilsborough et al., 2011). TCP fine-tunes
the expressional patterns of CUC through the regulation of
microRNA164 to shape the serrations (Nikovics et al., 2006;
Koyama et al., 2007, 2010; Kawamura et al., 2010).

LEAF MORPHOLOGICAL EVOLUTION

Despite of the diversity in leaf morphology, the molecular
mechanisms that give rise to developmental variation are
incompletely understood. Evolutionary developmental biology
(evo-devo) studies of plants and animals have revealed the
importance of gene regulation in determining developmental
variation (Blein et al., 2008; Kimura et al., 2008; Rebeiz et al.,
2009; Yamaguchi et al., 2010; Loehlin and Werren, 2012). This
suggests that the rewiring of developmental gene regulatory
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networks is a crucial causal factor driving morphological
evolution (Peter and Davidson, 2011). Current evo-devo studies
of plantmorphology suggest thatKNOX expression was recruited
repeatedly to generate natural variation in leaf shape in several
plant lineages (Bharathan et al., 2002; Kimura et al., 2008;
Hay and Tsiantis, 2010; Piazza et al., 2010; Nakayama et al.,
2012, 2014). Changes in the activity of other homeobox genes
REDUCED COMPLEXITY also cause the repeated evolutionary
modification of leaf morphology in Brassicaceae (Sicard et al.,
2014; Vlad et al., 2014), suggesting that the regulation of
homeobox genes was recruited repeatedly to influence leaf
diversity, similar to homeobox genes contributing to animal body
plan evolution (Pick and Heffer, 2012).

As we have seen, a number of leaf development genes
have been identified, but the exact interactions between these
genes has not been fully elucidated. The development of new
genomic tools has enabled the generation of large datasets,
which can be used to determine exactly how developmental
gene modules are organized into a network hierarchy (Fischer
and Smith, 2012). Genome-wide gene expression analyses have
been performed for several plant species, to reveal the dynamic
changes in gene expression during leaf development (Beemster
et al., 2005; Li et al., 2010; Andriankaja et al., 2012; Ichihashi
et al., 2014; Palmer et al., 2015). Ichihashi et al. (2014) used
cross-species, tissue-specific, and large-scale RNA-seq data to
reveal the gene regulatory networks controlling leaf development
in the domesticated tomato and its wild relatives. Comparisons
of the gene networks among species showed that a module
regulating KNOX at the protein level had significant differences
across species in a manner correlating with leaf complexity
(Kimura et al., 2008; Macalister et al., 2012; Ichihashi et al., 2014).
Interestingly, KNOX serves as a bridge connecting a peripheral
gene network module to the core network that includes leaf
cell proliferation regulators (Ichihashi et al., 2014). Therefore,
it appears that KNOX is repeatedly co-opted to generate plant
morphological diversity by virtue of its bottleneck location in the
gene regulatory network (Figure 2B).

CONCLUSION

The leaf is a complex three-dimensional photochemical reactor
whose form and function are determined by gene regulatory
networks. Recent technical advances are being used to unravel the
mysteries of the molecular mechanisms behind leaf development
and evolution. For example, gene expression studies using tissue-
specific promoters will further reveal the detailed functions of
leaf meristems. The key leaf development genes KNOX, TCP,
and AN3 are involved in epigenetic regulation (Phelps-Durr
et al., 2005; Ueno et al., 2007; Guo et al., 2008; Efroni et al.,
2013; Lodha et al., 2013; Vercruyssen et al., 2014). Therefore,
next-generation sequencing will be useful for characterizing the
genome-wide changes in chromatin structure, DNAmethylation,
and histone modifications during leaf development and between
plant species. Novel leaf structures such as the pitcher leaves
of carnivorous plants and the unifacial leaves of monocots,
are generated through tissue-specific changes in cell division
(Yamaguchi et al., 2010; Fukushima et al., 2015). Future

studies of leaf meristem activity in determining leaf shape
will undoubtedly provide greater insights into the molecular
mechanisms behind the substantial diversity of leaf forms in
nature.
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