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Poplars (Populus sp.) and willows (Salix sp.) are well known woody plants common
throughout the northern hemisphere, both with fully sequenced genomes. They bear
compact unisexual inflorescences known as “catkins.” Closely related genera of the
“salicoid clade” within the family Salicaceae include the Asian genera Bennettiodendron,
Idesia, Itoa, Poliothyrsis, and Carrierea and the Central American genera Olmediella and
Macrohasseltia. Like willow and poplar, most of these genera are dioecious, but unlike
willow and poplar they generally have loosely branched panicles rather than catkins, and
less highly reduced flowers. However, the early developing inflorescences of Carrierea
and Idesia show similarities to catkins which suggest possible pathways by which the
salicoid catkin may have evolved.

Keywords: inflorescence evolution, heterochrony, synorganization, preformation, dioecy, floral reduction,
inflorescence architecture, genome-enabled model system

INTRODUCTION

The Catkin and its Recurrent Evolution
The catkin is a type of compact or string-like inflorescence characterized by a single relatively
stout axis on which unisexual sessile or subsessile apetalous flowers are clustered in a spiral or
whorled arrangement. It is an extremely striking characteristic of many common trees, particularly
of northern temperate regions. Notable among these are members of the order Fagales (oaks,
walnuts, hazels, birches, and alders) and the relatively distantly related family Salicaceae s. str.
(willows and poplars). The similarities between the catkins of these two groups led to them being
classified together for a century (see below). It is now accepted that the presence of catkins in the
two groups is the result of convergent evolution.

In this paper ‘catkin’ will be used in preference to the alternative term ‘ament.’ According to
the Oxford English Dictionary, the word catkin came into English in 1578 when Henry Lyte
(1529-1607) coined it in his translation of Dodoens’ New Herbal as a translation of the Dutch
“katteken” (kitten) used for the downy inflorescences of willows and other plants (Dodoens, 1578).
The botanical Latin equivalent, amentum, the Latin word for a thong or string, is less common. Its
use in English dates from the late 18th century, sometimes anglicized as ament. The use of amentum
in botanical Latin overlooks the Latin word for catkin, iulus, used as such by Pliny. However, apart
from the occasional use of Juliflorae instead of Amentiflorae, this form never became established.
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The Catkin and Taxonomy
The striking amentaceous inflorescences of many trees quickly
attracted the attention of botanists, some of whom thought
that the catkin-bearing trees formed a natural group (variously
called Amentiflorae, Amentiferae, Amentales, or Amentaceae;
Stern, 1973). Although the group name “Amentacea” was
used by Gmelin, Linnaeus, and de Jussieu (Stern, 1973) and
sporadically by later authors (Du Mortier, 1825), it was Eichler
who was most influential in defining a ‘scientific’ Amentaceae.
In the third edition of Eichler’s Syllabus (Eichler, 1883) the
order Amentaceae comprised the Cupuliferae (i.e., Betulaceae
and Fagaceae s.l.), Juglandaceae, Myricaceae, Salicaceae, and
Casuarinaceae. This collection of families can be considered
the canonical Amentiferae, although other groups have drifted
in and out of the catkin-bearing alliance in various systems,
e.g., Piperaceae, Urticales, Leitneria, Garryales (Figure 1).
Remarkably, Eichler’s (1883) Amentaceae is a good natural
group (providing of course that the unrelated Salicaceae is
excised). In fact it corresponds almost exactly to the modern
concept of the Fagales (Angiosperm Phylogeny Group, 2009),
missing only Rhoiptelea and Ticodendron, both unknown to
Eichler.

In the last century the realization grew that the Salicalean
branch of the Amentiferae was very different from the Fagalean

FIGURE 1 | Summary phylogenetic diagram showing the relative
phylogenetic position (arrowed) of selected groups that have formerly
been included in the Amentiferae due to their catkins or catkin-like
inflorescences (see text). The phylogeny reflects that of the Angiosperm
Phylogeny Group (2009). Only major clades are shown: the position of minor
clades is indicated with dashed lines.

Amentiferae (Figure 1). This realization was confirmed by
molecular phylogenetics and made clear in systems based on
molecular phylogenetics such as the Angiosperm Phylogeny
Group (APG) system (Angiosperm Phylogeny Group, 2009). An
implication of the decomposition of the Amentiferae is that
catkins, the most obvious unifying feature of the Amentiferae,
have evolved in two very distinct lineages. This raises questions
of convergent evolution: how the catkin evolved in each case
and what the ancestral inflorescence form might be. Here we use
comparative ontogenetic and anatomical observations as a basis
to discuss these questions in one of the archetypal catkin-bearing
groups, Salicaceae.

The Salicaceae, Classification and
Morphology
When Eichler included Salicaceae within his order Amentaceae,
the family was wholly amentiferous (i.e., catkin-bearing)
comprising only the genera Salix and Populus. Molecular
evidence, coupled with support from phytochemistry and
morphology, has demonstrated a close relationship between
Salix and Populus and many non-amentiferous genera that
were formerly placed in the Flacourtiaceae (Leskinen and
Alstrom-Rapaport, 1999; Chase et al., 2002; Alford, 2005). The
heterogeneous family Flacourtiaceae is now dismembered, and its
members are placed in other families, mainly the Salicaceae and
Achariaceae. The family Salicaceae, as now circumscribed in the
broad sense, is a more homogeneous group of about 1000 species
in c. 55 genera. They are uniformly woody (trees or shrubs) with
simple, usually alternate, leaves. The leaves are often dentate and
the leaf teeth frequently glandular (characteristic ‘salicoid teeth’).
The flowers are often inconspicuous and a perianth may be
lacking in some genera. Inflorescence morphology in the family
as a whole is highly variable. The sister family to the Salicaceae is
probably the Lacistemataceae (Davis et al., 2005; Korotkova et al.,
2009), and it is of interest that this family has also independently
evolved catkins.

Salix and Populus are closely related sister genera which
in turn are related to a group of seven other genera (Alford,
2005). Initial molecular phylogenetic evidence based on ITS
and eight plastid regions suggests that “a clade consisting of
Bennettiodendron, Idesia, and Olmediella are sister to Salix and
Populus (Figure 2). Sister to that clade is a clade of the other four
genera, Carrierea, Itoa, Macrohasseltia, and Poliothyrsis” (Alford
et al., 2009).

These nine genera have been referred to as the “salicoid clade”
of the family Salicaceae (Cronk, 2005). Salix and Populus are
known to be palaeotetraploid (Sterck et al., 2005) with a primary
chromosome number of n = 19 (Darlington and Wylie, 1955)
whereas the haploid base number for the family is n = 9 or 11.
For instance, Azara serrata Hook is n = 9 (Sanders et al., 1983).
Very few chromosome counts exist for the genera of the salicoid
clade but both Olmediella (Grill, 1990) and Idesia (Darlington
and Wylie, 1955; Grill, 1990) appear to be tetraploid at n = 22.
It is possible therefore that whole of the salicoid clade shares the
same palaeotetraploidy event from n = 11 to n = 22, followed by
(in Populus and Salix) reduction events to n = 19.
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FIGURE 2 | Summary phylogenetic diagram showing the major
groupings within the salicoid clade, after Alford et al. (2009).

The Inflorescence of the Salicoid Clade
of the Salicaceae
The genera of the salicoid clade have been described in various
recent treatments (Sleumer, 1980; Fang et al., 1999; Yang and
Zmartzty, 2007). They are all described as having paniculate
inflorescences with the exception of Populus and Salixwhich have
racemose inflorescences (catkins). A reduction of inflorescence
branching (from panicle to raceme) does occur as a sexual
dimorphism in Itoa, in which the male flowers are said to
be in racemes and the female flowers in panicles (Table 1).
Furthermore, in Idesia the paniculate inflorescences are long,
pendulous and fairly narrow, superficially resembling racemes
(Figure 3).

In the fossil record there is some blurring between raceme and
panicle. Pseudosalix† (Boucher et al., 2003) is an Eocene fossil
of Salicaceae that has leaves like willow (Salix) but somewhat
paniculate inflorescences. Furthermore, the Eocene Populus
tidwellii† Manchester, Judd & Handley (Boucher et al., 2003;
Manchester et al., 2006) has catkins with some lateral branching
near the base, placing it in an intermediate position in this
character with the paniculate ancestors of Populus. Furthermore,
Fisher (Fisher, 1928a,b) argued that the bract (with which the
flower is associated), while appearing to be directly inserted on
the main axis of the inflorescence, is in fact inserted on a minute
lateral stump (which Fisher called the “internode”) at the top
of which the flower is borne. She argued that this feature is
an indication of the evolution of the Salicaceae catkin from a
branched, paniculate antecedent.

In most of the salicoid clade, the inflorescence is terminal
on the shoots, often (as in Idesia, Carrierea, and Poliothyrsis)
terminating the shoots that appear after bud-break of the
terminal bud. This condition contrasts with Salix and Populus, in
which the inflorescences are produced in lateral buds (with very
few exceptions: in Salix sect. Chamaetia they are often terminal).
Again, P. tidwellii† (Manchester et al., 2006) is interesting in this
regard as it has terminal inflorescences.

Floral Morphology of the Salicoid Clade
Apart from unisexuality, lack of petals and the presence of
nectarial disk glands in some species, the flowers of the most
genera in the salicoid clade are unexceptional.

The flowers all have a subtending bract. The highly reduced
flowers in Salix and Populus prompted some early authors to
suggest that the bracts in thes taxa might be derived from the
missing perianth. However, this interpretation was shown to
be false by Fisher (1928a,b) who demonstrated that they have
a foliar-type vascularization consistent with bract origin: these

TABLE 1 | Genera of the salicoid clade of Salicaceae.

Genus No. of sp. Sex of
flowers

Distribution of
sexes

Inflorescence Perianth and disk

Bennettio-dendron 3 (Asia) Unisexual Dioecious Terminal or axillary panicles Sepals 3, petals 0, disk glands
numerous, small

Carrierea 2 (Asia) Unisexual Dioecious Short terminal or axillary
panicles

Sepals 5, petals 0, disk glands 0

Idesia 1 (Asia) Unisexual Dioecious Long raceme-like terminal or
axillary panicles

Sepals c.5, petals 0, disk glands
numerous among stamens or
staminodes

Itoa 1 (Asia) Unisexual Dioecious (or partly
monoecious?)

Terminal panicles (f) or terminal
or axillary racemes (m)

Sepals 5, petals 0, disk glands 0

Macrohasseltia 1 (S. Am.)

Olmediella 1 (C. Am.) Unisexual Dioecious Small panicles Sepals 5 (reduced), petals 0, disk
glands numerous (at base of each
stamen)

Poliothyrsis 1 (Asia) Unisexual Monoecious Terminal panicle, upper flowers
female

Sepals 5, petals 0, disk glands 0

Populus c. 60 (wide) Unisexual Dioecious Catkin Sepals 0, petals 0, disk cupular

Salix (incl. Chosenia which has
both disk glands absent)

c. 500 (wide) Unisexual Dioecious Catkin Sepals 0, petals 0, disk glands us.
2 (adaxial and abaxial; abaxial may
be absent)
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FIGURE 3 | Photographs of inflorescences. (A) Young inflorescence of Carrierea calycina Franch.) collected May 2015. The flowers are unopened. The floral
bracts and calyces are visible. (B) Young male inflorescence of Idesia polycarpa Maxim., collected May 2015. The flower buds are still small but the branching of the
paniculate inflorescence is evident. This inflorescence has developed in 3 months from an inflorescence meristem as shown in Figure 5B. (C) Previous year’s female
inflorescence (infructescence) of I. polycarpa, collected February 2015, showing the extensive branching of the inflorescence.

bracts are therefore simply homologous with the floral bracts of
other members of the salicoid clade.

All genera have a calyx of (3-)5(-6) sepals, except Salix
and Populus which lack an obvious perianth entirely. It should
be noted that in Olmediella the calyx is reduced and quickly
caducous (Alford, 2005). The staminate flowers have numerous
stamens (in all except Salix, which generally has only 1–5

stamens) and a vestigial ovary (absent in Salix and Populus).
The pistillate flowers have numerous small staminodes (except
Populus and Salix). The presence of vestigial sexual organs in
most species but their complete absence in Salix and Populus
indicates the extent of the process of floral reduction in those
genera. However, it is not known whether the developmental
pathways for vestigial pistils inmales (and staminodes in females)
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has been completely removed as part of sex determination
or merely reduced to the extent it no longer has anatomical
consequence.

The nectarial disk glands are an important floral feature in
many genera (Table 1). These glands are generally assumed to be
outgrowths of the disk. However, they are consistently associated
with the stamens and staminodes, appearing interspersed among
the stamens (intrastaminal, as in Idesia), or at the bases of the
stamens in Olmediella (Alford, 2005). This location raises the
question of whether they might be staminodial in origin.

There is a further question of whether the disk glands
(nectaries) of Salix are homologous with the disk glands of other
genera. Fisher has argued convincingly (Fisher, 1928a,b) that they
represent a modified perianth because there appears to be some
vascularization. However, Fisher made this argument before the
outgroups of Salix were known. Now that we know the close
relationship between Salix and other genera with disk glands, it
seems logical to assume their homology (Alford, 2005).

Another puzzle is the “cupular disk” of Populus. Fisher
homologised this structure with perianth and with the disk
glands of Salix: “The disk-shaped perianth of Populus, or its
peripheral parts, is homologous with the nectary of Salix” (Fisher,
1928b). Skvortsov (1999) also had no difficulty homologizing the
disk glands of Salix with the cupular disk of Populus, mainly
because the disk glands in Salix are sometimes united and
approach in morphology the cupular disk of Populus. He writes:
[Salix has]“...one or two (or a few) nectariferous glands, which
occasionally are connate into a lobed glandular disk. These glands
are obviously homologous to the cup-shaped disk in the poplars
(which is sometimes called perianth).” However, the cupular disk
of Populus is vascularized, consistent with Fisher’s thesis that
the disk glands of Salix have a perianth origin, assuming the
two to have a common origin. However, it is also possible that
as non-perianth disk glands evolved to increased complexity,
vascularization was co-opted. Another possibility is that the
cupular disk of Populus is indeed directly homologous with the
calyx but not with the glands of Salix (which then have a non-
perianth origin). Finally, the simplest explanation of all is that
the cupular disk is merely an enlarged disk (i.e., receptacular in
origin).

In this paper we seek to investigate whether the morphology
of closely related non-catkin-bearing species can inform our
understanding of the evolution of catkins in the Salicaceae. In
particular we are interested in setting out the main ways in
which Salix and Populus differ, in reproductive morphology
and phenology, from their close relatives. Knowledge of the
inflorescence morphology and flowering behavior of related
plants allows the formulation of scenarios by which catkins
evolved in this clade.

MATERIALS AND METHODS

Sample Collection
For Idesia,Carrierea, and Poliothyrsis, terminal resting buds were
collected in spring before bud-break. In Salix and Populus lateral
inflorescence buds were collected at the same time. A young
inflorescence of Olmediella was collected at the same time from
greenhouse-grown material. After budbreak young inflorescence
shoots were also examined. A list of samples collected with
accession numbers is given in Table 2.

Sample Preparation
Collections of inflorescence material were killed and fixed in
formalin–acetic acid–alcohol (FAA) for approximately 1 week
followed by storage in 70% ethanol. Some material was
dehydrated through an ethanol series to 100% ethanol,
transferred to Histoclear before embedding in Paraplast using
standard protocols. The wax blocks were sectioned at 10 µm
thickness on a rotary microtome (Leica RM2155) and the
resulting sections were stained in 0.5% (w/v) solution of toluidine
blue before mounting on microscope slides in DPX mountant.
Images were captured using a Zeiss Axiocam HRc camera
attached to a Leica DMLB microscope.

Other material was dehydrated through an alcohol series
into acetone and transferred to a critical-point drier (Tousimis
Autosamdri 815B). Dried material was then sputter-coated with
platinum in a sputter coater (Emitech K550). The material was
examined on a Hitachi S-4700 II cold-field emission scanning
electron microscope.

TABLE 2 | Details of material examined in this study.

Name RBG Kew accession no. Date collected

Carrierea calycina Franch. –F 2006-616 6.2.2015, 13.2.2015

Idesia polycarpa Maxim. – F 2006-332 6.2.2015, 13.2.2015

Idesia polycarpa – M 2008-416 6.2.2015, 13.2.2015
∗Olmediella betschleriana (Göpp.) Loes. – F 1969-12335 16.2.2015
∗Poliothyrsis sinensis Oliv. – Mon 1973-20904 7.2.2015, 13.2.2015

Populus nigra L. – M 1988-8331 2.2.2015

Populus purdomii Rehder – F 1973-6401 2.2.2015

Populus wilsonii C.K. Schneid. – F 1979-1110 18.2.2015

Salix miyabeana Seem. – M 1999 - 547 16.2.2015

Salix sp. – F 1999-548 16.2.2015

All material was collected from living material growing in the Royal Botanic Gardens Kew. Male and female plants are indicated as M and F, respectively (Mon, monoecious).
An asterisk indicates those species not figured in the present study.
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FIGURE 4 | Carrierea calycina. (A) Over-wintering bud with minute inflorescence meristem surrounded by protective bracts (bud scales) collected 13th February
2015. At this stage the inflorescence has not started developing. (B,C) Sequential longitudinal sections of dissected resting bud (pre-budbreak) collected 2nd April
2015, showing a fairly well-developed inflorescence with individual flowers differentiated. Floral bracts and calyx are visible but other organs have not formed and
gender is not visible at this stage (bud scales removed). (D) Detail of developing flower from (C). Scale bars = 1 mm.

RESULTS

Phenology and Gross Morphology of
Reproductive Shoots
In autumn Poliothyrsis, Idesia, and Carrierea set comparatively
large terminal buds on all shoots of the previous year. The
majority of these buds produce short shoots terminating in an
inflorescence (Figure 3). Vegetative growth (and flowers of the
following year) is therefore left to side shoots. This growth pattern
corresponds with the “Modèle de Leeuwenberg” of Hallé and
Oldeman (Hallé et al., 1978). Populus has the opposite tendency,
with terminal buds tending to be vegetative and side shoots

(from axillary buds of the previous year) tending to contain
catkins. In Poliothyrsis, nearly all growth is by terminal buds
from side shoots of the previous year, these in turn terminate
in inflorescences with between four and six leaves below then.
In Carrierea there tend to be four to six leaves below each
inflorescence and in Idesia four to five.

Developmental Anatomy
Carrierea (Figures 4A–D) and Idesia (Figures 5A,B) show
very little development of the inflorescence when collected in
February. In contrast, Populus and Salix (Figures 6 and 7) have
fully formed flowers. The preformation and early development
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FIGURE 5 | Idesia polycarpa. (A) SEM of bisected over-wintering bud collected 13th February 2015 showing an inflorescence meristem surrounded by protective
bracts (bud scales; B) Detail of (A) showing just the inflorescence meristem, At this stage the inflorescence meristem shows inflorescence bract primordia but not
floral primordia. Later branch primordia will form in the axils of the inflorescence bracts and develop into the paniculate (i.e., branched) inflorescence. At the same
stage Salix and Populus inflorescences are fully developed with completely formed flowers (Figures 6 and 7). (C) Longitudinal section of dissected over-wintering
(pre-budbreak) bud collected 2nd April 2015 showing development of panicle (bud scales removed). Flowers can be seen in early development, with some
development of the calyx but not other organs. At the same date Salix and Populus have finished flowering. (D) Enlarged portion of (C). Scale bars = 1 mm.

of inflorescences in Populus and Salix is well known, with
inflorescences formed the previous year (Boes and Strauss,
1994; Kaul, 1995; Brunner et al., 2014). Figures 6 and 7 show
the almost fully developed flowers inside the unopened buds
enclosing catkins of Populus and Salix when sampled in early

February (well before bud opening and flowering in March).
In contrast, developmental timing in Idesia was found to be
very different. No identifiable inflorescence meristems were
found in buds sampled in February, although well-developed leaf
primordia were present (Figure 5). Resampling in April revealed
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FIGURE 6 | Populus. (A) Populus nigra L., male inflorescence (catkin) with nearly fully developed flowers. Longitudinal section of catkin, collected 2nd February
2015, showing well-developed stamens with short filaments and longer anthers with red-staining developing pollen (bud scales removed). (B) P. purdomii Rehder,
female inflorescence with flowers in a late stage of development. Longitudinal section of catkin collected 2nd February 2015, showing single ovary per flower.
(C) P. wilsonii C.K.Schneid., SEM detail showing a well developed ovary from a female inflorescence, collected 2nd February 2015. Scale bars = 1 mm. Bud scales
removed.

dramatic differences. A well-developed inflorescence meristem
was found to be present, but no developed flowers (Figure 5).
We conclude that inflorescence development in Idesia occurs
in response to warming temperatures in the spring, although
much of it is completed within the closed bud before bud
break in May. At an early stage, the inflorescence meristem
resembles a catkin in having numerous spirally arranged
bracts and primordia on an axis. However, these primordia
will develop into inflorescence branches and not individual
flowers.

DISCUSSION

Evolutionary-developmental
Mechanisms Implicated in Inflorescence
Evolution in the Salicoid Clade of
Salicaceae
When the highly reduced and specialized inflorescence of Salix
(Figure 7) is compared with its outgroup genera, for instance
Idesia (Table 3), there are several traits that are shared. Our
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FIGURE 7 | Salix. (A) Salix miyabeana Seem., male inflorescence (catkin). Longitudinal section of over-wintering bud (bud scales removed), collected 16th February
2015, showing well-developed flowers, each with an apparent single stamen (actually two stamens completely united except at the anther). The anthers are well
differentiated pre-anthesis. (B) Salix sp., SEM showing three well developed female flowers in the axils of bracts, from an inflorescence in over-wintering bud
collected 16th February 2015. Scale bars = 0.5 mm. Bud scales removed.

comparative investigation indicates that these apparently pre-
existing shared traits (unisexual flowers, dioecy and association
of flowering with resting buds) likely pre-date the evolution of
catkins rather than being a consequence of the evolution of
catkins. In contrast to the monoecious Fagales, where typically
male and female catkins occur on the same tree, dioecy is
universal in the catkin-bearing Salicaceae and their immediate
relatives. Although bisexual teratomorphs are sometimes found,
bisexual species in the catkin-bearing Salicaceae are exceedingly
rare, although they do occur as a derived condition (Rohwer
and Kubitzki, 1984). Dioecy in the group is ancient and stable
and under genetic control (Geraldes et al., 2015), even though
the genetic mechanism is labile and has apparently undergone
numerous shifts within the genome (Filatov, 2015; Geraldes et al.,
2015).

A number of other traits, however, are specific to the
catkin-bearing habit: preformation, precocity, bud dimorphism,
inflorescence contraction, floral reduction, lateralization. These

traits represent necessary steps to the evolution of catkins in the
Salicaceae. They will be discussed in turn.

Preformation
This is the formation of structures a long time before they become
visible or functional. In Salix and Populus the inflorescence is
initiated as soon as the resting buds form, which may be as early
asMay in the year preceding flowering. The early initiation allows
time for the catkin to be fully formed by the time buds break in the
spring. By contrast, other members of the salicoid clade complete
inflorescence maturation only after bud break in the spring
(contrast Figures 5A,B with Figures 6 and 7). Inflorescence
development may start in the bud (partial preformation) but
completes on the growing shoot (see results and Figure 5).
Preformation is obviously a necessary precondition for precocity
(below), and precocity may be what is driving full preformation.
Preformation in resting buds involves a paradox. In a normal bud
there is no leaf production and shoot growth has ceased. The bud
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is in developmental stasis, at least vegetatively, in preparation
for full dormancy. On the other hand with floral preformation
there is much reproductive development in the bud with the
formation of an inflorescence meristem and floral primordia and
their development into flowers. The evolution of preformation
implies increased developmental control in coupling two phase
changes of the meristem: change from active growth to dormancy
and change from vegetative to reproductive. In Idesia these
phase changes seem to occur sequentially, first dormancy then
inflorescence formation. In poplar and willow they appear to be
coupled.

Precocity
The term precocity is here applied to the breaking of reproductive
buds before the vegetative buds to allow flowering before the
development of a canopy. It should be noted that precocity
as discussed here is seasonal precocity, not flowering as a
juvenile (also sometimes refers to as precocious flowering).
Seasonal precocity implies bud dimorphism (below). Although
most willows are strictly precocious, the genus Salix as a
whole shows a great deal of variation in this trait. Some
are what salicologists call “coetaneous” (an archaic word for
contemporaneous), meaning that the catkins are produced at the
same time (contemporaneously) with the leaves. More precisely
this means that the catkins are not sessile on the previous years
growth but on, bud-break, a leafy shoot is produced which the
catkin terminates. In this respect it is directly analogous with
Idesia, in which the inflorescence terminates a short leafy shoot.
A third type of reproductive behavior, “serotiny” (from the latin
serotinus = coming late), also occurs in willows. This is an
extreme form of the coetaneous habit. In botany serotiny is
more commonly applied to delayed seed dispersal, but in willows
it refers to delayed flowering. This occurs when catkins are
poorly developed in bud and complete their development post-
budbreak, thus apparently flowering with the current season’s
growth. Although formal analyses are lacking (partly due to
continuing uncertainty over the phylogeny of Salix), it is likely

TABLE 3 | Comparison of Idesia and Salix in terms of putative processes
and characteristics of inflorescence evolution and development.

Process/characteristic Idesia Salix

Unisexual flowers Yes Yes

Dioecy Yes Yes

Flowering linked to resting buds Yes Yes

Preformation No (or short) Yes (long)

Contraction No (elongated
branched rachis)

Yes (complete)

Non-terminal deletion No Yes (in most
species)

Precocity No Yes

Bud dimorphism No (buds producing
leaves and
inflorescence)

Yes (buds either
vegetative or
flowering)

Floral reduction No Yes

Lateralization No (inflorescence
terminal)

Yes (inflorescence
lateral)

that coetaneous and serotinous willows are derived and may
represent reversals. However, if the coetaneous habit is found
to be primitive in Salix it provides a link to other genera of the
salicoid clade.

Non-terminal Deletion
Closely associated with precocity, non-terminal deletion is the
evolutionary loss of parts of an organ from the base rather than
the tip. In this case, it refers to the loss of leaves below the terminal
inflorescence, as in precocious Salix and Populus. For instance
Idesia bears its inflorescences on leafy shoots whereas the catkins
of Populus are not associated with vegetative leaves. Evolutionary
loss at the end of a shoot may simply be the consequence of
growth ceasing early, while evolutionary gain at the tip may be
the result of growth continuing for a longer period. Loss (in
this case of leaves) at the base of a shoot is more problematic.
It requires that a late developmental program (in this case
inflorescence production) is brought forward to replace early
developmental programs (in this case leaf primordia production
which would normally take place as the resting buds form). The
concepts of terminal and non-terminal deletion have been used
in evolutionary analyses of other botanical systems, including of
fossils (Bateman, 1994). In our present system we can see that
extreme inflorescence preformation, characteristic of Populus
and Salix, brings forward inflorescence production to precisely
the time when leaves would be forming during the development
of the resting bud. Therefore precocity, preformation and non-
terminal deletion, although separate concepts, may in fact be
interlinked parts of a single evolutionary scenario.

Bud Dimorphism
In Salix and Populus there is a functional dimorphism between
floral and vegetative buds. Precocity implies that floral and
vegetative buds may have different temperature sensitivity,
with inflorescence buds having a lower cumulative temperature
requirement (heat sum, for instance in degree days) required
for development. Bud dimorphism allows a marked “division
of labor” between reproductive and vegetative meristems. In
poplar and willow the catkin usually has no vegetative function
whatsoever, and correspondingly the vegetative shoot has no
reproductive function. In Idesia the distinction is blurred. Almost
all shoots produce not only a terminal inflorescence but also
numerous leaves below the inflorescence. Thus reproductive and
vegetative functions are carried out by the same buds (repro-
vegetative buds).

Contraction
In most genera of the salicoid clade the inflorescence is a
lax branched panicle with elongated rachises. The evolution of
the catkin therefore requires evolutionary and developmental
contraction of the inflorescence. The inflorescence meristem
of Idesia, with primordia and associated bract primordia
(Figure 5) gives a possible scenario of how the catkin could have
evolved. The primordia would normally develop into panicle
branches and then into flowers. If the floral developmental
pathway were to be brought forward in developmental time
then it is possible to see how the result would be a series
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of bract associated flowers. This would be an example of
heterochrony: a change in developmental timing (Bateman, 1994;
Rudall and Bateman, 2004). In Solanaceae, it is suggested that
minor changes in the maturation process of apical meristems
can give rise to dramatic changes in reproductive shoot
organization (Park et al., 2012, 2014). In grasses, more complex
panicles can be formed by delaying the phase change from
the indeterminate shoot meristem (SM) inflorescence building
program to a determinate spikelet and floral meristem (FM)
program (Kyozuka et al., 2014). In the evolution of catkins we
propose the reverse: a simplification of the panicle by early
phase change from an inflorescence building (SM) program to
a determinate FM developmental program. It is of interest that
Fisher (Fisher, 1928a,b) found, in the catkins of some species
of Salix, microstructures that she interpreted as the vestigial
branches of an ancestral branched inflorescence. This implies
that catkin evolution proceded via a progressive shortening
of axes rather than a complete deletion of the branching
pathway for inflorescence development. Furthermore, the floral
developmental pathway has not been brought forward so far as
to eliminate all trace of branch structure. Fisher’s finding was
all the more remarkable as it came long before the appropriate
outgroups were known and it was easy to assume that the
ancestral form was a simple raceme rather than a branched
panicle.

Floral Reduction
Small flowers are an obvious consequence of the evolution of
the catkin as there is no space for elaborate flowers in a highly
condensed inflorescence. Additionally some of the functions
of individual flowers are, in the catkin, taken over by the
inflorescence as a whole. An example is floral protection in
bud which is done by the calyx in Idesia but by the tight
packing of the flowers and investing bracts in poplar and
willow. A remaining question is whether the calyx has been
lost completely or converted into disk glands (nectaries) in
willow. For nearly a century this question has been considered
closed with the consensus that the disk glands of willow and
the cupular disk of poplar represent the lost perianth. However,
the recent identification of the relatives of Salix and Populus
followed by the realization that they have both disk glands
and a calyx have cast some doubt on this consensus (Alford,
2005). In addition to the loss of calyx there has also been a
reduction in stamens in the insect-pollinated Salix (down to
one in some species). In the wind-pollinated Populus, large
numbers of stamens have been retained, packed very tightly
into the flowers in bud. This illustrates the constraint that the
more pollen-wasteful process of wind pollination places on floral
reduction in poplar.

Lateralization
In Idesia, the terminal buds on shoots produce inflorescences and
the inflorescence terminates shoot growth. In poplar, terminal
buds are never (or at least very rarely) reproductive. The catkin
buds are all lateral (axillary) buds. The determinate growth
of all terminal buds puts a constraint on the rate of height
growth that can be attained by Idesia and its relatives which

tend to be relatively small trees. Poplar, however, because its
inflorescences are lateral, can maintain indeterminate growth,
resulting in poplars being generally the fastest growing and tallest
dicotyledonous trees in the northern hemisphere. Catkins are also
lateral in willow, but in willow the terminal shoot tends to abort
rather than form a resting bud for continued growth the following
year, hence willows also tend to be smaller in stature. In the
Juglandaceae, lateralization of the catkins is only partial, as while
staminate catkins are general lateral, pistillate catkins are usually
terminal (Manning, 1938). This could suggest a physiological
constraint between investment in large fruit (as in Juglandaceae)
and inflorescence position.

Adaptive Significance of Inflorescence
Evolution in Salicaceae
The compactness of the catkin allows inflorescence development
to be completed within the inflorescence bud. This in turn allows
for precocious flowering. Precocity has an obvious consequence
for wind-pollinated plants (such as poplars, Populus) as it
allows flowers to be pollinated before the emergence of the
leafy canopy which may attenuate air movement among the
branches. For insect-pollinated plants, precocity effectively
removes competition for bees from other flowers. Willows
(Salix) are generally insect pollinated (Karrenberg et al., 2002),
particularly by bees of the genus Andrena (Knuth, 1909; Ostaff
et al., 2015). They are also well known to be an important source
of pollen and nectar for honey bees (Apis mellifera L.) early in
the year when bees have few other food sources. However, a
trade-off against the absence of competition for pollinators, is
the fact that there may be fewer bees flying in early months of
the year. This mechanism, of course, applies only to temperate
regions with a pronounced cold season, and is not applicable to
catkin-like inflorescences of tropical origin such as the related
Lacistemataceae.

Another mechanism, related to precocity, is thermal
protection (Tsukaya and Tsuge, 2001). The contraction of the
flowers into a compact inflorescence allows the flowers to be
protected by hairs on the margins of the bracts. These form,
in some instances, a striking wooly insulating layer around the
catkin. Indeed, the name ‘catkin’ alludes to this flocculence. The
woolliness is equivalent to the wooly hairs of many alpine plants
and by trapping air may allow flowers to survive the severe night
frosts encountered as a consequence of precocity. A lax panicle,
on the other hand, cannot be protected by hairs on its bracts.

A third mechanism that should be considered is reproductive
efficiency. Poplars and willows produce large amounts of seed
with little investment in inflorescence structures. Compare
this with Idesia, which produces a modest amount of seed
with a heavy investment in inflorescence rachis and flower
stalks. Furthermore, individual flowers of Idesia are large. They
have to be, as each one has to provide a sufficient landing
surface for pollinating insects. By aggregating minute flowers
together, Salix provides a landing platform for bees while
minimizing investment in individual flowers. This is an example
of synorganization, i.e., the provision of a novel or more efficient
function by different plant organs working in concert, in this
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case numerous small flowers organized into a larger unit that can
function as a landing surface.

The Genome-enabled Family Salicaceae
as a Promising System for Evolutionary
Developmental Biology
The salicoid clade of the Salicaceae exhibits a promising range
of ecologically important morphological traits (Cronk, 2005). It
is also one of the best characterized clades of dicotyledons at
the genome level. The poplar (P. trichocarpa Torr. & A.Gray)
genome was the third plant genome to be released (Tuskan
et al., 2006) and it has now been joined on the comparative
genomics site Phytozome (Goodstein et al., 2012) by the genome
of Salix purpurea L., an economically important basket and
biofuel willow extensively used in breeding programs for crossing
with other species. Complete genome sequencing projects are
well advanced for other species of Salix and Populus and a
plethora of genomic information will soon be available. This
raises the possibility of a molecular approach to the evolution
of many key traits in the salicoid clade, including inflorescence
architecture. Importantly for reproductive traits, the genomic
architecture of the sex locus in P. trichocarpa has recently been
elucidated (Geraldes et al., 2015).

Inflorescence architecture is a economically important trait
in many crop species. The grapevine (Vitis) is a good example,
in which a compact or lax infructescence (caused by variation
of rachis length) is a characteristic of commercial importance
(Correa et al., 2014). For obvious reasons the genes underlying
this trait are now attracting increased attention. A number of
mutants are known in Arabidopsis that affect inflorescence traits.
An example of genes of potential relevance to catkins are the
compact inflorescence (CFL) genes (Goosey and Sharrock, 2001).

The rich genomic resources developing for Salix and Populus
will greatly facilitate the development of genomic resources for
other genera in the salicoid clade. A complete genome of Idesia
would be particularly valuable as an outgroup for Salix and
Populus. Similarly, a member of the Salicaceae that is more distant
(such as Azara) would be useful as an outgroup for the salicoid
clade as a whole. Azara is outside the palaeopolyploidy event

that has occurred in the salicoid clade, it would therefore be
particularly useful to assess evolution of gene paralogues in Salix
and Populus resulting from the whole genome duplication event.

CONCLUSION

The morphological richness of the Salicaceae coupled with the
rapidly expanding genomic resources make this family, of all
woody plant families, particularly promising for genome-enabled
evolutionary developmental biology.
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