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Sustainable and inexpensive production of biomass is necessary to make biofuel
production feasible, but represents a challenge. Five short rotation coppice willow
cultivars, selected for high biomass yield, were cultivated on sites at four diverse
regions of Quebec in contrasting environments. Wood composition and anatomical
traits were characterized. Tree height and stem diameter were measured to evaluate
growth performance of the cultivars according to the diverse pedoclimatic conditions.
Each cultivar showed very specific responses to its environment. While no significant
variation in lignin content was observed between sites, there was variation between
cultivars. Surprisingly, the pattern of substantial genotype variability in stem density
was maintained across all sites. However, wood anatomy did differ between sites in
a cultivar (producing high and low density wood), suggesting a probable response to an
abiotic stress. Furthermore, twice as many cellulose-rich G-fibers, comprising over 50%
of secondary xylem, were also found in the high density wood, a finding with potential
to bring higher value to the lignocellulosic bioethanol industry.

Keywords: biofuels, willow (Salix sp.), tension wood, density, wood anatomy

INTRODUCTION

Renewable energy, such as lignocellulosic biofuel derived from sustainably sourced biomass, could
play an important role in offsetting the deleterious global impacts of fossil fuel use. Biomass
combustion has long been used to produce heat and electricity, and already accounts for more than
10% of global energy consumption (IPCC, 2011). Plant species with the potential for particularly
high biomass yields in temperate climates include short rotation coppice (SRC) willow (Labrecque
and Teodorescu, 2003). While being high biomass yielding, SRC willow also has a number of
advantageous properties in terms of sustainability and environmental impact, such as low fertilizer
requirements, high stress tolerance (surviving onmarginal or even polluted land) as well as positive
effects on biodiversity (Labrecque et al., 1993; Karp and Shield, 2008).

Wood is the majority of harvested biomass and is composed of xylem rich in fiber cells with
thick secondary cell walls. These secondary cell walls are composed of a complex cross-linked
polymer matrix including: lignin, cellulose and hemicelluloses; together endowing the plant with
properties such as: strength and protection against pathogens. Easy access to the sugar monomers
within the cell wall matrix to be used for fermentation into ethanol is necessary to make biofuel
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production feasible, but represents a challenge (Taherzadeh and
Karimi, 2008; Zhu et al., 2010; Limayem and Ricke, 2012).
Lignin is not the targeted polymer in either the pulp and
paper or biofuel industries, so reducing its content without
compromising tree integrity is often thought to be important
to increase process efficiency (Simmons et al., 2010). However,
in addition to reducing lignin content, improvement to the
accessibility of cellulose would also benefit such industries by
reducing processing energy requirements. Mechanical stimuli,
such as wind, have been shown to induce modification of
wood anatomy in willow, which creates a unique type of xylem
tissue tension wood (TW) aligned with the direction of the
mechanical force. Recently, this TW has been found to be rich
in accessible cellulose, highly beneficial biofuel production in
allowing reduced process energy to be used in releasing cell wall
glucose (Bowling and Vaughn, 2008; Brereton et al., 2011, 2012).
The majority of the accessible cellulose within TW is though to
lie within a cell wall layer unique to TW, the gelatinous-layer (or
G-layer), which is internal to the secondary cell wall of secondary
xylem fiber cells.

In addition, soil properties can also affect plant chemistry and
morphology. Limitation or excess of nutrients such as potassium,
nitrogen, or magnesium is shown to alter plant phyisiology
(Shaul, 2002; White and Karley, 2010). Although variant soil
magnesium (Ache et al., 2010) and potassium (Fromm, 2010) soil
concentrations are likely to alter wood formation in trees such as
willow little research has been directly reported other than the
effect of nitrogen (Pitre et al., 2010) which has been shown to
promote TW formation.

Willows show substantial genotypic variability in regard to
biomass production (Labrecque and Teodorescu, 2005; Volk
et al., 2006). However, when the fate of biomass is biofuel, the
ability to release cell wall sugar is also of great importance as well
as biomass yield alone (Brereton et al., 2011, 2012). Moreover,
the impact of environmental factors such as stress (drought,
salinity, pollution) or stimuli (wind, radiation) on growth and
developmental strategy may also vary by genotype (Marmiroli
et al., 2011; Weih et al., 2011; Serapiglia et al., 2013a).

Wood density is an important factor to consider in the
context of biomass production for bioenergy as high density
biomass can translate into high heating value (Goel and Behl,
1996). Less is known about the importance of density relating
to biofuel potential. Wood composition and tree architecture
both influence density (Serapiglia et al., 2013a; Brereton et al.,
2015). A number of developmental factors could individually
or collectively influence wood architecture: cell division, cell
expansion as well as tissue variation (Zanne et al., 2010). Density
in each genotype could therefore vary in response to different
environmental factors in different ways. However, to date only
a few studies have examined wood density in relation to wood
composition and architecture in fast growing woody species
(Populus, Salix) from contrasting environments (Mansfield and
Weineisen, 2007; Brereton et al., 2012).

The aim of this study was to investigate the wood composition,
anatomy, and density variability of five genotypes of 2-year-old
willow stems on four different sites in the province of Québec
(Canada).

MATERIALS AND METHODS

Experimental Sites
The willow plantations were established in the spring of 2011
by the Réseau des Plantes Bio-industrielles du Québec (RPBQ),
a network to develop bio-industrial crops in the Province of
Québec (Canada). The experiments were carried out at four sites
representing a range of environmental conditions along the Saint
Lawrence River near the communities of Beloeil (B) 45◦35′32.8
N – 73◦14′46.7 W, Saint-Roch-de-l′Achigan (SR) 45◦48′56.5 N –
73◦39′08.8 W, La Pocatière (LP) 47◦21′05.1 N – 70◦01′35.6 W.
and Saint-Siméon (SS) 48◦05′11.2 N – 65◦35′11.1 W (Figure 1).

Five high biomass yielding (Labrecque and Teodorescu, 2005;
Zalesny et al., 2011) willow genotypes were established at each of
the sites: Salix viminalis 5027, S. dasyclados SV1, S. miyabeana
SX61, S. miyabeana SX64, S. miyabeana SX67. Each of the sites
comprised four randomized blocks, each block consisting of
20 trees per genotype, totalling 400 trees per site. Soil from
each site was sampled in 2011 by RPBQ with measured soil
characteristic provided in Table 1. Climate data was collected
from Environment Canada weather stations in 2013 (Table 1).
Fertilizer high in nitrogen was applied to all sites to buffer site
variation (100 kg N per hectare).

Tree Morphology and Density
Six trees per cultivar, in the second year of their harvest cycle,
were sampled randomly within a single block. Stem number, the
tallest stem and largest stem base diameter was measured for each
tree.

Two classical methods for determining stem density were
compared using water displacement to assess stem volume; basic
density and oven dry specific gravity (Williamson and Wiemann,
2010) using biomass from two of the sites, B and SS (which
preliminary tests suggested varied in density). Density, which
varied substantially between sites, reflected the same pattern
regardless of method type. Basic density was 15–23% lower than
oven dry specific gravity in absolute amount in all cases. Oven dry
specific gravity alone was used for the remainder of the samples.

Wood Composition
Wood samples were air dried before being ground through a
40-mesh (<525 μm). Extractives were determined following the
standard procedures ASTM D1107-16 and ASTM D1110-84.
Ten grams of wood were extracted first with toluene/ethanol
and then with water over a period of 7 h using Soxhlet
apparatus.

Lignin content was determined following standard Klason
procedures ASTM D1106-96 for acid insoluble lignin and NREL
LAP-004 for acid soluble lignin. Briefly, 300 mg of extractives
free sample was hydrolysed in 72% sulfuric acid for 2 h at 30◦C
before dilution with 84 mL water and autoclaving at 120◦C
for 1 h. Samples were then filtered; acid insoluble lignin being
determined byweight whereas acid soluble lignin was determined
via spectrometry. Phenolic content was extracted by sonication
of 500 mg of sample in methanol, and separation by centrifuged
for 15 min at 4800 rpm repeated three times. Phenolics were
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FIGURE 1 | Site localization in Québec province, Canada: Saint-Roch-de-l′Achigan (SR), Beloeil (B), Saint-Siméon (S-S), and La Pocatière (LP).

TABLE 1 | Comparison of site characteristics (single soil sample analyzed in 2011 and climate data collected for 2013 from Environment Canada) at each
of the four sites (Saint-Roch-de-l′Achigan, Beloeil, Saint-Siméon (S-S) and LP).

Units Saint Roch de l′Achigan Beloeil La Pocatière (LP) Saint-Siméon

Texture Loamy Clay Loamy Clay Clay Sandy Loam

Soil∗ Organic matter wt% 4,15 4,2 5,61 2,07

pH 7,66 7,3 6,09 5,24

Available P kg/ha−1 99 31 101 50

Available K kg/ha−1 160 729 475 155

Available Ca kg/ha−1 11547 7570 5889 1662

Available Mg kg/ha−1 354 2490 1138 72

Al kg/ha−1 1781 2576 2180 2453

Climate Annual average monthly max. t◦C ◦C 20,2 20,9 18,6 16,7

Annual average monthly min. t◦C ◦C −11,1 −8,7 −9,2 −8,6

Annual average t◦C ◦C 4,9 6,0 3,8 3,7

Growing degree days 1194,2 1204,7 794,6 699,0

Total precipitations mm 1194,9 885,6 770,6 934,3

Annual average daily max. wind km/h 62,7 ≤31 74,9 65,2

∗depth 0–20 cm.

then quantified using the modified Prussian blue colorimetric
method (Price and Butler, 1977; Graham, 1992), using UV
spectrophotometer absorbance at 700 nm compared to a gallic
acid standard.

Microscopy
Stem samples of Salix miyabeana SX64 were collected in the
summer of 2014 at LP (the site with lowest wood density values)

and at Saint-Roch de-l′Achigan (highest density values). Samples
were fixed in FAA (Formaldehyde – Acetic Acid – Ethanol) and
sectioned at 40 μm using a sledge microtome. Sections were then
stained with 1% aqueous Safranin O (staining lignified cell wall)
and 1% Chlorazol Black E in methoxyethanol (staining cellulose).
Image analysis was conducted using QCAD drawing software
and Image J image analysis software using triplicate biological
samples for each site.
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Transverse section g-fibers coverage was measured using
four different methods. Method A (manual) involved manual
drawing of stained g-fiber area using QCAD. Method B
(pixel distribution) quantified the number of pixels binned by
grayscale (an intensity scale of 0 to 254; zero being black,
254 being white) in a bin chosen based on observed pixel
distribution (0 to 100), of transverse wood sections from 3
trees per site (one from each of three blocks, chosen randomly
from the four) using Image J. Method C (blind distribution)
quantified the number of pixels in the same manner, binned
by grayscale (0 to 254) in a bin chosen blindly as half the
scale intensity (0 to 127). Method D (black and white) was
used to count black pixels, stained with chlorazol black, of
monochrome (Black/White) transverse wood images, again using
Image J.

Statistics Analysis
Analyses of variance (ANOVA) followed by Tukey’s honestly
significant difference (HSD; α < 0.05) were performed to
determine statistical differences of diameter, height, density,
wood composition, and anatomical data. All analyses were made
using JMP (SAS Institute, Inc.).

RESULTS

Tree Morphology and Composition
The environmental climate of each of the four sites varied
(Table 1) in regard to temperature, precipitation, wind and
growing degree days (GDD correspond to days with temperatures
higher than 5◦C) (McMaster and Wilhelm, 1997). B and
SR had the largest number of GDD and warmer annual
temperatures than LP and SS. At LP and Beloeil (B), trees were
significantly (p < 0.05) taller (420 and 413 cm, respectively)
than those at Saint-Roch-de-l′Achigan (SR; 312 cm) and SS
(257 cm) when all trees were averaged regardless of genotype
(Figure 2A). Stem diameter at B and LP was also significantly
(p < 0.05) larger (31 and 28 mm, respectively) than at SR
(22 mm) and SS (16 mm; Figure 2B). There was a general
trend between genotypes across the four sites: genotype SX61
had larger stem diameters (27.7 mm SE 3.7) and heights
(405.7 cm SE 37.2) than the other cultivars. However, comparing
genotypes within site, this pattern did not always persist.
For example, at SR, no significant variation was observed
between genotypes for diameter or for height, except in 5027
(Figure 2).

Wood extractives content varied significantly (p < 0.05,
ANOVA F-test) between genotypes and sites. Extractives were
higher in all trees cultivated at SS (14.5% SE 0.5) and SR
(13.1% SE 0.1) (Figure 3A), almost double that of B and
LP, which had 7.1 and 8.7% extractives, respectively. Within
extractable compounds, substantially more polyphenols were
produced from a single site (SR) than any other, and by a
single genotype (SX67), with 4.28 mg (total for the five cultivars
at SR) and 7.39 mg (SX67 average at SR) g−1 gallic acid
equivalent, respectively, (Figure 3C). Significant differences in

total lignin content were not observed between or within the sites
(Figure 3B).

Density
When all the genotypes in a site were averaged, trees cultivated
at SR and SS had significantly (p < 0.05, ANOVA F-test)
denser wood stems, with means of 0.61 g/cm3 and 0.58 g/cm3,
respectively, compared to B and LP, with means of 0.54 g/cm3

and 0.52 g/cm3 (Figure 4). The same genotype rank order
(1- SV1; 2- SX64; 3/4- 5027/SX67; 5- SX61) was consistent at
every site but there was substantial variation in density between
sites. Considering only those sites with the highest and lowest
densities, SR ranged from 0.71 g/cm3 (SV1) to 0.54 g/cm3

(SX61), whereas at LP they ranged from 0.59 g/cm3 (SV1)
to 0.44 g/cm3 (SX61) revealing Salix, grown under different
conditions and of different genotype, has at least the capacity
to increase by 60% in density. Stem height and density was
significantly (p < 0.05) negatively correlated between trees
only at SS (if genotype effect is discounted) with an r value
of – 0.61.

Wood Anatomy
Wood anatomy was characterized from three trees of a single
genotype, SX64, from each of two sites: LP (lowest density site)
and SR (highest density site). The genotype was chosen as it
varied the most in terms of density between these two sites
(Figure 4). The pith to secondary xylem ratio of the SX64 stems
at LP were over five times larger (20.7% SE 1.12, of the transverse
area) than those of SR (3.6% SE 0.23) (Figure 5A). There were
more vessels per surface area unit (1 mm2) at SR (193, compared
to 136 at LP), whereas fibers had a larger average diameter at LP,
13.8 μm as opposed to 12 μm at SR.

We determined gelatinous fiber (g-fiber) abundance (a
characteristic of TW) through specific staining of the gelatinous-
layer (g-layer) and image analysis of the biologically replicated
samples (n = 3). As this type of site comparison of proportional
(net stem) g-fiber quantification is relatively novel for mature
field-grown trees (to our knowledge, most having been pot
studies to date), four different methods were assessed to
ensure confidence in quantification. Based on the results of
these four methods, wood grown in SR had significantly and
substantially more g-fibers than LP (Figure 5B). Based on
method A, SR had twice as many observed g-fibers, with
50% of the tissue being g-fiber containing compared to 25%
at LP. Using method C, transverse polarization (i.e., Tissue
patterning) of the g-fibers were determined by dividing the
wood stem section into two parts (Figure 6A). Significant
and substantial variation in tissue patterning was observed
between sites, with TW always being produced somewhere
across the stem at SR but with no clear polarization (no
clear “upper” or “lower” side of the stem from a transverse
perspective) (Figure 6B). At the LP site (which uniformly
produced less dense wood as well as substantially less TW),
clear polarization was observed with no TW produced during
some points of the growing season, no significant TW
polarization was observed in the high density wood from the SR
site.
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FIGURE 2 | Tree height (A – by site; C – by genotype) and stem diameter (B – by site; D – by genotypes) from five willow cultivars in their second year
of a harvest cycle (Salix viminalis 5027, S. dasyclados SV1, S. miyabeana SX61, S. miyabeana SX64, S. miyabeana SX67) sampled at four field trials in
Québec: Saint-Roch-de-l′Achigan, Beloeil, S-S, and LP. Error bars represent standard error, n = 4 blocks (6 trees per block). Tukey′s Honestly Significant
Difference (HSD) pairwise post hoc test (α = 0.05) are represented by letters a–c.

DISCUSSION

Site Influence on Growth and Wood
Composition
Tree development alters in response to the surrounding
environment. Multiple abiotic and biotic factors can affect this
response in woody plants, including nutrient availability, soil,
climate, competitors, predators, and available space (Kozlowski,
1997). In our trials, B and LP showed similar morphological
growth, with trees on these sites becoming taller and greater in
diameter than those at SS and SR. The number of GDD has
been correlated (positively) to biomass production in Finland
by Tahvanainen and Rytkönen (1999). However, here, if we
consider height and diameter to be predictors of biomass yield,
such a relationship is not obvious as SS and SR represent the
different extremes of the spectrum for GDD. Located near the
Saint Lawrence River, LP is reported to be a comparatively
windy site. As wind has been shown to sometimes affect tree

morphology, inducing development of shorter and stronger trees
in a process called thigmomorphogenesis (De Langre, 2008), LP
could be expected to display such morphology, surprisingly this
was not the case. Since fast growing willows have high water
requirements (Dawson, 2007), the lower amount of precipitation
recorded on the LP site may reflect inadequate water supply.
However, precipitation during this growing season should have
been sufficient for willow’s needs (>430 mm) according to data
reported by Lindroth and Cienciala (1996) whilst such climatic
differences between sites are clear, in terms of variation in
genotype development, the single most influential environmental
factor could not be separated here.

B and SR present similar climatic conditions but distinct
soil properties. SR soil contained comparatively less potassium
and magnesium than B and LP, two elements important in
plant physiology (Shaul, 2002; White and Karley, 2010). SR is
located on former agricultural land where a large amount of
calcium carbonate was added to the soil to reduce aluminum
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FIGURE 3 | Five willow cultivars in their second year of a harvest cycle (Salix viminalis 5027, S. dasyclados SV1, S. miyabeana SX61, S. miyabeana
SX64, S. miyabeana SX67) sampled at four field trials in Québec: Saint-Roch-de-l′Achigan, Beloeil, S-S and LP. (A) Variation in extractives
(toluene-ethanol/water extraction); (B) lignin content expressed as a percentage of dry matter and (C) total polyphenolics content (methanol-extractable). Error bars
represent standard error, n = 4 blocks (four trees per block). Tukey’s HSD pairwise post hoc test (α = 0.05) are represented by letters a–b.

toxicity associated with acidity (Rengel, 1992). Calcium was
therefore found to be much more abundant on this site than
on the others. While this nutrient is beneficial for plants,
playing a role in intracellular signal and wood formation
(Lautner and Fromm, 2010), it is potentially cytotoxic in excess,
affecting roots in soil and reducing growth rates (White and
Broadley, 2003). Comparing sites LP and B, the former had a
phosphorus level (essential in many compound molecules such
as nucleotides, phospholipids and sugar phosphates (Rennenberg
and Herschbach, 2013) three times that of B. Both potassium
and phosphorus can have an impact on tree growth; Hytönen
and Kaunisto (1999) reported that combined phosphorus and
potassium fertilization can increase willow biomass yields by
64%. With smaller diameter and shorter trees comparatively, SS
was also found to have acidic soil, with less organic content,
potassium, phosphorus, and magnesium, which suggests a
deleterious impact of the nutrients at these concentrations on
growth.

Surprisingly, lignin values were not significantly different
between the four sites (Figure 3B), suggesting the cell wall
response to environment here may not be driven by variation
in lignin content. Swan and Kellogg (1986) also found no
significant variation in lignin content of poplar collected from
three different locations in British Columbia, Canada. Serapiglia

et al. (2013b) also found only two out of 17 willow cultivars had
significant differences in lignin content between two contrasting
environments in New York State (USA). This is in stark contrast
to clear variation in lignin content between genotypes observed
in other willow studies (Serapiglia et al., 2009; Stolarski et al.,
2011; Ray et al., 2012; Zamora et al., 2014). It is interesting to
note such large changes in wood development and architecture
without substantial (net) effects to an important cell wall element
such as lignin.

Trees grown at SR had more extractable polyphenols than
those grown at other sites. Polyphenol biosynthesis can be
induced in trees by stress, such as biotic stress related to herbivore
attack (Gershenzon, 1984; Tahvanainen et al., 1985; Constabel
et al., 2000). Water and nutrient availability in soil have also
been shown to affect polyphenol concentrations in such trees;
Price et al. (1989) and Osier and Lindroth (2001) observed
phenolic glycoside variation in willow was dependant on soil
nutrient availability. No extensive insect herbivory was reported
during the growing season at SR, it is therefore possible, given
the high calcium concentration measured at the site, that the
extraordinary abundance in polyphenols could be driven by
soil properties or nutrient availability. Variation in extractives
was also observed between sites in our trials. Increases in
extractives at SR, compared to B and LP, might be explained by
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FIGURE 4 | Stem density was assessed using oven dried specific gravity (grams per cubic centimeters) from five willow cultivars in their second year
of a harvest cycle (Salix viminalis 5027, S. dasyclados SV1, S. miyabeana SX61, S. miyabeana SX64, S. miyabeana SX67) sampled at four field trials in
Québec: Saint-Roch-de-l′Achigan, Beloeil, S-S and LP. Error bars represent standard error, n = 4 blocks (four trees per block). Tukey’s HSD pairwise post hoc
test (α = 0.05) are represented by letters a–d.

the abundance of phenolics. Trees on SS also contained more
extractives than those at B and LP, however, phenolic content
was not greatly increased (as in SR), implying variation of non-
phenolic extractables such as: sugars, proteins, phospholipids, or
other secondary metabolites.

Genotypic Variation among Wood Traits
Over the 2-year cycle from 2012 to 2013, SX61 grew over 30%
taller and greater in diameter than 5027, which suggests that the
former genotype should be preferentially selected if diameter and
height were used as a proxy for biomass yield. Genotype selection
is an important first step for developing high-performing crops
suitable for biomass or biofuels. Willow cultivars have previously
been shown to exhibit broad differences in biomass productivity
(Labrecque and Teodorescu, 2005; Tharakan et al., 2005). In the
field, Serapiglia et al. (2013a) identified a genotype x environment
interaction on two contrasting sites. However, height and stem
diameter may not be measures that represent biomass most
accurately, considering the extreme variation in density.

Extractable polyphenols are a potential source of high value
molecules (tannins, salicylic acid) and, once extracted from wood
and purified, could generate additional revenues for biomass

and biofuel industries (Boudet, 2012). One specific cultivar,
SX67, produced larger amounts of polyphenols than the other
genotypes (Figure 3C), indicating that genotypes could be
selected to increase yields of such high value molecules (however,
site effect was had the greatest influence polyphenolic yields).

Density Variability of Wood Properties
Wood density is a common measure in the forest industry
because it represents a useful parameter for calculations related
to biomass transport and feedstock processing. In ecology, it
is frequently used as a predictor of carbon allocation and
mechanical strength (Hacke et al., 2001; Chave et al., 2009). Large
differences in wood density were identified among the four study
sites. Wood from LP and B was, in general, less dense than that
from SR and SS.

Basic density was negatively correlated with the growth traits
of stem height in trees grown at SS (if the large effect of genotype
was discounted), a relationship repeatedly seen in other trials
(Muller-Landeau, 2004; Pliura et al., 2007; Chave et al., 2009). The
differences observed in density, both between sites and genotypes
(Figure 4); suggest that, in this case, height and diameter would
not be accurate indicators for predicting biomass yield in willow.
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FIGURE 5 | SX64 cultivar (S. miyabeana) in its third year of a harvest cycle sampled at two field trials in Québec: Saint-Roch-de-l′Achigan and LP.
(A) Measured Anatomical traits: (i) pith proportion, (ii) fiber cell diameter, and (iii) vessels number per 1 mm2; (B) Variation of G fibers determined by different image
analytical methods: Method A (Manual) involved manual drawing around stained g-fiber, Method B (Pixel distribution) quantified pixels in a bin from 0 to 100, Method
C (Blind distribution) quantified pixels in a bin from 0 to 127 and Method D (Black and White) count black pixels of monochrome. Error bars represent standard error
(n = 3 trees, one per randomized block). All comparisons between Saint Roch and La Pocatiere presented in this figure are significantly different (t-test, p < 0.05).

In fact, considering the negative correlation of stem height and
diameter with the extreme differences in density, they may
actually directly contradict real yields. Destructive harvesting
across all genotypes and sites is needed to definitively establish
the usefulness of these proxies in predicting biomass yield and
these density data suggest such research is necessary.

A similar genotype pattern for density was observed across all
sites: SV1 (highest density), SX64, 5027, SX67, and SX61. Cultivar
variation in wood density has been previously reported in willow
(Sennerby-Forsse, 1985; Mosseler et al., 1988) and in poplar
(Klasnja et al., 2003) and variability between sites was observed
in previous studies (Pliura et al., 2007), suggesting a genotype-
specific response in relation to the environment. The strong and
consistent behavior of genotypes observed here for this trait led
us to explore anatomy in the hope of revealing the origin of such
patterning. One of the major anatomical factors known to greatly
affect density in willow is reaction wood formation (Brereton
et al., 2015).

Relationship between Stress and Wood
Anatomy
The developmental response of trees to mechanical stress by
altering wood morphology, called thigmomorphogenesis, has

been extensively studied (Telewski and Jaffe, 1981; Jaffe and
Forbes, 1993). Telewski (1990) observed increases in wood
density aligned with increased ethylene produced in pines, and
associated such increases in ethylene to the trees response
to mechanical disturbance (Telewski and Jaffe, 1986). One
explanation for the large variation in wood density here could
be the difference in pith size found between SR and LP. As well
as this, another substantial anatomical difference was observed
(Figure 6A). Wind is thought to be one of the principle inducers
of mechanical stress in the environment, often mimicked in
greenhouse experiments by bending or tipping trees, and results
in the production of a specific type of wood, termed reaction
wood, often characterized by a cellulose rich tissue layer called
TW (Jourez et al., 2001; De Langre, 2008; Brereton et al., 2011,
2012).

The site at LP, defined as a comparatively windy site,
was found to have a large and polarized proportion of TW
(presumably localized to the “upper” part of the stem), suggesting
the influence of “directional” mechanical force (Figure 6A).
Although potentially subjected to higher mechanical stress (via
increased wind speeds), surprisingly, LP had half the TW of SR.
TW was observed in extraordinary amounts in wood from SR,
with over 50% of wood on average in all the samples from this
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FIGURE 6 | (A) 40 μm transverse section of a stem from SX64 cultivated at Saint-Roch de l′Achigan (left – most dense) and at LP (right – least dense). Stained in
1% Chlorazol Black E in methoxyethanol and 1% aqueous Safranin O. (B) Polarization of G fibers determined by Method C (Blind distribution) from SX64 cultivar
(S. miyabeana) in its third year of a harvest cycle sampled at two field trials: Saint-Roch-de-l′Achigan and LP. Error bars represent standard error (n = 3 trees, one
per randomized block). t-test pairwise post hoc test (α = 0.05) are represented by letters a–b.

high density genotype grown in SR containing the cellulose rich
g-fibers. Recent evidence suggests that the cellulose present in
gelatinous fibers (g-fibers) of TW is easily accessible to digesting
enzymes and may be of high value to the lignocellulosic biofuel
industry (Brereton et al., 2012). TW production has almost
exclusively been reported as a response to a mechanical or
gravity stimulus. The comparatively low wind speed and lack
of clear polarization at SR (Figure 6B) suggests induction of
reaction wood was not wind induced as the classical model would
presume. This type of adaptation within wood anatomy, driven
by environmental stress, might point to a new source of TW
induction: non-mechanical stress.

An increase in the number of vessels and decrease in fiber
cells was also found at SR (Figure 5A), a pattern described by
Escalante-Perez et al. (2009) in poplar exposed to salinity stress;
their change in wood structure was explained by the effect of K+
on cell expansion. Less expansion can result in smaller fiber cell
diameters, imparting greater density in the xylem as a whole.
Wood exposed to high salinity environments has been shown
to have altered vessel morphology, resulting in their reduced

diameters (Junghans et al., 2006) and to result in reinforcement
of secondary cell walls, increasing their thickness (Hacke et al.,
2001). The interdependence of vessel morphology (for hydraulic
architecture) and fiber morphology (for mechanical structure)
has recently been suggested as potentially linking traits such as
water stress and TW production (Brereton et al., 2015). Altered
salt concentrations have also directly been shown to interact
with TW formation by Janz et al. (2012) who found that poplars
subjected to salt stress formed a novel type of wood, ‘pressure
wood’, where genes know to be involved in TW formation were
down-regulated. The authors also noted up-regulated elements of
the phenylpropanoid pathway, in line with the high polyphenol
content found at SR and so providing a clue as to the potential
origin of such high TW production.

CONCLUSION

The environment of willow cultivation had large effects on
both tree morphology and internal wood structure. These effects
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were complicated by genotype-specific responses in traits such
as tree height, stem diameters, polyphenolic content as well
as substantial differences in density between the four sites
investigated. Surprisingly, given the complex genotype-specific
variation, wood density seemed a uniquely consistent trait in that
the ranking of genotypes remained constant across all the sites,
suggesting consistent genetic regulation.

Although net lignin content of wood did not vary to
any considerable extent, TW was observed in extraordinary
amounts in high density wood of a specific genotype. While
the direct benefit to cell wall polysaccharide accessibility needs
to be explored, such drastic changes to cellulose construction
throughout the entirety of the wood, without any observable

detriment to the growth of these fully mature crops, presents an
exciting opportunity to exploit natural developmental responses
to improve crop selection for biofuel production.
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