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Hybrid proline-rich proteins (HyPRPs) have been suggested to play important roles
in various plant development and stress response. In this study, we report the
cloning and functional analysis of PtrPRP, a HyPRP-encoding gene of Poncirus
trifoliata. PtrPRP contains 176 amino acids, among which 21% are proline residues,
and has an 8-cysteine motif (8 CM) domain at the C terminal, a signal peptide
and a proline-rich region at the N terminal. PtrPRP is constitutively expressed in
root, stem and leaf, with the highest expression levels in leaf. It was progressively
induced by cold, but transiently upregulated by salt and ABA. Transgenic P. trifoliata
plants with knock-down PtrPRP by RNA interference (RNAi) were generated to
investigate the role of PtrPRP in cold tolerance. When challenged by low temperature,
the PtrPRP-RNAi plants displayed more sensitive performance compared with wild
type (WT), as shown by higher electrolyte leakage and malondialdehyde content.
In addition, the RNAi lines accumulated more reactive oxygen species (ROS) and
lower levels of proline relative to WT. These results suggested that PtrPRP might
be positively involved in cold tolerance by maintaining membrane integrity and ROS
homeostasis.

Keywords: cold stress, Poncirus trifoliata, hybrid proline-rich protein, RNA interference, ROS

Introduction

Plants are frequently challenged with a variety of abiotic stresses, among which cold, at either
freezing, or chilling regimes, constitutes an important factor leading to adverse impacts on plant
growth, development and yield potential. Chilling and freezing stresses lead to physiological
or structural alterations, such as elevation of reactive oxygen species (ROS), imbalance of
osmotic pressure, and formation of ice crystals. All of these unfavorable situations will result in
deterioration of membrane integrity, impairment of cell viability and eventually lead to cell death
when they are not precisely coped with (Xiong and Zhu, 2002; Einset et al., 2007; Peng et al.,
2012).

It has been well known that to survive under cold plants experience a cascade of
physiological and biochemical changes, such as accumulation of various proteins or soluble
compounds, and alteration of a series of metabolic reactions (Wilson and Cooper, 1994;
Knight et al., 1996; Fowler et al., 1999; Welling and Palva, 2006; Huang et al., 2011).

Frontiers in Plant Science | www.frontiersin.org 1 September 2015 | Volume 6 | Article 808

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2015.00808
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fpls.2015.00808
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2015.00808&domain=pdf&date_stamp=2015-09-29
http://journal.frontiersin.org/article/10.3389/fpls.2015.00808/abstract
http://loop.frontiersin.org/people/268824/overview
http://loop.frontiersin.org/people/225039/overview
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Peng et al. PtrPRP of Poncirus trifoliata functions in cold tolerance

In addition, accumulating evidences show that extensive
reprogramming of a cohort of cold-responsive genes is an elegant
strategy for the plants to adapt to the harsh environments
(Stockinger et al., 1997; Zarka et al., 2003; Nakashima and
Yamaguchi-Shinozaki, 2006; Shi et al., 2015). These genes are
generally classified into twomajor categories, functional proteins,
and regulatory proteins, which play either direct protective
or regulatory roles in stress tolerance (Yamaguchi-Shinozaki
and Shinozaki, 2005). For example, the functional proteins
participate in stabilization of membrane integrity, maintenance
of enzyme activity, physical structures of cellular components,
which are critical factors contributing to enhance stress tolerance
in plants (Walker et al., 2010). Genetic manipulation of the cold-
responsive genes has been suggested to serve as an alternative
approach for generating transgenic plants with enhanced stress
tolerance (Huang et al., 2013). However, it is worth mentioning
that functional characterization of a stress-responsive gene is
required before it can be efficiently manipulated.

Hybrid proline-rich proteins (HyPRPs) are a subset of proline-
rich proteins (PRPs) specific to seed plants; however, they do
not contain the domain typical of PRPs (Josè-Estanyol et al.,
2004; Priyanka et al., 2010; Xu et al., 2011). Based on the
position and number of cysteine residues at C terminal, HrPRPs
can be categorized into two major groups, in which Class A
has 4–6 cysteine residues, while Class B contains a conserved
eight-cysteine-motif (8 CM) at C terminal, a repetitive proline-
rich N-terminal domain (PRD) and a signal peptide in front
of the PRD (Josè-Estanyol and Puigdomènech, 2000; Josè-
Estanyol et al., 2004; Battaglia et al., 2007; Dvořáková et al.,
2007; Neto et al., 2013). HyPRPs have been suggested to play
important biological roles in various processes, including plant
cell elongation, ontogeny, andmorphogenesis of different organs,
defenses against viral or fungal pathogens (He et al., 2002; Holk
et al., 2002; Dvořáková et al., 2012). In addition, HyPRPs of
Arabidopsis thaliana, Brassica napus, Medicago sativa, Glycine
max, and M. truncatula have been also suggested to be involved
in responses to biotic and abiotic stresses (Deutch and Winicov,
1995; He et al., 2002; Bouton et al., 2005; Zhang and Schläppi,
2007). Nevertheless, so far little knowledge is available on the role
of HyPRPs in stress tolerance of perennial plants, such as Poncirus
trifoliata.

Poncirus trifoliata (L.) Raf. is extremely cold hardy when it is
fully cold acclimated. In a previous work, suppression subtractive
hybridization was employed to unravel cold-responsive genes
of valuable significance for engineering cold tolerance (Peng
et al., 2012). One of the ESTs draws our attention as its
expression level was elevated over 70-folds under cold; the EST
was later annotated to encode a HyPRP. However, whether
it plays a role in cold tolerance remains undetermined. As a
follow-up and continuum of our earlier work, in this study
we report the isolation and functional analysis of this gene,
designated as PtrPRP, in cold tolerance by RNA interference
(RNAi). Transcript levels of PtrPRP were enhanced by abiotic
stresses, but the response to cold was extremely dramatic. Knock-
down of PtrPRP in trifoliate orange by RNAi led to enhanced
cold sensitivity. We further demonstrated that the RNAi lines
accumulated more ROS and malondialdehyde (MDA), but lower

levels of proline. Our data indicate that PtrPRP is a cold-
responsive gene that plays an essential role in cold tolerance.

Materials and Methods

Plant Materials and Stress Treatments
Three-month-old trifoliate orange seedlings were grown in a
growth chamber (25◦C) with a photoperiod regime of 8 h
dark/16 h light (light intensity is about 100 μmol m−2 s),
and an relative humidity of 60–70%. The seedlings were well
watered before they were subjected to various stresses. For cold
treatment the seedlings were placed in the chamber set at 4◦C
for 6 d, followed by transfer to 25◦C for recovery. The leaves were
sampled at 0, 6, 24, 72, and 144 h after cold treatment and 6 h after
recovery. Dehydration was imposed by placing the seedlings on a
clean bench under ambient environment for 6 h and then shifted
to water for 0.5 h. The leaves were collected at 0, 0.5, 1, 3, and
6 h after dehydration and 6 h after rehydration. For salt stress, the
seedlings were treated with 200mMNaCl solution for up to 144 h
and then shifted to water for another 6 h; the leaves were sampled
at 0, 6, 24, 72, and 144 h of salt treatment and after 6 h of recovery
in water. In addition, the seedlings were treated with 100 μM
ABA for 0, 6, 12, 24 h, and 48 h, followed by transfer to water
for another 6 h; the leaves were sampled at the designated time
points. The samples were immediately frozen in liquid nitrogen
and stored at −80◦C until further use.

Gene Isolation and Sequence Analysis
Rapid amplification of cDNA ends (RACEs) was employed to
obtain full-length cDNA of PtrPRP. For this purpose, gene-
specific primers for 5′-RACE and 3′-RACE (Table 1) were
designed based on the EST sequence identified in the previous
work (Peng et al., 2012). RACE-PCR was carried out using the
SMARTTM RACE cDNA Kit (Clontech, USA). Total RNA was

TABLE 1 | Oligonucleotide primers used in this study.

Name Primer sequences (5′ – 3′)

5′-RACE CGCCAAACCGAAATGTGCTCTGATA

3′-RACE TAGTGTGAGATACCCACCGCC

PtrPRP-S ATGGGAAAATATCAATTAGC

PtrPRP-A TTAAGCAGGACACTGAAATCC

PtrActin-S CATCCCTCAGCACCTTCC

PtrActin-A CCAACCTTAGCACTTCTCC

PtrPRP-q-S ACCGATTGTAAAGACGCCAC

PtrPRP-q-A CACCGAGTTTGAGAGCATCA

PtrPRP-L-S GAAGATCTATGGGAAAATATCAATTAGC

PtrPRP-L-A GACTAGTAGCAGGACACTGAAATCC

PtrPRP-attB-S GGGACAAGTTTGTACAAAAAAGCAG
GCTATGGGAAAATATCAATTAGC

PtrPRP-attB-A GGGGACCACTTTGTACAAGAAAGCT
GGGTCTTAGGGCTTGGTCCGTTA

NPTII-S AGACAATCGGCTGCTCTGAT

NPT II-A TCATTTCGAACCCCAGAGTC

PtrPRP-s-S ATGGGAAAATATCAATTAGC

PtrPRP-s-A TTAAGCAGGACACTGAAATCC
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extracted with RNAiso Plus (TaKaRa, Japan) according to the
manufacturer’s instructions. First strand cDNA was synthesized
via PrimeScript R© RT Reagent Kit With gDNA Eraser (TaKaRa)
following the user’s manual. The 5′-RACE and 3′-RACE PCR
products were sequenced and analyzed, and thenmerged with the
original EST to get a single sequence, which was verified using
RT-PCR with a pair of full-length primers (PtrPRP-S/PtrPRP-
A, Table 1). Molecular weight (MW) and isoelectric point (pI)
of the protein were predicted on ExPASy1. Phylogenetic analysis
was constructed by Phylogeny.fr online software2 (Dereeper
et al., 2008) and MEGA4.0. Multiple alignments of the HyPRPs
were performed by ClustalX program with defaulted settings
and displayed by Jalview3. Signal peptide was predicted with
SignalP4.1 Server4 and iPSORT5 (Bannai et al., 2002).

Gene Expression Analysis by Quantitative
Real-time RT-PCR (qPCR)
Total RNA extraction and cDNA synthesis were performed as
mentioned above. Expression of PtrPRP under the stresses and
in different tissues was assessed by qPCR, which was carried out
with the SYBR R© Green PCR kit (TaKaRa) on a LightCycler 480
Real-Time System (Roche). PCR solution, in a total volume of
10 μl, contained 5 μl of 2 × SYBR Premix Ex Taq (Tli RNaseH
Plus), 50 ng of cDNA, 0.25 μM of each primer (PtrPRP-q-S/A).
The reaction cycles were 95◦C for 30 s, and 40 cycles of 95◦C for
5 s, 56◦C for 10 s, and 72◦C for 15 s. Each reaction was repeated
at least three times, and ��CT method was applied to calculate
relative expression levels. The Actin gene of trifoliate orange was
used as a reference control and analyzed in parallel with specific
primers (Table 1) to normalize the expression levels.

Subcellular Localization of PtrPRP
To determine subcellular localization of PtrPRP, the full-length
PtrPRP cDNA without stop codon was amplified using primers
(PtrPRP-L-S/A) containing restriction sites of BglII and SpeI.
The PCR products were purified with AxyPrepTM DNA Gel
Extraction Kit (Axygen scientific, USA), digested with BglII and
SpeI and subcloned into the pCAMBIA1302 vector containing a
GFP reporter gene, under the control of CaMV 35S promoter.
The resultant fusion construct PtrPRP::GFP and the control
vector (GFP) were separately introduced into onion epidermis
viaAgrobacterium-mediated transformation as described by Peng
et al. (2014), followed by visualization of green fluorescence
under a confocal microscope (FV1000; Olympus,Tokyo, Japan)
or a fluorescence microscope (Nikon 90i).

Generation and Identification of RNAi Plants
To generate PtrPRP-RNAi plants, a 253-bp cDNA fragment
of PtrPRP was amplified using a pair of primers (PtrPRP-
attB-S/A) and introduced into pHELLSGATE2 through BP
recombination reactions (Invitrogen, Japan). The RNAi

1http://us.expasy.org
2http://phylogeny.lirmm.fr/phylo_cgi/index.cgi
3http://www.jalview.org/
4http://www.cbs.dtu.dk/services/SignalP/
5http://hc.ims.u-tokyo.ac.jp/iPSORT/

vector was introduced into A. tumefaciens strain GV3101.
Agrobacterium-mediated transformation of trifoliate orange
was performed according to Fu et al. (2011). Kanamycin-
resistant shoots were identified by genomic PCR using primers
specific to neomycin phosphotransferase II (NPTII-S/A)
and the 253-bp sequence (Table 1). Examination of PtrPRP
expression was carried out by semi-quantitative RT-PCR
according to Shi et al. (2010) except using specific primers
(PtrPRP-s-S/A, Table 1). QRT-PCR was also used to confirm
the expression of one transgenic line, as done mentioned
above. Actin gene was used as the reference gene. The
positive transgenic plants were vegetatively propagated to
obtain enough plants that were used for the subsequent
experiments.

Cold Tolerance Assessment and Physiological
Measurements
Uniform and healthy 3-month-old plants of wild type (WT) and
two RNAi lines were used for cold treatment. Two days after
sufficient watering, the plants were placed in a growth chamber
set at 0◦C and kept for 48 h without light in order to avoid
light-induced oxidative stress under cold treatment. The leaves
were sampled after completion of the chilling treatment and used
for measurement of electrolyte leakage (EL), MDA, ROS, and
proline.

Measurement of EL was conducted according to Peng et al.
(2012). In brief, the sampled leaves were immersed in 20 mL of
double distilled water (ddH2O), while the control tube contained
only 20 mL of ddH2O. The tubes were gently shaken for 2 h on
a shaker (QB-206, Qilinbeier, China) at room temperature; the
EL of sample (C1) and control (CK1) were then measured on a
DSS-307 conductivity meter (SPSIC, China). The tubes were then
boiled for 10 min, and cooled down at room temperature before
measurement of the EL (C2 and CK2). A relative conductance was
calculated by C (%) = (C1 – CK1)/(C2 – CK2) × 100.

Proline content was determined according to Zhao et al.
(2009) with minor modification. The leaf tissues (about 0.5 g)
were extracted in 5 mL of 3% sulphosalicylic acid at 95◦C for
10 min. After cooling down, the homogenate was filtered and
2 mL of supernatant was transferred to a new tube containing
2 mL of acetic acid and 2 mL of acidified ninhydrin reagent.
After 30 min of incubation in boiling water, 4 mL of toluene was
added to the tubes and vortexed for 30 s. The absorbance of the
toluene layer was colorimetrically determined at 520 nm. Protein
concentration was determined based on the method reported by
Bradford (1976).

Accumulation of H2O2 and O2
−, two major types of

ROS, was assayed using histochemical staining with 3, 3′-
diaminobenzidine (DAB) and nitrotetrazolium blue chloride
(NBT), respectively. The leaves sampled after 48 h of chilling
treatment were immediately immersed in 1 mg mL−1 freshly
prepared NBT or DAB solution at ambient temperature, until
blue or brown precipitates were observed. The stained leaves were
then bleached in concentrated ethanol, and kept in 70% ethanol.
Quantitative measurement of H2O2 was also carried out using
a specific detection kit based on the manufacturer’s instructions
(Nanjing Jiancheng Bioengineering Institute, China).
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Malondialdehyde content, expressed as nmol/mg protein,
was measured using a detection kit specifically designed
for MDA quantification (Nanjing Jiancheng Bioengineering
Institute, China) based on the manufacturer’s instructions.
Protein concentration was determined based on the method
reported by Bradford (1976).

Statistical Analysis
The data were analyzed using analysis of variance (ANOVA),
and statistical difference between WT and transgenic lines was
compared, taking P < 0.05 as significant.

Results

Isolation of PtrPRP from P. trifoliata
In a previous work, an EST annotated as PRP was fished
out by SSH-based screening of a cold-treated cDNA library of
P. trifoliata (Peng et al., 2012). As the whole genome sequence
information of P. trifoliata is unavailable at this time, we
employed RACE to isolate the full-length cDNA of this gene.
For this purpose, 5′-RACE and 3′-RACE PCR were carried out
using primers designed base on the original EST, leading to
amplification of two fragments of 554 and 802 bp, respectively,
which were shown to be homologous to known PRP genes by

Blastn against NCBI. Assembly of the two RACE sequences and
the original EST resulted in generation of a full-length sequence
of 849 bp in size, which was further verified by PCR to be
correct in the sequence. The sequence displayed 74% of identity
to PRP gene of Solanum palustre; so the gene was designated as
PtrPRP (Poncirus trifoliata Proline-Rich Protein). The gene has
been deposited in the NCBI database under the accession number
of KF171887.1.

Sequence Analysis of PtrPRP
The full-length PtrPRP cDNA contained a 531-bp open reading
frame (ORF) encoding 176 amino acids, 21% of which were
proline residues (Figure 1). PtrPRP had a predicted molecular
mass of 18.242 kD and an isoelectric point of 8.65. In addition,
a signal peptide composed of 24 amino acids was observed
at the N terminal. In order to reveal the relationship between
PtrPRR and PRP proteins from other plants, we constructed
a phylogenetic tree using deduced amino acid sequences of
PtrPRP and PRPs from other plants. PRPs were evolutionarily
divergent in plant. However, PtrPRP was not clustered into the
five groups that have been established by earlier studies (data not
shown). Therefore, we assume that PtrPRP might be a HyPRP.
Alignment with PtrPRP and HyPRPs from Phaseolous vulgaris,
A. thaliana, G. max, Nicotiana tabacum, and Capsicum annuum
revealed that PtrPRP has the conserved 8 CM domain at the C

FIGURE 1 | Sequence alignment between PtrPRP and HyPRPs from other plants. Prolines (P) residues in PtrPRP are marked in red letter and boxed. The
signal peptide is indicated with dotted red line at the N-terminal, and the arrow indicates the cleavage site. Identical and highly conserved residues are shaded in
dark and light blue, respectively. The conserved 8 CM domain at the C-terminal is underlined, while the cysteine residues are marked by asterisks. GenBank
accession numbers for the HyPRPs are AGW00930.1 (PtrPRP, Poncirus trifoliata), AAC49369 (Phaseolous vulgaris), AAM63191.1 (Arabidopsis thaliana),
AAM75351.1 (Glycine max), BAA95941 (Nicotiana tabacum), ABQ88334 (C. annuum).
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FIGURE 2 | A phylogenetic tree constructed using proline-rich proteins (PRPs) of trifoliate orange and other plants, including CAA78396.1
(N. tabacum), CAA78393.1 (N. tabacum), Q03211.1 (N. tabacum), CAA42942.1 (Phaseolus vulgaris), AGW00930.1 (PtrPRP, Poncirus trifoliata),
AAC49369 (Phaseolous vulgaris), AAM63191.1 (A. thaliana), AAM75351.1 (G. max), BAA95941 (N. tabacum), and ABQ88334 (C. annuum). The
neighbor-joining tree was generated with MEGA4.0 from 1000 bootstrap replicates.

FIGURE 3 | Subcellular localization analysis of PtrPRP. GFP (A,C) or PtrPRP-GFP (B,D) was transiently expressed in onion epidermal cells by
Agrobacterium-mediated transfection, and the onion cells were observed under a confocal microscope (A,B) or fluorescence microscope (C,D). Images taken under
bright (left) or dark (middle) field were shown, while the merged images are shown on the right.
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terminal (Figure 1), which is an important signature for a HyPRP,
indicating that PtrPRP was actually a typical HyPRP. Besides, the
phylogenetic tree indicated that PtrPRP was a Class B HyPRP
(Figure 2).

Subcellular Localization of PtrPRP
Subcellular localization of PtrPRP was investigated by
constructing a fusion protein of PtrPRP without the stop
codon and GFP, driven by CaMV 35S promoter, using the
GFP vector as a control. Microscopic observation showed that
green fluorescence could be observed in the whole cells when
the control plasmid was transiently expressed (Figures 3A,C).
However, when the fusion protein was expressed in the onion
epidermis, green fluorescence was predominantly observed on
the outer surface of the cells (Figures 3B,D), which may include
the plasma membrane (PM), internal membranes and PM/cell
wall interphase. However, the exact localization to a certain
position of PtrPRP remains to be determined.

Expression Profiles of PtrPRP in Different
Tissues and Under Various Treatments
Spatial expression of PtrPRP in three tissues, leaf, root, and stem,
was assessed by qPCR. PtrPRP was constitutively expressed in
the three tissues, but their transcript levels varied among each
other (Figure 4). The highest mRNA abundance was detected in
the leaf, whereas root showed the lowest expression level among
the three tissues. In addition, expression patterns of PtrPRP in
response to cold, dehydration, salt, and ABA treatments were
examined. Under exposure to cold, transcript level of PtrPRP was
quickly induced within 6 h, and then progressively accumulated
to reach the highest level at 144 h, when the expression level
was elevated by more than 30-folds compared with that at
0 h. However, when the cold treatment was removed, transcript
level of PtrPPR was sharply decreased (Figure 5A). Dehydration
treatment led to gradual reduction of PtrPRP mRNA levels up
to the lowest value at 3 h, followed by an accretion to the basal
level at 6 h. Surprisingly, rehydration for 6 h resulted in a notable
induction of PtrPRP (Figure 5B). Steady-state mRNA level of
PtrPRP was up-regulated by nearly 14-folds within 6 h of salt
treatment, and continued to rise until reaching the peak value at
24 h, followed by a sharp decrease to basal level at 72 and 144 h.
Relief of the salt stress for 6 h led to a sevenfolds elevation of
the transcript level (Figure 5C). Expression pattern of PtrPRP
in response to exogenous ABA application was similar to that
under salt treatment, except the greater induction within the first
two time points. Removal of ABA also led to an up-regulation of
PtrPRP transcript (Figure 5D).

Production of Trifoliate Orange RNAi Lines
with Knock-down of PtrPRP
To elucidate the role of PtrPRP in cold tolerance, RNAi strategy
was used to suppress PtrPRP in trifoliate orange. For this purpose,
a 253-bp cDNA fragment displaying lower degree of sequence
conservation among C-terminal ends of the PRPs was used
to construct PtrPRP-RNAi vector, which was then transferred
into trifoliate orange viaAgrobacterium-mediated transformation
(Figures 6A–D). Kanamycin-resistant plants were confirmed to

be positive using genomic PCR (Figure 6E). Semi-quantitative
RT-PCR assay indicated that among the positive lines PtrPRP
was successfully down-regulated in three lines, and the greatest
suppression was observed in lines #51 and #52, which were
hereafter designated as RNAi-51 and RNAi-52, respectively
(Figure 6F). Expression of PtrPRP in RNAi-51 was also checked
using qRT-PCR, and the results confirmed that PtrPRP is trully
knocked down, purporting the semi-quantitative RT-PCR data
(Figure 6G). The two RNAi lines, RNAi-51 and RNAi-52, showed
no difference in plant morphology in comparison with the WT.

Knock-down of PtrPRP Confers Sensitivity to
Chilling Stress
The two RNAi lines and WT were subjected to a chilling
temperature at 0◦C for 48 h so as to investigate the impact of
silencing PtrPRP on cold tolerance. We examined EL and MDA,
two critical parameters that have been widely used for evaluating
the stress tolerance in earlier studies (Peng et al., 2012, 2014).
After the chilling treatment, EL and MDA of both RNAi lines
were significantly higher than those of WT, indicating that more
severe damages have been imposed on the RNAi lines compared
to the WT (Figures 7A,B).

The RNAi Lines Accumulate More ROS but
Less Proline
Electrolyte leakage and MDL are indirect indices for oxidative
stress that is primarily caused by excessive accumulation of ROS.
The drastic difference in EL and MDA levels between RNAi lines
and WT prompted us to check ROS status of the tested lines
after cold treatment. We first used histochemical staining with
DAB and NBT to reveal in situ accumulation of H2O2 and O2

−,
respectively, in the cold treated leaves. This method is valid as
the ROS levels can be directly disclosed based on the color of
reaction. As shown in Figure 8A, conspicuous difference in the
staining patterns was observed between WT and the RNAi lines.
The leaves of RNAi lines were stained by both DAB and NBT in
deeper manner or the areas of staining were larger, indicating
that the RNAi lines produced more ROS after cold treatment
compared with the WT. The staining was partly confirmed by
quantitative measurement of H2O2 using a specific kit designed
for it (Figure 8B). We also measured proline contents in the
RNAi lines and WT after cold treatment, as this compound
has been considered as an important metabolite indicating the
relevance to stress tolerance. As shown in Figure 9, the WT
accumulated more proline in comparison with the two RNAi
lines.

Discussion

Although HyPRPs have been reported in many plants, the
precise functions of HyPRPs were still poorly elucidated,
especially in woody plants. Here we report molecular cloning
and functional characterization of PtrPRP, a HyPRP gene from
Poncirus trifoliata. Since genome of P. trifoliata has not been
sequenced, it remains to be determined whether P. trifoliata has
more PRP members at this stage. By search against the whole
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FIGURE 4 | Expression analysis of PtrPRP in three different tissues,
including root, stem, and leaf, as revealed by qPCR. Expression level of
PtrPRP in the root was set as 1, and those in other tissues were calculated
accordingly.

genome sequences of Citrus sinensis, a closely related species of
P. trifoliata we found four putative PRPs (CsPRPs), among which
CsPRP1 shares the highest similarity with PtrPRP. It suggests that
P. trifoliatamay possibly contain other PRPs, but this assumption
needs to be verified in the future. In PtPRP, proline residues
account for 21% of the total amino acids of PtrPRP, allowing us to
believe that PtrPRP is a PRP. Of note, the prominent abundance
of proline residues at the N terminus may be possibly associated
with the targeting of this protein, as the presence of hydrophobic

proline-rich (HPR) motif has been suggested to be necessary and
sufficient for the intracellular targeting of a temperature-induced
lipocalin in Arabidopsis (AtTIL; Hernaìndez-Gras and Boronat,
2015). So far, PRPs have been previously categorized into five
groups based on signature motifs (Gothandam et al., 2010), but
PtrPRP belongs to none of them. However, sequence alignments
between PtrPRP and HyPRPs from several plants revealed that
PtrPRP has the conserved 8 CM domain, which is a typical
signature of HyPRPs, but not present in PRPs (Josè-Estanyol
et al., 2004), which indicates that PtrPRP is possibly considered as
a HyPRP. In addition, since PtrPRP contains the 8 CM domain it
should be categorized into the Class B HyPRPs.

Expression of PRPs was shown to be associated with
development of various tissues and exhibited temporal and
spatial expression patterns (Vignols et al., 1999; Gothandam
et al., 2010; Neto et al., 2013). Transcripts of ZmHyPRP from
maize were specifically observed in the immature embryos (Josè-
Estanyol et al., 1992), while a HyPRP gene of strawberry was
exclusively found in mature fruits (Blanco-Portales et al., 2004).
Hong et al. (1989) reported that soybean contained three PRPs,
SbPRP1, SbPRP2, and SbPRP3. SbPRP1 was highly expressed in
mature hypocotyl, root, and immature seed coat. SbPRP2 was
the predominant form of transcripts in the apical hypocotyl and
young suspension culture cells, while the transcripts of SbPRP3
accumulated mainly in aerial parts, especially in leaves. In a
recent study, Neto et al. (2013) expanded the soybean HyPRP
proteins to 35 members, which exhibited variable expression
patterns in six vegetative organs, root, and root tip, nodule,
leaves, green pods, flower, and apical meristem. Some of them

FIGURE 5 | Expression analysis of PtrPRP in response to various treatment, including cold (A), dehydration (B), salt (C), and ABA (D). Expression levels
of PtrPRP at the onset of treatment (0 h) were set as 1, and those at other time points were calculated accordingly. R indicates recovery after the corresponding
treatments.
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FIGURE 6 | Transformation, regeneration, and characterization of trifoliate orange transgenic plants. (A,B) Culture of the stem segments on selection
medium for 30 d (A) and 60 d (B), respectively. (C) Regeneration of kanamycin -resistant shoots on the selection medium. (D) A rooting plant on the root-inducing
medium. (E) Genomic PCR of the kanamycin-resistant plants using designed primers specific to PtrPRP (upper) and NPTII (bottom), respectively. (F) Expression
analysis of PtrPRP in six positive transgenic plants, as revealed by RT-PCR. Actin gene was used as an internal control. (G) Analysis of PtrPRP expression level in
RNAi-51 using qRT-PCR.

were not detected in any tissue, while others were expressed in
specific organs. Interestingly, four soybean HyPRPs were almost
exclusively highly expressed in leaves, consistent with our finding
on PtrPRP, which displayed the highest expression level in
leaf. These findings suggest that plant PRPs may exhibit spatial
expression patterns, which implies that the PRPs may function in
different ways among various tissues.

In this study, we also noticed that PtrPRP was remarkably
induced by cold and salt, but underwent minor change under
dehydration. Of note, when the abiotic stresses were removed,
PtrPRP showed opposite expression patterns in comparison with
those under the corresponding stresses. These results indicate
that PtrPRP was sensitively responsive to the stresses, but the
response is different among various environmental stimuli. This
phenomenon has been also observed in other PRP gene. For
example, OsPRP1 exhibited different or even reverse expression
patterns under various stress factors (Wang et al., 2006). In
another work, CcHyPRP transcripts of pigeonpea (Cajanus cajan
L.) were shown to be enhanced in response to treatments with
PEG, NaCl, heat (42◦C), and cold (Priyanka et al., 2010). These

findings suggest that plant PRP genes are differentially regulated
under abiotic stresses and that different member of the PRP
family may possibly play specific roles in mediating abiotic
stress tolerance. In addition, PtrPRP was quickly and sharply
induced by ABA, implying that PtrPRP is an ABA-responsive
gene. However, expression of PtrPRP under ABA treatment was
consistent with RePRP of rice and CcHyPRP of pigeonpea, but
it was contradictory to OsPRP, which was repressed by ABA
(Akiyama and Pillai, 2003; Priyanka et al., 2010; Tseng et al.,
2013). However, whether PtrPRP functions in an ABA-dependent
manner needs to be elucidated.

Down-regulation of gene expression via RNAi at post-
transcriptional level has been widely used as an alternative
approach for functionally characterizing genes involved in biotic
and abiotic stress tolerance, because RNAi plants may clearly
display altered phenotype or metabolic disorders (Mao et al.,
2007; Tardieu and Tuberosa, 2010; Duan et al., 2012; Huang
et al., 2013; Saurabh et al., 2014). In keeping with this, herein
we employed RNAi approach to knock down PtrPRP in trifoliate
orange so as to elucidate the function of this gene in cold
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FIGURE 7 | Analysis of electrolyte leakage (EL) (A) and
malondialdehyde (MDA) (B) in wild type (WT) and two RNAi lines after
cold treatment. Asterisks indicate that the values of corresponding
transgenic lines are statistically significantly different from that of WT
(∗P < 0.05).

stress tolerance. After 48 h of cold treatment, EL and MDA
content, two parameters for membrane integrity, in the RNAi
lines were higher than in the control, suggesting that knock-down
of PtrPRP led to severer membrane damage. It was reasonable
because PtrPRP was localized in the membrane. In higher plant,
cell membrane encloses cytoplasm and various organelles; thus
maintenance of cell membrane integrity is critical for plant to
overcome the physiological and biochemical changes induced
by cold stress. The well-documented injuries caused by cold are
largely due to osmotic and oxidative stresses that pose serious
threat to membrane integrity (Welti et al., 2002; Peng et al.,
2014). Therefore, when challenged by low temperature stress,
biosynthesis and degradation of some related proteins might
be expedited to stabilize the integrity of cellular membranes
against cold injury (Achard et al., 2008). PRPs are proposed
to play an integral role in consolidation of extracellular matrix
structure of plant cells, which is an important approach for
elevating mechanical strength to the cell wall. In this case, the
PRPs may confer the integrity of plant membranes and promote
the structure maintenance of organs (Gothandam et al., 2010).
Therefore, it is reasonable to assume that when this protein
accumulation was suppressed by RNAi, the protective roles of
PtrPRP in membrane integrity might be impaired, which in turn
leads to greater membrane damage, as revealed by higher EL and
MDA levels.

FIGURE 8 | Histochemical staining and quantitative measurement of
ROS. (A) Histochemical staining with DAB (upper) and NBT (lower) in WT and
two RNAi lines after cold treatment. (B) Quantitative measurement of H2O2 in
WT and the RNAi lines. Asterisks indicate that the values of corresponding
transgenic lines are statistically significantly different from that of WT
(∗P < 0.05).

FIGURE 9 | Analysis of proline levels in WT and two RNAi lines after
cold treatment. Asterisks indicate that the values of corresponding
transgenic lines are statistically significantly different from that of WT
(∗P < 0.05).

Proline has been documented to act as an important
compounds involved in stress tolerance as they can serve as an
osmolyte to optimize the physical structure of cell membrane for
proper cellular function (Duncan and Widholm, 1987; Akiyama
and Pillai, 2003; Rodriguez and Redman, 2005; Battaglia et al.,
2007). The proline level has been shown to be associated with the
magnitude of a plant to alleviatemembrane damages and enhance
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cell viability via mitigation of osmotic stress and reduction of
MDA production (Ozden et al., 2009), which agrees with our data
that MDA content in the two RNAi lines was higher than in the
WT. These illustrations suggest that accumulation of less proline
may lead to disordered osmotic adjustment, which constitutes
a mechanism underlying the cold sensitivity of the RNAi lines.
Except acting as an osmolyte, PtrPRP may also contribute to
scavenging of ROS, which are by-products of various metabolic
processes (Mittler, 2002; Finkel, 2011). Excessive accumulation
of ROS is known to cause oxidative damages to cells and
thus impairs normal physiological or biological processes. Plant
has developed either enzymatic or non-enzymatic antioxidant
defense systems to maintain ROS homeostasis and to alleviate
the burst of ROS. The non-enzymatic system is composed
of a number of compounds that are generally known as low
MW antioxidants, such as betaine and proline (Rodriguez and
Redman, 2005; Fu et al., 2011; Hayat et al., 2012; Keunen et al.,
2013; Peng et al., 2014). In earlier studies, exogenous application
of proline has been shown to mitigate ROS production and
confer enhanced stress tolerance, implying that proline plays a
significant role in ROS scavenging (Hoque et al., 2007; Kaul et al.,
2008). Hong et al. (2000) suggested that the role of proline as a
ROS scavenger is more important than its role as an osmolyte
under stress conditions, further supporting the crucial value
of proline in detoxifying ROS. In this work, we found that
suppression of PtrPRP in the RNAi lines was accompanied by a
noticeable reduction of proline, concurrent with the prominent

elevation of ROS levels. These findings indicate that PtrPRP may
function in cold tolerance by influencing ROS homeostasis due
to, at least in part, the role of proline as an efficient antioxidant for
ROS detoxification. Nevertheless, why and how knock-down of
PtrPRP caused a decrease of proline in the RNAi lines remained
elusive and needs to be investigated in the future.

Conclusion

Our data demonstrated that PtrPRP of P. trifoliata is a hybrid-
PRP. PtrPRP expresses in various tissues and responds to abiotic
stimuli, such as cold, salt, and ABA. RNAi-based knock-down
of PtrPRP conferred enhanced cold sensitivity of the RNAi lines
at chilling temperature, as manifested by severer membrane
damage, accumulation of more ROS and less production of
proline under cold stress. Therefore, PtrPRP may contribute to
cold tolerance via modulation of proline, an important osmolyte
and ROS scavenger.
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