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Today, blueberries are recognized worldwide as one of the foremost health foods,
becoming one of the crops with the highest productive and commercial projections. Over
the last 100 years, the geographical area where highbush blueberries are grown has
extended dramatically into hotter and drier environments. The expansion of highbush
blueberry growing into warmer regions will be challenged in the future by increases in
average global temperature and extreme fluctuations in temperature and rainfall patterns.
Considerable genetic variability exists within the blueberry gene pool that breeders can
use to meet these challenges, but traditional selection techniques can be slow and
inefficient and the precise adaptations of genotypes often remain hidden. Marker assisted
breeding (MAB) and phenomics could aid greatly in identifying those individuals carrying
adventitious traits, increasing selection efficiency and shortening the rate of cultivar
release. While phenomics have begun to be used in the breeding of grain crops in the
last 10 years, their use in fruit breeding programs it is almost non-existent.

Keywords: Vaccinium, drought, heat, UV, phenotype, highbush, MAB, phenomics

Introduction

Over the last 100 years, the geographical area where highbush blueberries are grown has expanded
dramatically (Retamales and Hancock, 2012). The northern highbush blueberry (NHB) is native
to the eastern and mid-western portions of the USA, where winters are very cold, summers are
moderate and chilling hours are high (Table 1). The Industry was first established in New Jersey
(1910), but within a few decades had expanded to North Carolina (1920), Michigan (1930), and
the Pacific Northwest (1940). From there it leapfrogged to Europe (1970s), New Zealand/Australia
(1980s), central Chile (1980s), and most recently China (2000s).

The expansions into the Pacific Northwest, Mexico, and Chile were into climates with much
less severe winters, while the introductions into China were into much colder regions. Cultivars
developed in Michigan and New Jersey have generally thrived in the milder climates of the Pacific
Northwest, but many of them suffer from the high irradiance in Chile and the cold of China.

Southern highbush blueberry (SHB) types were originally developed in the 1980s by
incorporating genes from native species from the southern US to reduce the chilling requirement
of NHB. SHB were first established in Florida and Georgia (1980s) and then moved to north central
Chile (1980), Argentina and Spain (1990), California (2000) and most recently Mexico, Peru and
Ecuador (2010s).

The introductions of SHB into California, north Central Chile, and Spain were into hotter and
dryer climates than those in Florida and Georgia (Table 1), and in southern Chile with much higher
UV levels (Huovinen et al., 2006). The expansions into Mexico and Ecuador were from low to
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moderate chill conditions to regions with few to no hours under
7◦C. In general, the cultivars that have done well in Florida and
Georgia have also performed well in the hotter, drier production
regions of California, central Chile, and Spain. However, only a
few low chill cultivars have performed well in Mexico and Peru,
and many of them suffer under the high UV levels of Chile.

During the last couple of decades, a constant stream of
successful cultivars has been released from a number of breeding
programs. These programs have focused on releasing cultivars
with reduced chilling hours in warmer regions, increased cold
hardiness in colder regions, and higher performance under
high pH, temperature and radiative stress, but there is still
much room for improvement. To achieve these goals, blueberry
breeders have incorporated genes from many species within the
Vaccinium genus through inter-specific hybridization (Table 2),
which should prove to be a rich genetic pool for further
improvements.

In this paper, we review the environmental challenges facing
blueberry cultivation due to global warming. We describe
the state of the art of blueberry breeding and outline how
future varietal development can be enhanced by marker assisted
breeding (MAB) and phenomics.

TABLE 2 | Genetic composition of some of the cultivated blueberries.

Cultivar Specie composition (%)

VC VA VD Va VT Vc VE Others

Elliott, Brigitta, Liberty, Aurora, Lateblue, Jersey 100.0

Duke 96.0 4.0

Bluecrop 93.6 6.4

Hannah’s Choice 92.2 7.8

Avonblue 86.7 0.8 5.0 7.5

Lenoir 85.2 2.3 12.5

Draper 84.5 6.0 1.6 1.2 0.4 6.3

O’Neal 84.0 10.0 3.0 3.0

Misty 81.0 1.0 9.0 6.0 3.0

Ozarkblue 77.3 3.9 11.3 7.5

Summit 77.3 3.9 11.3 7.5

Reveille 77.2 4.1 3.1 2.3 0.8 12.5

Sampson 76.6 10.9 12.5

Magnolia 75.5 5.7 10.0 7.5 1.3

Legacy 73.4 1.6 25.0

Star 71.9 7.7 7.2 5.9 1.0 6.3

Camellia 71.8 1.6 19.7 3.8 3.1

Bluetta, Patriot, Sunrise 72.0 28.0

Carteret 71.5 3.5 25.0

Millennia 66.5 5.3 1.3 1.9 25.0

Jubilee 56.6 2.7 26.9 7.5 6.3

Emerald 54.4 1.9 13.9 1.5 0.2 28.1

Sierra 50.0 2.0 20.0 15.0 13.0

Cara’s Choice 47.7 2.3 20.0 15.0 15.0

Sharpblue 43.7 28.8 15.0 12.5

Biloxi 41.8 1.8 32.5 11.3 12.6

VC, V. corymbosum; VA, V. angustifolium; VD, V. darrowii; Va, V. ashei; VT, V. tenellum; Vc, V. constablei; VE, V. elliottii (Hancock and Siefker, 1982; Ehlenfeldt, 1994; Clark et al., 1996;
Hancock et al., 1997; Brevis et al., 2008; Lee et al., 2012; Rowland et al., 2013).

Environmental Challenges to Blueberry
Cultivation

The expansion of highbush blueberry growing into colder and
warmer regions will be challenged by the alterations in global
temperature and rainfall patterns, both associated with increases
in atmospheric CO2 concentrations. From the “Industrial
Revolution” carbon dioxide has increased in a significant way
and will continue to do so. It is estimated that under the
most conservative scenario, atmospheric CO2 concentrations
at the end of the century will be at least double to the pre-
industrial era, increasing by 35% from year 2005 (IPCC, 2007b).
As atmospheric concentrations of greenhouse gases rise due to
the human activity, worldwide climatic patterns are being greatly
altered (United Nations, 2010). The Intergovernmental Panel on
Climate Change (IPCC), reports that during the past 150 years,
global mean temperatures raised 0.045◦C per decade, but in the
last 25 years have increased almost four times (0.177◦C) (IPCC,
2007a). Two separate analyses done recently by NASA (National
Aeronautics and Space Administration) and NOAA (National
Oceanic and Atmospheric Administration) have concluded that
2014 was the warmest year since 1880 (NASA, 2015). It is
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expected that during the next century global temperatures will
be increased by an additional 1.1–6.4◦C (Jin et al., 2011).

The increases in temperature are associated with extreme
variations in weather patterns, resulting in severe droughts,
unusually heavy rains and atypically hot temperatures (Allen and
Ingram, 2002). Since the 1970s, the frequency of warm nights
and days is increasing dramatically (IPCC, 2007a). For example,
in the main blueberry production area in Chile (approximately
between 35 and 38◦ Latitude S), precipitation diminished around
25% during the 20th Century, and it is estimated that there will be
a further reduction of 5–15% over the next 30 years (Meza et al.,
2003; Santibañez and Santibañez, 2007, 2008; United Nations,
2010). These dramatic changes led Friend (2010) to suggest
that “Quantifying and explaining the current global distribution
of plant production, and predicting its future responses to
climate change and increasing atmospheric CO2, are therefore
major scientific objectives.” High temperatures and drought
can significantly reduce the productivity and the quality of
the harvested organ (Moretti et al., 2010), restricting the areas
(latitudes and soils) where economically important species can
be grown.

The activity and development of humanity has not
only increased atmospheric CO2 levels but also levels of
chlorofluorocarbons from aerosols, refrigerators, and other
equipment that conditions the air. These compounds destroy the
ozone layer, which selectively absorbs ultraviolet light. Ozone
absorbs 100% of UV-C, prevents the passage of UV-B (near
90%) but does not affect the UV-A transmission (de Gruijl and
van der Leun, 2000). In the southern (35–60◦) and northern
(35–60◦) hemisphere, the annual mean ozone quantities during
2006–2009 were lower than between 1964 and 1980 (6 and 3.5%,
respectively) (WMO, 2011).

The average UV erythemal irradiance, which indicates
potential biological damage to human skin from solar ultraviolet
radiation, has steadily risen as the amount of ozone has decreased
(WMO, 2011). Compared with the 1970s, surface erythemal
UV radiation has increased 7% in winter-spring and 4% in
summer-fall in the northern hemisphere mid-latitudes, 6% year-
round in the mid-southern hemisphere latitudes, and 22% in
the Antarctic and Arctic in the spring (Madronich et al., 1998).
In the summertime, erythemal UV irradiance in the southern
hemisphere is up to 40% higher than values in the northern
hemisphere (Madronich et al., 1998). If the Montreal Protocol is
followed, it is possible that UV values will return to 1980 levels by
the middle of this century, but this is dependent on multifaceted
global cooperation (Kazantzidis et al., 2010; McKenzie et al.,
2011).

Implications of Climate Change on
Blueberry Breeding

The aspect of global warming that most needs attention from
blueberry breeders is the dramatic seasonal fluctuations now
occurring in rainfall and temperature patterns. Cultivars well
adapted to “average conditions,” often do not have sufficient
plasticity to perform well under the range of conditions now
being faced. For example, an unusually warm spring in Michigan

in 2012 lead to very early floral development, and as a result,
when temperatures returned to normal later in the spring, a high
percentage of flowers were damaged by frost. An unusually hot
summer in the Pacific Northwest in 2012, resulted in the fruit
of most cultivars being too soft for extended storage. This was
followed by an unusually cold winter in 2013–2014, where high
percentages of the floral buds were heavily damaged. In Chile,
falls and winters are becoming progressively milder in many
areas, causing some cultivars to bloom out of season (O’Neal,
Snowchaser and Misty, among others).

To maintain and extend the geographic range where
blueberries are grown, breeders will need to be much more
cognizant of the potential range of environments that the
cultivars will face. They will need to take care not to release
cultivars that are narrowly adapted to average conditions.
Among the environmental challenges faced by blueberry breeders
are:

Winter Cold
The range of the highbush blueberry has been limited by extreme
winter cold. Cold hardiness is a complex interaction between
rate of acclimation (development of freezing tolerance) and
deacclimation (loss of developed freezing tolerance), as well as
degree of mid-winter tolerance. This is extremely important since
unseasonably warm midwinter spells can trigger a premature
deacclimation, exposing the bush to freeze damage (Arora and
Rowland, 2011).

In general, northern highbush cultivars survive much
colder mid-winter temperatures than southern highbush ones,
although considerable variability exists within groups and among
Vaccinium species (Hancock et al., 1997; Ehlenfeldt et al., 2003,
2006, 2007; Dhanaraj et al., 2004; Rowland et al., 2004; Ehlenfeldt
and Rowland, 2006; Hanson et al., 2007). In full dormancy,
northern highbush genotypes have been found to range in
tolerance from−20 to−30◦C. Few southern highbush have been
evaluated, although “Legacy” tolerates temperatures to −17◦C
and “Ozarkblue” to−26◦C. US 245, an inter-species hybrid of US
75 (“Bluecrop” × V. darrowii “Fla 4B”) × “Bluecrop,” is tolerant
to at least−24◦C.

To date, the primary approach to developing more cold
tolerant blueberries has been to hybridize lowbush with highbush
to produce “half-high” types (Trehane, 2004; Hancock et al.,
2008a). However, the shorter stature of the half-highs and the
fact they become covered and protected with snow may be
the primary basis of their increased tolerance (El-Shiekh et al.,
1996). Due to the lack of formal comparisons of flower bud
tolerance to winter cold in highbush, lowbush and half-highs,
it is unknown how much more cold tolerant highbush can be
made through introgression. It would be productive to determine
if several other wild species carry useful genes for cold hardiness
including V. boreale, V. constablaei, and V. myrtilloides (Galletta
and Ballington, 1996; Ehlenfeldt and Rowland, 2006). Ehlenfeldt
et al. (2007) showed that when V. ashei was hybridized with
V. constablaei, cold hardiness was positively associated with the
percentage of V. constablaei genes.

Little formal genetic analysis of cold tolerance of tetraploid
blueberry has been performed. Arora et al. (2000) found
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in diploid populations that the cold hardiness data fit a
simple additive-dominance model of gene action, with the
additive effects being greater than the dominance ones. During
cold acclimation, specific genes are expressed in floral buds
that increase cold tolerance (Naik et al., 2007). Arora et al.
(1997a), working with “Bluecrop,” “Tifblue,” and “Gulfcoast,”
found a close relationship between floral bud dehydrin
concentration and the level of cold hardiness. Similar results
were found by Rowland et al. (2004) and Dhanaraj et al.
(2005). This suggests that dehydrin concentration might be a
way to predict the cold hardiness of selections in a breeding
program.

It is important to note that studies of cold hardiness under
field or artificial conditions can lead to different conclusions.
When “Bluecrop” (NHB) and “Tifblue” (Rabbiteye blueberry—
RE) flower buds were assessed in the field, LT50 (maximum level
of cold-hardiness) were close to −27 and -25◦C (respectively),
whereas the same cultivars in cold room conditions (4◦C)
reached maximums around−24 and−17◦C, respectively (Arora
et al., 1997b; Arora and Rowland, 2011). There were almost
twice as many “Bluecrop” genes expressed in the cold room
than in the field, suggesting that many of the genes induced in
the cold room were responding to low temperature (specifically
4◦C) and were not contributing to freezing tolerance per se. In
contrast, more “Tifblue” genes were expressed in the field than
under the controlled conditions. This suggests that there is a
strong genotype × environment interaction associated with cold
tolerance and any screen designed to select cold hardy genotypes,
must be conducted under field conditions or under realistic
controlled protocols (Arora and Rowland, 2011).

It may be possible to determine when a plant is approaching
full dormancy by measuring the expression of the β-amylase
gene. Lee et al. (2012) showed in the NHB “Jersey” and the SHB
“Sharpblue” that there was an abrupt reduction in starch in shoots
in the middle of cold acclimation, which was associated with an
increase in the expression of the β-amylase gene. This change was
positively correlated with the total amount of soluble solids in the
wood, which likely served as osmoprotectants able to reduce the
freezing point. Inter-species differences in the level of expression
of β-amylase genes in northern and southern highbush were
described by Rowland et al. (2008).

Spring and Fall Frost
Freezing damage to developing flowers in the spring is a major
problem in most blueberry production regions, with both NHB
and SHB. It is a rare year when at least a fraction of the
flower buds is not damaged. Rate of deaclimation likely plays
a role in early spring flower bud tolerance. Ehlenfeldt (2003)
found the northern highbush “Duke” deacclimated the fastest
in a mixed group of 12 cultivars, while the southern highbush
“Magnolia,” the northern highbush × rabbiteye pentaploid
hybrid “Pearl River,” the rabbiteye × V. constablaei “Little
Giant” and the half-highs “Northcountry” and “Northsky” were
the slowest. Northern highbush “Bluecrop” and “Weymouth,”
southern highbush “Legacy” and “Ozarkblue” were intermediate.
While there is evidence of considerable variability, no formal
genetic studies have been done on deaclimation rates.

Identifying late bloom or slower deacclimating genotypes will
be useful for breeding spring-frost tolerant cultivars (Rowland
et al., 2005). Because of the chances of frosts and the direct
relation between the stage of floral development and the relative
bud hardiness, those cultivars with late bloom dates tend to
suffer less frost damage than those flowering earlier (Spiers, 1976;
Hancock et al., 1987; Patten et al., 1991; Lin and Pliszka, 2003).
When Hancock et al. (1987) assessed flower bud injury in 18
highbush blueberry cultivars after two spring frosts in Michigan,
they found significant differences in proportion of brown ovaries
among cultivars, ranging from 25 to 94%. Most of the variation
was associated with stage of bud development.

Bloom date is strongly correlated with ripening date, but
early ripening cultivars have been developed that have later
than average flowering dates such as the NHB “Duke,” “Huron”
and “Spartan,” and the SHB “Santa Fe” and “Star.” Bloom
date, ripening interval and harvest dates are highly heritable
in blueberry populations (Lyrene, 1985; Hancock et al., 1991)
with strong genotype by environmental interactions (Finn et al.,
2003). Finn and Luby (1986) found additive genetic variation
was more important than non-additive effects for date of 50%
bloom, 50% ripe fruit and for length of fruit development interval
in populations from hybrids between V. angustifolium and V.
corymbosum. Where spring frosts are a problem, breeders can
focus on developing cultivars with late bloom dates and where
earliness is premium, selection will need to be made on ripening
interval as well.

Flower buds also can be damaged by rapid freezes in the fall.
The flower buds of SHB cultivars are generally considered to
acclimate more slowly in the fall than those of NHB ones, and as
a result are more subject to late fall freezes; however, few formal
screens of germplasm have been conducted on this characteristic
(Rowland et al., 2005, 2013; Hanson et al., 2007). Leaf retention
in the fall does not appear to be a good predictor of rate of DA,
as Hanson et al. (2007) found that “Ozarkblue” and US 245 retain
their leaves until the very late fall, but they are just as hardy as
the mid-season standard “Bluecrop.” Bittenbender and Howell
(1975) also found no correlation between flower bud hardiness
and fall leaf retention.

There are not many studies that have evaluated the effect
of the spring frost on open flowers, and most of them have
been done on RE (Spiers, 1976; Gupton, 1983; NeSmith et al.,
1999). Among RE cultivars, “Southland” proved to be more
frost-tolerant than “Delite,” “Woodard,” “Climax,” and “Tifblue”
(Gupton, 1983). Nevertheless, interspecific crosses with RE
would not be recommended to increase bud tolerance to frost
since, at similar stages of floral bud development, RE tend to
be more sensitive than NHB and SHB (Patten et al., 1991).
Rowland et al. (2013), studying the sensitiveness of five northern
highbush blueberries cultivars (“Bluecrop,” “Elliott,” “Hannah’s
Choice,” “Murphy,” and “Weymouth”) to frost damage of open
flowers, concluded that “Hannah’s Choice” and “Murphy” were
the most tolerant whereas “Bluecrop” was the most susceptible.
Among the cultivars analyzed by Rowland et al. (2013), female
parts from “Elliott” (styles), “Hannah’s Choice” (styles and
exterior ovaries) and “Murphy” (styles) were more frost-tolerant
than those structures of “Bluecrop,” and the male organs from
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“Murphy” (filaments and anthers) were more frost-tolerant than
“Bluecrop.” These differences need to be studied in other cultivars
and exploited for breeding.

Chilling Requirement
Expanding the range of adaptation of the NHB by reducing its
chilling requirement has been a major breeding goal over the last
50 years (Hancock et al., 2008a). This was largely accomplished
by incorporating genes from the southern diploid species V.
darrowii into V. corymbosum via unreduced gametes, although
hybridizations with native southern V. corymbosum and V. ashei
also played a role. Cultivars with an almost a continuous range of
chilling requirements (hours below 7◦C) are now available from
0 to 1000 h.

Most SHB are grown in areas with 250–600 chilling hours
each winter. SHB cultivars vary widely in their performance
without any chilling hours. Surprisingly, one of the best adapted
cultivars to this system is “Biloxi,” which requires 500 chilling
hours (<7◦C) in Mississippi, where it was developed. The
response to chilling is clearly a complex interaction and many
factors play a role including sensitivity to temperature shifts,
floral development time, response to photoperiodic change and
temperature thresholds.

The genetics of the chilling requirement has not been formally
determined, although segregation patterns suggest that it is
largely quantitatively inherited with the low chilling requirement
showing some dominance. The precise temperature necessary
to break dormancy has not been determined, but Mainland
et al. (1977) and Spiers (1976) have proposed that the chilling
requirement of highbush blueberries is at least partially satisfied
by temperatures below 1.4 and above 12.4◦C. It is possible that
blueberry genotypes vary in the threshold temperatures that
are required to break dormancy, although this has not been
documented. Southern highbush cultivars with complex ancestry
may be particularly variable in their temperature thresholds.

Heat and Drought Tolerance
When heat stress is present in blueberries, the quick response
needed to supply the atmospheric demand, puts the plant and
its fruit at permanent threat (Chen et al., 2012). High summer
temperatures, such as in the subtropical southeast China or the
dry Mediterranean north of Chile, impact on the productivity of
highbush blueberries across much of their range (Darnell, 2000;
Chen et al., 2012). It is thought that SHB aremore tolerant of high
temperatures than NHB, but both types commonly experience
summer temperatures in the field that have negative impacts
on CO2 assimilation rates and fruit quality. In general, optimal
temperatures have been shown to vary between 20 and 25◦C
(Davies and Flore, 1986).

No formal studies have been conducted on the genetics of
photosynthetic heat tolerance in blueberry, but genetic variation
has been documented. Moon et al. (1987b) evaluated the
optimum temperature for photosynthesis in different highbush
cultivars, determining ranges of 18–6◦C for Jersey and 14–22◦C
for Bluecrop. A temperature of 30◦C has been shown to reduce
photosynthesis in NHB cultivars by 22–51% (Hancock et al.,
1992); the authors reported that “Jersey,” “Elliott,” and “Rubel”

showed a decrease in photosynthesis between 22 and 27%
whereas for “Spartan,” “Bluejay,” and “Patriot” it was between 41
and 51%. Trehane (2004) describes “Ozarkblue” and “Jubilee” as
varieties that perform well in hot summers. Chen et al. (2012)
found that at high temperatures, up to 40–45◦C, a number
of photosynthetic parameters were damaged in “Brigitta,” but
they stayed largely intact in “Sharpblue,” and “Duke”; “Misty”
performed in the middle. In this study, at high temperatures,
there were increases in hydrogen peroxide, super oxide radical
and F0 (minimum fluorescence in the dark-adapted state), while
Fv/Fm (maximum photochemical quantum yield of photosystem
II) and ÔPS II (quantum efficiency of PSII photochemistry)
decreased.

Southern highbush cultivars may have obtained higher
photosynthetic heat tolerance from Vaccinium darrowii (Lyrene,
2002). Moon et al. (1987a) found that CO2 assimilation (A) in Fla
4B of V. darrowii was similar at 20 and 30◦C, while A in the pure
northern highbush “Bluecrop” dropped by almost 30% across this
same range. Transpiration rates were also much lower in Fla 4B
than “Bluecrop.” This difference was found to be heritable, with a
tetraploid F1 hybrid actually having higherA than the two parents
(Moon et al., 1987b; Hancock et al., 1992). The selection, Fla
4B has been used to generate many of the important southern
highbush cultivars including “Biloxi,” “Emerald,” “Legacy,” and
“Star” (Lyrene and Sherman, 2000; Draper and Hancock, 2003).
There may also be additional sources of heat tolerance in the
native southern speciesV. tenellum,V. myrsinites,V. pallidum,V.
ashei, V. elliottii, V. stamineum, Vaccinium arboreum, southern
diploids and tetraploids of V. corymbosum (Luby et al., 1991).

It would seem likely that the photosynthetic heat tolerance
of both NHB and SHB types can be increased by crossing
the most heat tolerant genotypes, since there is considerable
genetic variability for this trait both within and among blueberry
species.

High temperatures also negatively impact fruit quality and
storage life of highbush blueberries. Temperatures higher than
32◦C during the maturation of the fruit can give rise to smaller,
soft fruits and with waxes that have greater susceptibility of being
lost by means of the rubbing (by leaves or during the harvest)
(Mainland, 1989).

Blueberries have a relatively inefficient water conducting
systems, characterized by the lack of root hairs (Gough, 1994).
Root anatomy and architecture should be a key trait, but
unfortunately it is almost unexplored, e.g., V. arboreum is
drought tolerant specie because it has deep tap roots in contrast
to the spreading, shallow root systems of highbush blueberry.
Hence, drought tolerance of highbush blueberries might also be
enhanced by using species material in breeding.

In his screens of wild species material, Erb et al. (1988a,b)
found V. elliottii, V. darrowii, and V. ashei to be the most
drought tolerant species and this characteristic was transmitted
to hybrid progeny. Moon et al. (1987a) found transpiration rates
and leaf conductance (gs) to water vapor to be much lower in
V. darrowii than “Bluecrop” at high temperature. This suggests
that V. darrowii may have higher drought tolerance through
decreased stomatal opening and subsequent restriction of water
loss.
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Other sources of drought tolerance likely include the native
species Vaccinium stamineum and V. arboretum (Hancock et al.,
2008a). V. stamineum is the most drought tolerant species in the
southeastern U.S.A., but hybrids derived with species in section
Cyanococcus have not been vigorous (Ballington, 1980; Lyrene,
2006). The use of V. arboreum appears to be more promising, as
this species can be crossed with V. darrowii to produce vigorous
hybrids, and these hybrids can be used as a bridge to tetraploid
SHB types (Lyrene, 1991; Brooks and Lyrene, 1998; Olmstead
et al., 2013).

In response to water deficit, plants stop shoot growth affecting
their final height and diameter (Mingeau et al., 2001). Bluecrop is
one of the cultivars which has been studied most, proving to be
highly sensitive to water deficit, showing a rapid stomatal closure,
and reduced gas exchange (Cameron et al., 1989; Rho et al., 2012),
berry size and yields (Améglio et al., 2000). When “Bluecrop”
was subjected to severe hydric restriction, a reduction in the
yield (31–49%) was observed (Perrier et al., 2000). Similar results
were found for other highbush cultivars like Rancocas (Lee et al.,
2006) and Jersey (Cameron et al., 1989). Rho et al. (2012) also
found that along with the reduction in gas exchange found in
“Bluecrop” under water deficit (−1.9MPa), an increment in the
electron transport rate (ETR) occurs, indicating photorespiration
is also affected.

When Estrada et al. (2015) studied how SHB, RE, and
NHB responded to drought conditions, with or without heat
stress, they found that under each stress SHB and RE had
a better photoprotection capacity, while the NHB showed
increments in its photochemical capacity. When both stresses
were present, just NHB “Liberty” and “Elliott” had increased
ETRmax (maximum electron transport rate), the coefficient of
photochemical fluorescence quenching (qP and qL) and the
effective photochemical quantum yield of photosystem II [Y(II)].
This suggests these two cultivars should be considered as parents
if reduction of photo-oxidative damage is required. This tool
could be used to screen genotypes much faster than other classic
measurements, such as gas exchange rate, chlorophyll content,
stem water potential, etc., making the monitoring of stressed
plants more efficient (Ralph and Gademann, 2005; Estrada et al.,
2015).

The priority of this trait for the breeder varies depending on
location and irrigation availability. It should be mentioned that
currently most blueberries are cultivated under irrigation or with
irrigation supplementation.

High UV Light
Ozone depletion itself, is not a major contributor to global
warming, but increases in UV irradiance have large, direct
impacts on plant productivity (Boesgaard et al., 2012). In
some latitudes, plants will not only have to deal with extreme
photosynthetic active radiation and heat, but also with high
UV radiation. Is not unusual to observe damaged plants in
commercial fields (Yáñez et al., 2009), as well as among breeding
families, in central Chile with reddened and curled leaves
and what appear to be localized burns on fruit. Shading nets
have been shown to enhance productivity of blueberries in
central Chile, but the direct influence of UV light has not be

investigated (Retamales et al., 2008; Lobos et al., 2009, 2012, 2013,
2015).

Kakani et al. (2003), reviewing 129 studies of the effect of UV-
B on 35 crops, reported that higher levels of UV-B (most affected
by the ozone depletion) were associated with vegetative and
reproductive morphology alterations, decreases in chlorophyll
content and photosynthesis, and chlorotic or necrotic patches on
leaves or fruit. Little formal work has been done on the effect of
UV light on northern highbush blueberries, and most of what
has been done has focused on postharvest improvement through
short treatments of UV-B on harvested fruit (Perkins-Veazie
et al., 2008; Eichholz et al., 2011).

The damaging effects of high UV light have been documented
in other Vaccinium species. Albert et al. (2008) and Boesgaard
et al. (2012) found a reduction of net photosynthesis in V.
uliginosum throughout the season and damage to photosystem
II (PS II) through the diminution of the fluorescence measured
as Fv/Fm. Kossuth and Biggs (1978) tested the effects of 15, 24,
and 44 units of UV-B on the rabbiteye blueberry “Woodard” and
found that the higher doses reduced fruit growth and surface
bloom, and under high doses of UV-B the fruit skin actually
appeared burned.

Among themechanisms that might be selected to improve UV
tolerance in blueberries is the ability of the leaf surface to reflect
part of the incident radiation (Semerdjieva et al., 2003a,b). The
thickness of the epidermis of the leaf and the concentration of
absorbent compounds could also be improved to counteract the
damaging effects of UV radiation (Batschauer, 1998; Boesgaard
et al., 2012). Increases in levels of phenols (flavonoids and
hidroxamic acid), could also help counter the degradative effects
of high UV-B on DNA (Rozema et al., 1997; Ruhland et al., 2005).
Defense responses to UV-B have not been evaluated in highbush
blueberry; however, Semerdjieva et al. (2003a,b) noted in three
other species (V. myrtillus L., V. vitis-idaea L., and V. uliginosum
L.) in the north of Sweden, that there were noticeable differences
in quantity of phenolic compounds. In all species, high UV-B
led to an increase in phenolic compounds, but some genotypes
responded more than others, and the plants with the highest
flavonoid content had the least UV-B damage.

New Frontiers for the Breeding of
Blueberries

The breeding of highbush blueberries can be a long and tedious
process. Traditional approaches take from 10 to 20 years from the
original cross to cultivar release and often the precise adaptive
range of a cultivar is not known until farmers have grown it for
a number of years. Two relatively new techniques called “MAB”
and “Phenomics” could greatly facilitate blueberry breeding.
MAB would aid in the selection of those individuals most likely
to carry adventitious traits and Phenomics would allow for much
more easy, fast and precise characterization of the superior
types. It is possible that individuals could be selected for their
adaptability to variable environmental conditions with MAB
even though they were not exposed to those conditions in the
field.
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Marker Assisted Breeding (MAB)
All breeding programs revolve around identifying the optimal
traits for a cultivar. Most blueberry breeding programs utilize
traditional approaches to identify desirable types, such as walking
along rows of crosses in the field or doing simple laboratory
assays on fruit quality and disease resistance. However, in many
other crops, MAB is used to facilitate and speed up the release
of new cultivars (Cabrera-Bosquet et al., 2012; Araus and Cairns,
2014).

MAB is based on DNA diagnostic tests that can identify
potential parents and progeny carrying desirable traits. This
process allows selection to be moved all the way back to
conception in the breeder’s minds, helping them to only make
crosses that create desirable trait combinations in offspring,
increasing the efficiency of the entire process. It also permits
selection to be moved from the field to the greenhouse, so that
only seedlings predicted to be superior are planted in the field for
further evaluation. In addition, MAB allows for the assessment of
traits that are difficult to predict in the field such as chilling hour
requirement or heat tolerance.

To use MAB to broaden the environmental range where
highbush blueberries can be grown, it will be necessary to find
genetic variability associated with expanded adaptations. The
rich germplasm diversity currently being used by blueberry
breeders (Table 2) is likely to contain useful genes. The
major stumbling block to using MAB will be the collection of
precise data on the adaptations of potential breeding parents.
Evaluations of genotypes in the field will require that the extreme
conditions occur when the plants are in the field (Arora and
Rowland, 2011). Care will need to be taken to evaluate genotypes
in appropriate environments and in many cases controlled
experiments will need to be undertaken. Most likely a genotype
will need to be evaluated in multiple environments to obtain
an accurate representation of its adaptations. This will often be
tedious and time consuming, but once markers are found that
are tightly linked to the genes regulating adaptations of interest,
future screening will be greatly facilitated through MAB. As
we discuss below, field screening could be greatly streamlined
using phenomic techniques involving spectrometry and
thermography.

The first genetic maps of blueberries are beginning to
emerge that will set the groundwork for MAB. Rowland’s
group at the USDA-ARS (Genetics of Fruit and Vegetable
Improvement Laboratory, Beltsville, MD, USA) developed the
first blueberry map using a diploid population segregating for
chilling requirement (Rowland and Levi, 1994). Their population
was a cross between an inter-specific hybrid (V. darrowii × V.
corymbosum) and another clone of V. corymbosum. They have
continued to periodically add markers to this map and at last
report had 265 markers mapped to 12 linkage groups. They have
used this map to identify quantitative trait loci for cold tolerance
and chilling requirement (Rowland et al., 2014). Allan Brown
(North Carolina State University, NC, USA) and Eric Jackson
(General Mills, Crop Bioscience, MN, USA) have led teams that
sequenced the genome of a V. darrowii× V. corymbosum hybrid
and used this information to generate a more dense chromosome
map with 1200 markers.

A major research initiative has been undertaken by Lisa J.
Rowland, Nahla Bassil (USDA-ARS, National Clonal Repository,
Corvallis, OR, USA), Julie Graham and Susan McCallum
(The James Hutton Institute, Dundee, UK) and Jim Olmstead
(University of Florida, Gainesville, FL, USA) to develop a linkage
map of the tetraploid cross “Jewel” (SHB) × “Draper” (NHB)
(Rowland et al., 2012). Replicated progeny of that cross were
planted at five locations across the USA and data was collected on
a wide array of traits including fruit quality, developmental rates,
chilling hour requirements and growth patterns. A QTL analysis
is currently being conducted to search formarkers for these traits.

The first few thousand expressed sequence tags (ESTs) have
been generated and made publicly available for the Ericaceae
family, about 5000 from blueberry and about 1200 from
rhododendron (Rowland et al., 2010, 2014; Die and Rowland,
2013) (http://bioinformatics.towson.edu/BBGD/). These ESTs
from blueberry and rhododendron were generated as parts of
projects focused on cold acclimation research, and the ESTs are
from non-acclimated and cold acclimated flower bud libraries,
in the case of blueberry (Dhanaraj et al., 2004, 2007), and from
non-acclimated and cold acclimated leaf libraries, in the case of
rhododendron (Wei et al., 2005). Another ∼16,000 ESTs have
been generated from blueberry fruit by the New Zealand Institute
for Plant and Food Research Ltd. (formerly HortResearch), but
they are not publicly available.

Phenomics
The success of breeding programs is reflected in the number of
individuals released at the end of the selection process (Hancock
et al., 2008b). In order to be successful, breeders must generate
thousands of hybrids annually and evaluate them for a number
of years. What ultimately is selected is dependent on local
environmental conditions (Araus and Cairns, 2014).

Because of the large number of genotypes that need
to be evaluated, deep phenotypic characterizations of the
material often becomes impractical due to the time and costs
involved (White et al., 2012; Kipp et al., 2014). For this
reason, conventional breeding generally focuses on different
visual characteristics (e.g., fruit color, cluster tightness, disease
resistance, growth habit, flowering, and ripeness dates) and a
few that require measurements of average complexity (e.g., yield,
soluble solids, firmness).

To effectively develop cultivars well adapted to fluctuations in
environmental stresses, blueberry breeders will have to evaluate
a number of morpho-physiological and physico-chemical traits
that they are not used to considering (Figure 1). The only
reasonable way to fulfill all these needs is through acquisition
of high-dimensional phenotypic data (high-throughput field
phenotyping) or “Phenomics” (Houle et al., 2010). Nowadays,
there are a number of remote sensing devices, techniques and
analysis, mostly non-destructive, which have proven very helpful
in the characterization of the phenotype (Furbank and Tester,
2011; White et al., 2012; Araus and Cairns, 2014).

Among the remote sensing technologies with the
greatest potential for use in phenomics are spectrometry
and thermography. Spectroradiometers are widely used to
measure plant reflectance (R), whose spectral signature (graphic
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FIGURE 1 | The traits commonly evaluated by a plant breeder are highlighted in red. Others that can be estimated by phenomics are highlighted in
green—mostly of these are valuable morpho-physiological and physico-chemical traits that most breeders are not able to consider.

characterization of reflected segment of wavelengths) is closely
associated with the absorption at certain wavelengths that
are linked to specific characters or plant conditions (Araus
and Cairns, 2014). Thermography uses plant temperature
as an efficient tool for the study of the spatial and temporal
heterogeneity of plant water status and how it responds to the
environment.

While these techniques are not new, their use was expanded
tremendously during mid 1980s and is now being widely used in
plant ecophysiology and postharvest studies (estimation of yield,
nutritional content in leaves, gas exchange rate, fruit quality,
biotic and abiotic stress, etc.) (Garriga et al., 2014; Lobos et al.,
2014). Measurements that before usually took months, weeks, or
days can now be accomplished in hours or even minutes for a
large number of genotypes (Figure 2).

In spectrometry, reflectance data is used to generate
“Spectral Reflectance indices” (SRI). Initially SRIs were simple
relationships between wavelengths or spectral bands. The first
SRI was the “Simple Ratio,” calculated as the ratio of the near
infrared (NIR) to the visible (VIS) (SR = RNIR/RVIS), and the
“Normalized Difference Vegetation Index” [NDVI = (RNIR-
RVIS)/(RNIR+RVIS)]. Since then, and incorporating specific
wavelengths, SRIs have been used in different species to estimate
green biomass and leaf area index (Tucker and Sellers, 1986),
plant water status (Peñuelas et al., 1993), radiation use efficiency
(Peñuelas et al., 1995), water content in leaves (Sims and Gamon,
2003), photosynthetic capacity and efficiency (Inoue et al., 2008),

micro and macro nutrients in leaves (Basayigit and Senol, 2009),
yield and carbon isotope discrimination (Lobos et al., 2014)
among many others.

Since the 1960s, plant temperature has been widely used as an
indicator of water status (Tanner, 1963). Initially, temperature
measurements were performed by thermocouples in contact
with the leaves. Later, the development of infrared sensors
allowed faster measurements of leaves or canopies. With thermal
imaging it is possible to detect biotic or abiotic pre-symptomatic
responses, providing a powerful tool to evaluate a high number
of samples in only a few minutes (Costa et al., 2013; Araus and
Cairns, 2014). The development of cheaper devices has made
this approach available to farmers and breeders. Thermometry
analysis has been fine-tuned over time and the different parts
of the image (soil, air, leaves, stems, branches, etc.) can now be
isolated, allowing for the evaluation of specific tissues, organs or
individuals (Costa et al., 2013; Araus and Cairns, 2014).

To date, spectrometry and thermography have been used to
only a limited extent on blueberries. There are a few studies
where the antioxidant content in NHB was evaluated using
spectrometry (total phenols, total flavonoids, total anthocyanins,
and ascorbic acid) (Sinelli et al., 2008; Bai et al., 2014). The
ideal “Brigitta” harvest date was determined in the field using
reflectance data (Beghi et al., 2009), and a blueberry ripeness
index (BRI) has been developed (Beghi et al., 2013). Guidetti et al.
(2009) used a portable spectroradiometer Vis-NIR to accurately
estimate soluble solids, firmness and functional compounds
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FIGURE 2 | When drought or heat stress needs to be assessed, the evaluation window per day is reduced to 4h. A basic physiological plant evaluation
(gas exchange rate, stem water potential, chlorophyll fluorescence, and pigment concentration) (A) takes about 16min per plant, representing a characterization of a
maximum 15 genotypes per day. When thermography (B) and spectrometry (C) is considered, linear and non-linear modeling (D) can streamline the evaluation of
plant status, further increasing the number of genotypes that can be evaluated in a breeding population per day (E).

(anthocyanins, flavonoids, polyphenols, and ascorbic acid) in
fresh and homogenized fruit samples of “Brigitta” and “Duke.”
Other work on blueberries focused on monitoring osmo and
air dehydration processes (Sinelli et al., 2011), SHB cultivar
identification (Yang and Lee, 2011; Yang et al., 2012), and
the recognition of foreign materials (leaves and stems) among
frozen blueberries (Tsuta et al., 2006; Sugiyama et al., 2010).
In the wild lowbush blueberry (V. angustifolium) reflectance
data has also been used for detection of internal larvae fruit
infestation (Peshlov et al., 2009), in situ levels of foliar nitrogen
(Bourguignon, 2006; Maqbool et al., 2012) and to evaluate
vegetative (leaf area index) and reproductive (flower number,
fruit set, and berry yield) parameters (Percival et al., 2012). Most
recently, hyperspectral imaging has been used to predict soluble
solids content and firmness in NHB fruit (Leiva-Valenzuela et al.,
2013, 2014), to identify damaged fruit (Leiva-Valenzuela et al.,
2012; Leiva-Valenzuela and Aguilera, 2013), to classify blueberry
fruit growth stages (Yang et al., 2012, 2014), and as a tool
for early detection of leaf rust in blueberries (Ahlawat et al.,
2011). Escobar-Opazo (2015) found that in blueberry some of
the physiological parameters were significantly correlated with
reflectance data (e.g., ETRmax and chlorophyll a/b > 0.90; A and
gs > 0.65).

During the last decade, spectrometry and thermography have
begun to be used in the breeding of grain crops, but their
use in fruit breeding programs is almost non-existent. Even in
the grain crops, their use has been limited to the evaluation
of small numbers of genotypes, in general <20. SRI will need
to be replaced by more complex bio-mathematical models, to
fully provide breeders with the solid and reliable information

they need for plant selection. When this happens, the efficiency
of selection should dramatically improve, and well adapted
genotypes will be released at a faster rate. The future challenge
will be to develop techniques that can screen a large number of
genotypes simultaneously (hundreds or thousands) (Figure 2).

Concluding Remarks and Future
Perspectives

Considerable genetic variability exists in the highbush blueberry
germplasm base that can be used by breeders to meet the
environmental challenges associated with climate change. There
has already been extensive range expansion of blueberries into
hotter and drier environments. There is no reason to believe that
there is not additional genetic variability that can be deployed
to further enhance cold acclimation, heat, high UV, and drought
tolerance of blueberries. Perhaps the greatest challenge associated
with climate change and blueberry range expansion will be the
development of blueberry cultivars that can resist extremes in
environmental variability. Ongoing research to develop DNA
diagnostic markers for key physiological tolerances will aid
greatly in the breeding of these stress resistant types. To generate
robust markers for MAB, it will be necessary to have precise
phenotypic characterizations, making phenomics a powerful tool
that could aid greatly in identifying the superior types.
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