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Exploitation of heterosis in crops has contributed greatly to improvement in global food
and energy production. In spite of the pervasive importance of heterosis, a complete
understanding of its mechanisms has remained elusive. In this study, a small test-
crossed rice population was constructed to investigate the formation mechanism of
heterosis for 13 traits. The results of the relative mid-parent heterosis and modes
of inheritance of all investigated traits demonstrated that additive effects were the
foundation of heterosis for complex traits in a hierarchical structure, and multiplicative
interactions among the component traits were the framework of heterosis in complex
traits. Furthermore, new balances between unit traits and related component traits
provided hybrids with the opportunity to achieve an optimal degree of heterosis for
complex traits. This study dissected heterosis of both reproductive and vegetative traits
from the perspective of hierarchical structure for the first time. Additive multiplicative
interactions of component traits were proven to be the origin of heterosis in complex
traits. Meanwhile, more attention should be paid to component traits, rather than
complex traits, in the process of revealing the mechanism of heterosis.

Keywords: additive effects, heterosis, hierarchical structure, hybrids, multiplicative interactions, rice (Oryza
sativa L.)

Introduction

The world is currently facing the daunting task of addressing food and energy shortages. One
cause of these shortages is the growing population. China needs to increase grain production by
∼25% to satisfy the huge national consumption by 2020 (Qiu, 2008; Wang et al., 2013). Another
cause is the changing climate. Climate change could result in decreasing yields of staple food
crops in most parts of the world from the 2030s onward (Challinor et al., 2014). Fortunately, the
utilization of heterosis in crops has contributed greatly to global crop production improvement in
recent decades (East, 1936; Whaley, 1944; Schnable and Springer, 2013). However, the mechanism
of heterosis remains mysterious, and the profits that heterosis bring seem insufficient to meet
worldwide demands. Discovering the mechanism of heterosis is an urgent task.

Heterosis describes improved performance of heterozygous F1 hybrids in terms of stature,
biomass, size, yield, speed of development, fertility, resistance to diseases and insect pests, or to

Abbreviations: EGN, empty grain number per plant; ESPH, elongation stage plant height; FGN, full grains number per plant;
FSPH, flowering stage plant height; GNP, grain number per panicle; MPH, relative mid-parent heterosis; MSPH, maturation
stage plant height; PBN, primary branch number; SBN, secondary branch number; SSPH, seedling stage plant height; SSR,
seed-setting rate; TPP, tiller number per plant; TGW, thousand-grain weight; YPP, grain yield per plant.
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climatic rigors of any type compared to the average performance
of their homozygous parental inbred lines (Birchler et al.,
2006; Hochholdinger and Hoecker, 2007). Some terms have
been proposed to describe heterosis. Additive effects describe
phenotypes that are not significantly different from the average of
the two parents (midparent value); partial dominance describes
phenotypes that differ from the midparent but do not reach
parental levels; dominance is not significantly different from the
high or low parent value; and overdominance is substantially
outside the range of the parental phenotypes, including above the
high or below the low parent value (Hochholdinger and Hoecker,
2007; Schnable and Springer, 2013).

A wealth of studies on heterosis has been conducted since
Darwin first scientifically recorded this phenomenon (Darwin,
1876). At the genomic level, overdominance was mainly found
for grain yield (Yu et al., 1997; Lu et al., 2003; Larièpe et al.,
2012), yield-related traits (Edwards et al., 1987; Stuber et al., 1987;
Luo et al., 2001; Semel et al., 2006), plant height (Tang et al.,
2007), and fiber quality (Wang et al., 2013). Epistasis and digenic
interactions were also frequently detected (Li et al., 1997a, 2008;
Yu et al., 1997; Hua et al., 2003; Shi et al., 2011; Guo et al., 2014).
More importantly, additive effects appeared to be vital in the
formation of heterosis as well (Edwards et al., 1987; Stuber et al.,
1987; Li et al., 1997a; Luo et al., 2001, 2009; Hua et al., 2003;
Shi et al., 2011; Qu et al., 2012). For traits especially resistance
to disease, the genomic regions controlling Phytophthora capsici
Leonian resistance could display additive effects, epistatic effects
or both in pepper (Capsicum annuum L.; Thabuis et al., 2003).
Furthermore, in the chickpea (Cicer arietinum L.), analysis for
resistance to Ascochyta blight revealed that additive effects served
a main role in Ascochyta blight resistant (Taleei et al., 2010).

At the transcriptomic level, genome-wide changes of gene
expression have been documented in a variety of species and
tissues. The majority of genes in hybrids showed additive
expression in mouse liver (Cui et al., 2006), maize triploid
endosperm (Guo et al., 2003), maize seedling (Stupar and
Springer, 2006; Swanson-Wagner et al., 2006; Stupar et al.,
2008), maize primary root (Hoecker et al., 2008), rice developing
leaves and panicles (Wei et al., 2009), and Arabidopsis seedlings
(Meyer et al., 2012). Furthermore, additively expressed genes
were found to be positively associated with hybrid yield and
heterosis (Guo et al., 2006; Jahnke et al., 2010; Thiemann et al.,
2010, 2014). In addition, expression patterns of siRNA clusters
in intrasubspecific rice hybrids mostly (78.8 and 77.7%) showed
additive patterns in the two reciprocal hybrids (He et al., 2010).
In addition to that, additive effects of two quantitative trait loci
confer Rhopalosiphum maidis resistance in maize (Betsiashvili
et al., 2015).

Consistent with gene-expression changes, in maize embryos
and sunflower (Helianthus annuus L.) F1 hybrids, only small parts
of the detected proteins exhibited non-additive accumulation
(Marcon et al., 2010, 2013; Mohayeji et al., 2014). The results
from a proteomic analysis of maize seeds showed that an
additive pattern of protein abundances was established in
heterotic hybrids and an additively balanced network but neither
non-additive dominance nor overdominance regulates heterosis
(Wang et al., 2014).

The reverse of heterosis is inbreeding depression (Semel
et al., 2006; Chen, 2013). Additive epistatic loci were
reported to have large effects on inbreeding depression in
an intersubspecific rice F4 population (Li et al., 1997b).
Overdominance resulting from epistatic loci was also found
to be the primary genetic basis of inbreeding depression and
heterosis in a rice population including 254 F10 recombinant
inbred lines and two backcross hybrid populations (Luo et al.,
2001; Mei et al., 2005). In a set of 148 F9 rice recombinant
inbred lines, the epistatic effects of QTL pairs with additive
and overdominant loci explained a larger portion of the total
phenotypic variation for six yield-related traits (Luo et al.,
2009).

In general, different experiments got mutually non-exclusive,
different, or even conflicting results. Until now, no consensus
has emerged, and single-locus approaches to studying heterosis
are suggested to have limitations; therefore, progression to
a quantitative genetic framework involving interactions in
hierarchical networks may be fruitful (Birchler et al., 2010;
Chen, 2013). Considering the truth that the phenotypes of
heterosis are our best clues to its mechanism (Lippman and
Zamir, 2006; Yao et al., 2013), we build a test-crossed rice
population and analyzed the generation types of heterosis
for 13 traits. We found, based on a hierarchical structure,
that additive effects composed the fundamental level of
heterosis for compound traits. Meanwhile, multiplicative
interactions acted as the framework forming heterosis in
complex traits.

Materials and Methods

Plant Materials
Eighteen inbred rice lines were used in this study (Supplementary
Table S1), which were identified as indica or japonica with
the InDel marker estimating method (Lu et al., 2009). R465
was provided by the China National Rice Research Institute.
Mianhui725 was provided by Mianyang Academy of Agricultural
Sciences. The line 9311K was provided by the Sichuan Academy
of Agricultural Sciences. Qianlijing was provided by Sichuan
Agricultural University. W1394,W1384,W1383,W1392,W1390,
110080 and Balilla were provided by Nanjing Agricultural
University. The lines R4115, Liaoxing1 and Wuyunjing8 were
provided by the Hunan Hybrid Rice Research Center. C418 was
provided by Liaoning Academy of Agricultural Sciences. JR2
was provided by the Yunnan Academy of Agricultural Sciences.
After heading, the panicles of the 18 inbred lines were bagged to
insure the seed purity in July 2011 at the Engineering Research
Center for Plant Biotechnology and Germplasm Utilization,
Ministry of Education, Wuhan University, in Wuhan (N30◦ 32′
22.44′′, E114◦ 22′ 18.21′′). Then, the seeds were sown in an
experimental field at the Hybrid Rice Hainan Experimental Base
of Wuhan University in Lingshui (N18◦ 30′ 22.12′′, E110◦ 2′
10.72′′), Hainan Province, in December 2011. All 17 inbred lines
were reciprocally crossed with Qianlijing from March to May
2012. A total of 34 bag hybrids were obtained through artificial
emasculation hybridization.
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Trait Measurements
The seeds of 18 rice varieties and 34 hybrids were bagged in
transparent plastic bags and submerged in water at 28◦C for
48 h. Then, these seeds were transferred to an incubator at a
constant temperature of 28◦C for 24 h. Then, all seeds were
planted in the experimental field of the Hybrid Rice Experimental
Base of Wuhan University in Ezhou (N30◦ 22′ 19.82′′, E114◦
44′ 59.17′′), Hubei Province, on 13 May 2012. The seedlings
were transplanted to a farmland by adopting a randomized block
design with three replications on 10 June 2012. A total of 10
individual plants of each replicate were planted at a spacing of
16.5 × 26.4 cm. To minimize the marginal effect, four Yuetai
A plants, which are cytoplasmic male-sterile lines, were grown
around these individuals. Five middle plants were used when
phenotypic data were collected. The plant height was recorded
four times. Height was recorded for the first time on 8 July 2012,
and the data were defined as the SSPH. The second time was
on 27 July 2012, and the data were defined as the ESPH. The
third time depended on the heading dates, and the data were
defined as the FSPH. Height was recorded for the fourth time
when the seeds were mature, and the data were defined as the
MSPH. The number of tillers with grains was considered the TPP.
An average of 114 panicles of each hybrid combination was used
to collect panicle traits, such as the PBN and the SBN. The YPP
was weighed after drying, and the total grain number and EGN
were determined using Seed Counting Machines (PME-1 Seed
Auto-counting Machine, Shanke Equipment, Shanghai, China).
The TGW was obtained by weighing one 1000 seeds. The total
grain number per plant divided by the tiller per plant determined
the GNP. The SSR was calculated by dividing the number of
full grains per plant by the total grain number per plant. As a
result of low germination and low survival ability, the amounts
of some combinations were not sufficient for analysis; ultimately,
30 hybrid combinations remained. The means over replications
were calculated for each trait and used in the data analyses.

Data Analysis
The MPH was determined using the equation MPH = (F1-
MP)/MP, where F1 represents the value of a hybrid, and MP
represents the mean of the parents. The trait data was analyzed
using the software SPSS 19.0 (IBM SPSS Statistics for Windows,
Version 19.0. Armonk, NY, USA). The degree of dominance
was calculated with d/a = [hybrid-0.5(parent 1 + parent 2)]/abs
(parent 1–parent 2) (Uzarowska et al., 2007) and aligned as in
Stuber et al. (1987).

Results

Heterosis of the Rice Hybrids
Grain number per panicle, SSR, TPP and TGW are component
traits of rice yield (Xing and Zhang, 2010). To find out
how these component traits contribute to YPP, YPP was
designated the dependent variable and the above four
component traits were designated as entered variables in
a linear regression model with SPSS 19.0. The equation
YPP = 1.858∗TGW + 0.146∗GNP + 63.718∗SSR + 5.253∗TPP –

134.737 was found to depict the relationship between component
traits and YPP. Based on the equation, each hybrid received
a predicted value for every trait, and the Pearson correlation
coefficients between the predicted yield values and true yield data
were as high as 0.976 (Figure 1A).

Statistics of the MPH for all 13 traits in Table 1 showed that,
except for the SBN, all remaining traits manifested positive MPH.
The highest average value of MPH was YPP, which was up to
0.906. Compared with YPP, the values of its component traits,
such as TPP, GNP, SSR, and TGW, were smaller. Additionally,
when we comparedMPH-GNPand its component traits-primary
branch number (MPH-PBN) and secondary branch number
(MPH-SBN), the values for PBN and SBN were also smaller
(Figure 2). The low degree of heterosis in the component traits
combined to form a large magnitude of heterosis in complex
traits.

To determine how the high magnitude of heterosis in YPP
was produced, we multiplied the ratios of F1/MP (MP = the
midparent value) for GNP, SSR, TPP and TGW, respectively, and
received product R for each hybrid. Then, the mean measures of
YPP for the two parents were used to multiply the corresponding
R. Finally, a predicted YPP value was determined for each
hybrid, and the correlation between the true field YPP data
and the predicted data was calculated, where the r value was
0.962 (Figure 1B). Therefore, the heterosis of YPP was generated
through multiplicative interactions of the component traits.

Mode of Inheritance for All Traits
Next, we analyzed the mode of inheritance for grain yield
and yield-related traits. Additive effects, partial dominance,
dominance and overdominance were found in the nine traits.
To check whether one mode of inheritance is predominant or
not, we calculated the percentages of the different types of mode
of inheritance for the nine traits. Some traits (SSR, TGW, etc.)
had all four types of modes. PBN and SBN demonstrated only
additive effects and partial dominance. As shown in Figure 3A,
an analysis of the percentage of changes from additive effects to
overdominance, no uniform trend was observed in these traits.
However, if we arranged the percentages from the component
traits, PBN and SBN, to their corresponding compound trait,
GNP, and further to GNP’s compound trait, YPP, two different
changing trends were found: the percentage of additive genetic
effect decreased, and the overdominance increased (Figure 3B).
How about changes in the vegetative trait, plant height? In
total, four growth stages of plant height were recorded in
chronological order for analysis. Similar to reproductive traits, no
uniform trend of percentage changes was found from additive to
overdominance in the four stages (Figure 3C). However, to our
surprise, two identical trends in changes of reproductive traits
also existed for the additive effects and overdominance when the
percentages were arranged in order of priority (Figure 3D).

Hierarchical Additive Effects on Heterosis in
Complex Traits
Next, the trends in Figures 3B,D inspired us to investigate the
mode of inheritance for all the yield-related traits from the
component to the complex traits. We developed the grain yield
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FIGURE 1 | Relationship between predicted YPP and observed yield values. In (A), the horizontal axis represents values predicted from the component traits
of the hybrids. The equation used was YPP = 1.858∗TGW + 0.146∗GNP + 63.718∗SSR + 5.253∗TPP – 134.737. The vertical axis represents the true YPP of the
hybrids. Red dots indicate the predicted YPP values. The red line is the interpolation line of the predicted YPP. In (B), the horizontal axis represented the values
predicted from the parental YPP. The ratios of F1/MP (F1 was trait value of the hybrid and MP was mean of its corresponding parents) for GNP, SSR, TPP, and TGW,
respectively, were calculated first, and these ratios were multiplied by each other. Then, a value was obtained for each hybrid. Finally, this value was multiplied by the
mean of YPP of the two parents to obtain a predicted YPP. The vertical axis represents the true YPP of the hybrids. Red dots predict the YPP from the parental lines.
The red line is the interpolation line of the predicted YPP. The repeated times of the raw data for the five traits are 15. YPP, yield per plant; TGW, thousand-grain
weight; GNP, grain number per panicle; SSR, seed-setting rate; TPP, tiller number per plant.

TABLE 1 | Relative mid-parent heterosis for all 13 traits.

Trait name N Average MPH∗ SD

GNP 30 0.109 0.176

YPP 30 0.906 0.619

TPP 30 0.265 0.378

SSR 30 0.058 0.113

TGW 30 0.131 0.068

PBN 30 0.036 0.084

SBN 30 −0.017 0.171

FGN 30 0.669 0.501

EGN 30 0.229 0.485

SSPH 30 0.116 0.106

ESPH 30 0.106 0.080

FSPH 30 0.164 0.106

MSPH 30 0.172 0.124

Relative mid-parent heterosis for all thirteen traits (some traits in different stages)
was calculated to investigate the performance of heterosis in different types of
traits. The lowest average value of MPH was −0.017 for secondary branch number,
and the highest was 0.906 for yield per plant. ∗ Average values of MPH for a
trait. YPP, yield per plant; TGW, thousand-grain weight; GNP, grain number per
panicle; SSR, seed-setting rate; TPP, tiller number per plant; SSPH, seedling stage
plant height; ESPH, elongation stage plant height; FSPH, flowering stage plant
height; MSPH, maturation stage plant height; PBN, primary branch number; SBN,
secondary branch number; EGN, empty grain number per plant; FGN, full grains
number per plant.

component trait-map shown in Figure 4. Yield-related traits were
distributed in a hierarchical structure, and their corresponding
percentage of additive effects, partial dominance, dominance,
and overdominance were shown to the side, respectively. In
Figure 4A, from left to right, the percentages of additive effects
varied from high value to low value, displaying a decreasing trend.

Furthermore, in Figure 4D, the percentages of overdominance
had an increasing trend. Different from those changes observed
in the additive effects and overdominance, no uniform trend
could be found with percentages of partial dominance and
dominance. Therefore, this outcome seems to suggest that
additive effects and overdominance serve more important
functions than dominance or partial dominance on hybrid traits.
However, in PBN, SBN, and GNP, no overdominance could be
detected (Figure 4D). Therefore, the remaining candidate was the
additive effects.

Nonetheless, how additive effects act on heterosis are still
unknown. In PBN and SBN, the values of MPH were 0.036 and
−0.017 (Table 1; Figure 2), respectively, which suggested a low
magnitude of heterosis. At the same time, the percentages of
additive effects for PBN and SBN were as high as 83.3 and 76.7%,
respectively. After integrating PBN and SBN into GNP, the value
of MPH for GNP was 0.109, and the percentage of the additive
effects was 60%. When TGW (0.131), GNP (0.109), SSR (0.058),
and TPP (0.265) were combined to form YPP, the magnitude
of MPH was as high as 0.906. Furthermore, the percentage of
additive effects dropped to 0 simultaneously. Therefore, these
results indicated that in low-level component traits, additive
effects were prevalent and detectable. Moreover, the magnitude of
heterosis was low.With the high-level complex traits, the additive
effects were hidden and undetectable, and a high magnitude
of heterosis emerged. Furthermore, the percentage of additive
effects for component traits for traits such as PBN and SBN
should be higher than 83.3 and 76.7%, respectively.

By combining our finding of multiplicative interactions of
component traits on heterosis for compound traits and the
effects of additive on heterosis (Figure 1B, Figures 2 and 4),
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FIGURE 2 | Histograms of MPH for the PBN, SBN, GNP and yield per plant, respectively. MPH for the PBN, SBN, GNP, and YPP of the hybrid population
were calculated to study the changes in the degrees of heterosis for different traits. For MPH-PBN and MPH-SBN, the mean values were 0.0357 (A) and −0.0173
(B), respectively. For MPH-GNP, the mean value was 0.109 (C), which was much larger than the values of the primary and secondary branch number. For MPH-YPP
(D), the mean value was up to 0.9063. The low degree of heterosis in the component traits accumulated to form a high degree of heterosis in the complex traits. The
repeated times of the raw data for PBN and SBN are about 114. N, number of the hybrids; SD, standard deviation.

we present a model to elucidate hierarchical additive effects
on heterosis (Figure 5). There are three types of traits: the
unit-trait (u-trait), component trait, and complex trait. The
u-trait consists of a series of unit elements that are additively
presented. These elements may be gene-expression levels, protein
contents, or a part of trait measures. Unit a, b, c, d, and so
on can accumulate to form a u-trait A′, which also shows
additive effects. Part of these units, unit a, b, and c, can form
another u-trait A, which becomes part of a hierarchical structure.
Parallel to u-trait A, u-trait B and u-trait C can join with
u-trait A and evolve into component trait α and β, respectively,
in a multiplicative way. This procedure is crucial, and the
performance of hybrid component traits depends on the relative
amount of u-traits between parents. U-trait A and u-trait B
can manifest overdominance in the component trait α, whereas
the component trait β displays dominance. Additionally, u-trait
C can join with component trait δ, which shows dominance,
and performs partial dominance effects for component trait

γ. Eventually, the component traits α, β, and γ integrate into
complex trait I with overdominance.

Validation of the Model for Hierarchical
Additive Effects on Heterosis
Next, we represent trait measures of the female parent and
male parent as AAAA and BBBB, respectively. When the two
parents were crossed to generate hybrids, based on our additive
effects model, the reciprocal hybrids’ trait measures should be
AABB and BBAA, respectively. Then, if we calculate the ratios
of parent measures (AAAA:BBBB) and the reciprocal hybrids’
measures (AABB:BBAA), the ratios between the parents and
hybrids should have no correlations. Whereas, after removing
a quarter measures from the two hybrids, which is A and
B, respectively, the ratios between the parents (AAAA:BBBB)
and “reciprocal hybrids” (BAA:ABB) should have correlations.
Furthermore, because the percentages of additive effects in grain
yield component-trait map showed a decreasing trend, significant
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FIGURE 3 | Percentages of the different types of mode of inheritance for all 13 traits. (A) and (C) were the percentages of different types of mode of
inheritance for YPP and yield-related traits, and plant heights in four different growth stages of the testcrossing population, respectively. (B) described the percentage
changes in PBN, SBN, GNP, and YPP for additive effects and overdominance, respectively. (D) was the percentage changes in plant height in seedling stage,
elongation stage, flowering stage and maturation stage for additive effects and overdominance, respectively. No uniform trend in change of the percentages could be
found when analysing the percentage changes from additive effects to overdominance in either the reproductive or vegetative traits (A,C). The same trend in change
in the percentage of additive effects decrease and overdominance increase were found in both the reproductive and vegetative traits (B,D). The repeated times of
raw data for EGN, FGN, SSPH, ESPH, FSPH, and MSPH are 15. A, additive effects; PD, partial dominance; D, dominance; OD, overdominance; YPP, yield per plant;
TGW, thousand-grain weight; GNP, grain number per panicle; SSR, seed-setting rate; TPP, tiller number per plant; SSPH, seedling stage plant height; ESPH,
elongation stage plant height; FSPH, flowering stage plant height; MSPH, maturation stage plant height; PBN, primary branch number; SBN, secondary branch
number; EGN, empty grain number per plant; FGN, full grain number per plant.

correlations could be detected in the low level component traits
but not in the high level complex traits. To check whether this
assumption was correct or not, we calculated the correlations
between the ratios of AAAA:BBBB and BAA:ABB for all thirteen
traits. Not surprisingly, we found significant correlations between
the ratios for traits such as PBN, SBN and GNP, but no correlation
for YPP (Table 2).

Discussion

The rice cultivar Qianlijing was chosen as the tester. It has ∼400
grains per panicle, which is the highest in the 18 inbred rice lines.
The PBN and SBN are also the largest, which is ∼2–7 times as

high as other inbred lines. Meanwhile, Qianlijing has the least
amount of tillers, relative lower TGW and shorter plant height.
These phenotypes are advantageous for us to distinguish the four
types of mode of inheritance.

Additive Effects on Heterosis
East (1936) suggested that “The cumulative action of the non-
defective allelomorphs of a given gene approaches the strictly
additive as they diverge from each other in function” when
investigating heterosis. Today, this viewpoint is surprisingly
accurate. In maize triploid endosperm, most gene-expression
patterns were not distinguishable from additivity and the
expression level of additive gene action was proportional to
the parental contribution [(2∗PM + PP)/3, where PM is the
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FIGURE 4 | Hierarchical distribution of yield and yield-related traits with percentages of different types of mode of inheritance. A grain yield component
trait map was drawn to describe the associations between yield and yield-related traits. Percentages of different types of mode of inheritance for the traits were
marked in brackets. A decreasing trend was found for additive effects (A), and an increasing trend was found for overdominance (D), whereas no trend was found
for partial dominance (B) and dominance (C).

expression level of the maternal inbred line and PP is the
expression level of the paternal inbred line; Jahnke et al.,
2010]. In reciprocal triploid maize hybrids, trait measures of
eight of nine traits showed no significant difference in their
respective weighted midparent means (the midparent means
were calculated as two-thirds of one parent and one-third of
the corresponding parent; Yao et al., 2013). Cis-regulation seems
to have profound influences on additive expression patterns
in the F1 hybrids (Doss et al., 2005; Stupar and Springer,
2006).

In this study, additive effects were detected in various
traits with different percentages. For traits such as PBN and
SBN, secondary branches are differentiated by second-order
lateral meristems, which are produced by the primary branches
(Xing and Zhang, 2010). For EGN and FGN, empty grains
need more procedures to produce full grains, such as double
fertilization, embryogenesis, and grain filling. Additionally,
for plant heights at different stages of development, later
growth stages have more structural components, such as more
internodes, involved to form the whole trait. The above three
types of traits had a similar decreasing trend of additive effects
percentages. Hence, for same type traits or same traits in
different growth stages, traits with fewer procedures had more
additive effects. Furthermore, traits with more procedures or

parts could reduce the percentage of additive effects. This type
of “reduction” might be interpreted as “use,” which means
secondary branches could use the additive portion in the primary
branches.

Hierarchical Structure of the Complex Traits
Yield is a compound character that is a product of the expression
and complex interactions of the component characteristics
(Williams, 1959; Sage and Hobson, 1973). One study in the
tomato demonstrated that even single-gene yield heterosis is also
based on multiplicative interactions between component traits
(Krieger et al., 2010). Whether a trait is identified as component
or compound is relative to its corresponding analyzed traits.
A trait (GNP) might be a component trait of another complex
trait (YPP) and a combination outcome of several u-traits (PBN
and SBN) simultaneously. Therefore, hierarchical structures
could be found in heterosis for complex traits.

The multiplicative effects of components on heterosis
are widely known in complex characteristics (Schnel and
Cockerham, 1992; Melchinger et al., 1994). In the same group
of units (unit a, b, c, d, etc.) in Figure 5, simple accumulative
additive effects formed unit-traits. Furthermore, for different
types of unit-traits and component traits, multiplicative additive
effects functioned on a high level. The interaction results of
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FIGURE 5 | Model of hierarchical additive effects on heterosis. The model has three types of traits: unit-trait, component trait, and complex trait. The unit-trait
has a series of units, which are additively presented. These units can form a unit-trait A′, whereas part of these units may form a unit-trait A, which becomes a
component of another trait. Additive effects can be detected in u-traits, and they can join with each other to evolve into different component traits (component trait α,
β, and γ) in a multiplicative way. The multiplicative combination of unit-traits is a crucial step in the performance of component traits, which depends on the relative
amount of u-traits between parents. Then, various types of modes of inheritance can be detected in component traits. Meanwhile, a u-trait may combine a
component trait (component trait δ) to form another component trait (component trait γ). Finally, component traits (α, β, and γ) can integrate into complex trait I.
Different colors in the model represent different types of traits, and different size squares represent the varied trait values in hybrids and corresponding parents.
Asterisks represent multiplicative interactions between the component traits.

TABLE 2 | Correlations between ratios of AAAA:BBBB, BAA:ABB and
AABB:BBAA for all 13 traits.

Pearson correlation BAA:ABB AABB:BBAA

AAAA:BBBB-GNP 0.894† −0.467‡

AAAA:BBBB-PBN 0.862† −0.047‡

AAAA:BBBB-SBN 0.896† −0.479‡

AAAA:BBBB-FGN 0.023‡ 0.159‡

AAAA:BBBB-EGN 0.239‡ 0.049‡

AAAA:BBBB-YPP −0.002‡ 0.172‡

AAAA:BBBB-TPP 0.390‡ −0.039‡

AAAA:BBBB-SSR 0.599∗ −0.453‡

AAAA:BBBB-TGW 0.889† −0.678∗

AAAA:BBBB-SSPH 0.561∗ −0.033‡

AAAA:BBBB-ESPH 0.868† −0.655∗

AAAA:BBBB-FSPH 0.593∗ −0.269‡

AAAA:BBBB-MSPH 0.630∗ −0.265‡

AAAA and BBBB were trait values of the female and male parent, respectively.
AABB and BBAA were trait values of the corresponding reciprocal hybrids.
A quarter measure from the reciprocal hybrids, which was A and B, were removed
from AABB and BBAA, respectively. Ratios between AAAA and BBBB, BAA and
ABB, AABB and BBAA were calculated for all 13 traits. Correlations of these ratios
were analyzed to validate the hierarchical additive model. ∗Correlation is significant
at the 0.05 level (two-tailed). †Correlation is significant at the 0.01 level (two-tailed).
‡No significant correlation.

these components depended on the relative amount of matched
components, which could be additive, partial dominance,
dominance, or overdominance.

Optimal Balances between Component Traits
Stimulated Heterosis in Complex Traits
Components traits are not completely independent of each
other, and a compensatory nature exists in these traits (Sage
and Hobson, 1973). Negative correlation between number and
weight of grain in rice (Li et al., 1997a), whole-plant phenotype
associations in tomato (Schauer et al., 2006), and correlations
for yield-correlated traits in rapeseed (Shi et al., 2011) are the
consequences of the tight connections between component traits.
This may indicate feedback regulation of biological networks
in complex traits of heterosis provided by metabolites (Chen,
2013). Because of the compensatory nature in component traits,
a high magnitude of yield heterosis cannot be achieved by greatly
increasing part of the component traits (Sage and Hobson,
1973). When a component is pushed too far from its normal
level, physiological breakdown occurs (Williams, 1959), which
could be a higher degree of heterosis for biomass and increased
reproductive isolation in intersubspecific rice hybrids (Dan et al.,
2014). Furthermore, in breeding programs, a key factor for
breeders is to understand the correlations between traits and
the extent to which they can be uncoupled (Robson et al.,
2013).

In combination, the fact that not every hybrid manifests
heterosis in a population and that interactions between
components are quite crucial to the performance of hybrids,
heterosis likely necessitates optimal balances in component traits.
In hybrids, the compensation between component trait functions
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identically to that of their parents. However, the hybrids obtain
the opportunity adjust the amount of compensation in the
component traits (2 multiplied by 2 to get 4 in hybrids, rather
than 1 (or 3) multiplied by 3 (or 1) to get 3 in the parental lines).
One example is the additive by additive interaction between the
B and Pl gene that can result in the overdominant expression
of phenotypes A1, A2, and Bz1 for red pigmentation rather
than green in maize (Dooner and Robbins, 1991; Springer and
Stupar, 2007). However, this type of balance might be difficult
to be implemented on account of the network comprising
various related traits. Breakthroughs might be made by analyzing
unit traits because they have relatively easier genetic patterns.
Furthermore, the most important thing should be to define
the proportional role of single-trait heterosis from pleiotropic
heterosis (Kaeppler, 2011), namely determining the component
trait contribution to complex traits of heterosis (Robson et al.,
2013). Classification and subdivision to the present traits and new
estimating methods for new traits might be needed.

Conclusion

A hybrid rice population was constructed to investigate the
formation mechanism of heterosis in 13 traits. The results

demonstrated that, based on the hierarchical structure of
complex traits, additive effects from component traits generated
heterosis through multiplicative interactions in rice hybrids.
Furthermore, new breakthroughs might be made by investigating
the mechanism of heterosis in basal component traits.
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