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Protein import into isolated pea
root leucoplasts
Chiung-Chih Chu and Hsou-min Li*

Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan

Leucoplasts are important organelles for the synthesis and storage of starch, lipids and
proteins. However, molecular mechanism of protein import into leucoplasts and how it
differs from that of import into chloroplasts remain unknown. We used pea seedlings
for both chloroplast and leucoplast isolations to compare within the same species. We
further optimized the isolation and import conditions to improve import efficiency and to
permit a quantitative comparison between the two plastid types. The authenticity of the
import was verified using a mitochondrial precursor protein. Our results show that, when
normalized to Toc75, most translocon proteins are less abundant in leucoplasts than in
chloroplasts. A precursor shown to prefer the receptor Toc132 indeed had relatively
more similar import efficiencies between chloroplasts and leucoplasts compared to
precursors that prefer Toc159. Furthermore we found two precursors that exhibited
very high import efficiency into leucoplasts. Their transit peptides may be candidates
for delivering transgenic proteins into leucoplasts and for analyzing motifs important for
leucoplast import.

Keywords: leucoplasts, plastid, root, protein import, translocon

Introduction

Plastids are essential plant organelles responsible for functions ranging from photosynthesis and
biosynthesis of amino acids and fatty acids to assimilation of nitrogen and sulfur (Leister, 2003;
Sakamoto et al., 2008). All plastids are derived from embryonic proplastids and differentiate
into different functional types in different tissues, for example chloroplasts in green tissues for
photosynthesis, chromoplasts in petals and fruits for carotenoid pigment accumulation, and
leucoplasts in non-green tissues for nutrient storage (Wise, 2006). To perform these specific
functions, different plastid types require different proteins (Kleffmann et al., 2007; Brautigam and
Weber, 2009; Barsan et al., 2012).

Although plastids have their own genome, most plastid proteins are encoded by the nuclear
genome and synthesized in the cytosol as a larger precursor with an N-terminal extension called
the transit peptide. Almost all of our current understanding of the molecular mechanism of
plastid protein import is derived from studies with chloroplasts. Import across the chloroplast
envelope membranes is mediated by the TOC and TIC (translocon at the outer/inner envelope
membrane of chloroplasts) machinery. More than fifteen TOC and TIC components have been
identified. Among them, Toc159 and Toc34 are receptors mediating the initial binding of precursor
proteins to chloroplasts. Toc75 functions as the channel for protein translocation across the outer
membrane. Major components of the TIC machinery includes Tic110 and the 1-MDa channel
complex containing Tic20, Tic56, Tic100, and Tic214. Tic110 functions as the stromal site receptor
for transit peptides and to act as a scaffold for tethering other translocon components located in the
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stroma. Hsp93, Hsp90C, and cpHsc70 are three chaperone
motors important for the translocation of proteins into the
stroma. Tic40 is a co-chaperone coordinating the actions of
Tic110 and Hsp93 (for reviews see Li and Chiu, 2010; Shi and
Theg, 2013; Paila et al., 2015).

The Arabidopsis Toc159 proteins are encoded by a four-gene
family: Toc159, Toc132, Toc120, and Toc90. Toc159 and
Toc132 are the major isoforms, with Toc90 and Toc120
as their functional redundant homologs, respectively. Toc159
preferentially binds transit peptides of photosynthetic proteins
while Toc132 seems to prefer transit peptides of housekeeping
proteins. Therefore, even though their substrate preference is
not absolute, it is generally thought that Toc159 is the major
receptor for photosynthetic proteins while Toc132 is important
in mediating the import of non-photosynthetic housekeeping
proteins into chloroplasts (Bauer et al., 2002; Ivanova et al., 2004;
Kubis et al., 2004; Smith et al., 2004; Inoue et al., 2010; Bischof
et al., 2011).

Leucoplasts are colorless, non-pigment-containing plastids.
They are usually found in storage tissues and include the
starch-storing amyloplasts, oil- and lipid-storing elaioplasts
and protein-storing proteinoplasts (Wise, 2006). Most grain-
and root-type food crops use leucoplasts to synthesize and
store the nutrients that are used to feed the majority of the
world population. However, despite the economic importance
of leucoplasts, little is known about how proteins are imported
into leucoplasts. It has been speculated that leucoplasts may
use a similar basic import mechanism to that of chloroplasts
(Jarvis and Lopez-Juez, 2013) but leucoplasts clearly have a
preference for importing certain non-photosynthetic proteins
(Wan et al., 1996; Yan et al., 2006; Primavesi et al., 2008).
For example, only the transit peptide of the non-photosynthetic
ferredoxin III and FtsZ precursors, but not that of the small
subunit of RuBP carboxylase precursor (prRBCS), directs the
import of GFP into leucoplasts in endosperms of transgenic
wheat (Primavesi et al., 2008). Using leucoplasts isolated from
caster seeds and chloroplasts isolated from pea leaves and
the ratio of precursor to mature proteins after import as an
assessment of import efficiency, it has been shown that prRBCS
was imported preferentially into chloroplasts, while precursors
to RuBP carboxylase activase (prRCA) and ferredoxin-NADP+-
oxidoreductase (prFNR) were imported equally well into both
plastids (Wan et al., 1996). Using leucoplasts and chloroplasts
isolated from pea roots and leaves, respectively, it has been shown
that prRBCS could not be imported into leucoplasts at all while
two other non-photosynthetic precursors could (Yan et al., 2006).
The plastid selectivity is determined by the transit peptide of each
precursor as swapping of transit peptides resulted in interchanged
plastid preference (Wan et al., 1995, 1996; Yan et al., 2006). It
has been suggested that the different substrate preferences of
Toc159 and Toc132 may also account for the import preferences
of the two plastids (Yan et al., 2006; Li and Teng, 2013). Indeed,
in Arabidopsis, Toc159 is about 15-fold higher in leaves than
in roots while Toc132 is only about fivefold higher in leaves
(Ivanova et al., 2004). Furthermore, the toc159 knockout mutant
has severe import defects in mesophyll-cell chloroplasts (Bauer
et al., 2000) but imports proteins normally into root plastids (Yu

and Li, 2001). On the other hand, toc132 toc120 double mutations
cause structural abnormalities in root plastids (Kubis et al., 2004),
and the toc132 mutant is a root gravitropism mutant (Stanga
et al., 2009), supporting that Toc159 is more important for leaf
chloroplasts and Toc132 is more important for root leucoplasts.

As a first step in characterizing the molecular mechanism
of protein import into leucoplasts, we optimized the in vitro
protein import system of isolated leucoplasts to improve import
efficiency and to permit a more quantitative comparison between
leucoplasts and chloroplasts. We found that leucoplasts have a
different stoichiometry of translocon components compared to
chloroplasts. Precursors we tested fell into at least three different
degrees of preference toward chloroplasts in our in vitro import
system.

Materials and Methods

Plastid Isolation and Plastid Number Counting
Leucoplasts and chloroplasts were prepared from pea seedlings
(Pisum sativum cv. Green Arrow, De Bruyn Seed Co., Zeeland,
MI, USA) grown at 20◦C on vermiculite for 4–5 days in the
dark, and for 7 days under a 12-h photoperiod with a light
intensity of approximately 150 μmol m−2 s−1, respectively.
Leucoplasts were prepared from pea roots as described (Bowsher
et al., 1989) with modifications described below. Approximately
20∼30 g of roots were collected and washed twice with 100 mL
homogenization buffer (50 mM Tricine-KOH, pH 7.9, 330 mM
sorbitol, 1 mM MgCl2, 2 mM EDTA) in the presence of 1%
BSA and reducing agents (2 mM ascorbic acid, 0.1 mM DTT,
and 1.2 mM glutathione). The roots were cut into small pieces
in another 100 mL of the same buffer, and were homogenized
with a domestic blender by two 5-s pulses. The homogenate
was filtered through four layers of Miracloth and centrifuged at
4,000 g for 3 min at 4◦C. The leucoplast pellet was resuspended
with 10 mL of homogenization buffer, underlaid with 10 mL
10% (v/v) PercollTM in TS buffer (50 mM Tricine-KOH, pH 7.9,
330 mM sorbitol), and centrifuged with a swing-bucket rotor at
4,000 g for 5 min at 4◦C. The pellet was first washed with 30 mL
TS buffer and again with 30 mL of import buffer (50 mMHEPES-
KOH, pH 8.0, 330 mM sorbitol), by centrifugation at 4,000 g
at 4◦C for 3 min. The final pellet was gently resuspended with
300 μL of import buffer.

Chloroplast isolation from pea leaves was conducted as
described (Perry et al., 1991) except 2 mM ascorbic acid, 0.1 mM
DTT, and 1.2 mM glutathione were added to the grinding buffer
used for homogenization. Isolated chloroplasts were adjusted to
1 mg chlorophyll mL−1 in import buffer.

To count the plastid number and estimate the plastid size,
fractions of isolated leucoplast and chloroplast suspensions were
counted in the Multisizer 3 Coulter Counter (Beckman Coulter)
using a 30 μm-aperture tube. The same plastid preparations
were subjected to BCA assays (Thermo) to determine the
protein concentration. It is noted here that the sensitivity of the
BCA assay is protein dependent (Smith et al., 1985) and since
leucoplasts and chloroplasts have different protein compositions,
which may affect the results of the determination. However, the

Frontiers in Plant Science | www.frontiersin.org 2 September 2015 | Volume 6 | Article 690

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Chu and Li Protein import into leucoplasts

assay should still be able to provide an estimation of the amount
of proteins in the two plastids.

Plasmid Construction and Translation of
Precursors
The coding region of soybean mitochondrial alternative oxidase
precursor (prAOX, accession number X68702) was amplified
from a soybean leaf cDNA pool by the forward primer AOX-
F1-XhoI (5′-gactcgagatgatgatgatgatgagccgc-3′) and the reverse
primer AOX-R1-SalI (5′-gcgtcgacttagtgataaccaattggagcagc-3′ ).
The PCR products were digested with XhoI and SalI and
cloned into the XhoI/SalI site of pSP72. The sequence of
prAOX was confirmed by sequencing and the plasmid was
named pSP72-prAOX. The expression of prAOX was under
the control of the SP6 promoter. Plasmids encoding prRBCS,
pea prTic40, prFd-protAHis (Smith et al., 2004), prPDH E1α
(At1g01090), and prCpn10-2 (At3g60210) have been described
(Teng et al., 2012). [35S]Met-labeled prPDH E1α was generated
by in vitro transcription for synthesizing RNA followed by in vitro
translation using the rabbit reticulocyte lysate system (Promega).
All other precursors were synthesized using the TNT Coupled
Wheat Germ Extract or Reticulocyte Lysate system (Promega).

Protein Import and Post-Import Analyses
To compare import efficiency on an equal protein basis, 18 μL
[35S]Met-labeled precursors were incubated with isolated plastids
equivalent to 500 μg proteins in the presence of 3 mM ATP in
import buffer in a final volume of 200 μL. To compare import
efficiency on an equal plastid number basis, 113.67 μg leucoplast
proteins and 500 μg chloroplast proteins were used instead.
The import reactions were carried out at room temperature for
25 min and stopped by transferring to a new tube containing
1 mL cold import buffer. The plastids were pelleted at 3,000 g
at 4◦C for 3 min and resuspended in 200 μL import buffer. The
leucoplast suspensions were underlaid with 1 mL 10% PercollTM
(v/v) in import buffer and the chloroplast suspensions were laid
on top of a 40% PercollTM (v/v) cushion and centrifuged in a
swinging-bucket rotor at 2,900 g and 4◦C for 6 min to isolate
intact plastids. The plastids were washed once with import buffer.
Thermolysin treatments of in vitro translation products and
leucoplasts after import were performed as described (Perry et al.,
1991), and intact leucoplasts were re-isolated as described above.
Protein concentrations of the plastid samples were measured
with the BCA kit (Thermo). Samples were analyzed by SDS-
PAGE. Quantification of gel bands was performed using the Fuji
FLA5000 PhosphorImager (Fujifilm).

Isolation of cDNA Encoding Partial Pea
Toc132AG and Generation of Antibodies
against Pea Toc132AG and OEP24
Because the cDNA sequence of pea Toc132 was not available
in the NCBI database, the Toc132 cDNA sequences from
two closely related species, Medicago truncatula and Glycine
max, were aligned and two highly conserved regions in the
acidic domain (A domain) and GTPase domain (G domain)
were chosen to design primers (Supplementary Figure
S1A) for cloning. First-stand cDNA was synthesized from

FIGURE 1 | Increasing BSA concentration and adding reducing agents
to the homogenization buffer increases the import of prRBCS and
prTic40 into leucoplasts. (A) Roots of 4-days-old pea seedlings grown in
the dark were harvested and homogenized in homogenization buffer (see
Materials and Methods) containing 0.1, 0.5, or 1% BSA. Isolated leucoplasts
(500 μg protein) were then incubated with in vitro-translated
[35S]Met-prRBCS or [35S]Met-prTic40 under import conditions for 25 min.
After import, intact leucoplasts were re-isolated and analyzed by SDS-PAGE.
The gels were stained with Coomassie blue and dried for fluorography. Twenty
micrograms of proteins were loaded. Tr, 1% equivalent of the
in vitro-translated proteins used in each import reaction. (B) Same as (A)
except the homogenization buffer was supplemented with 1% BSA, and with
or without 2 mM ascorbic acid, 0.1 mM DTT, and 1.2 mM glutathione (ADG).
pr, precursor form; int, imported intermediate form; m, imported mature form.

Frontiers in Plant Science | www.frontiersin.org 3 September 2015 | Volume 6 | Article 690

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Chu and Li Protein import into leucoplasts

TABLE 1 | The sizes and protein contents of the isolated plastids.

Plastid type Plastid size
(μm)

Protein content
(pg/plastid)

Chloroplasts
(7-days-old light-grown leaves)

3.24 ± 0.23 8.13 ± 1.42

Leucoplasts
(4-days-old dark-grown roots)

1.81 ± 0.21 1.85 ± 0.63

total pea-root RNA and used as templates to amplify the
partial coding region of pea Toc132 A and G domains with
the degenerate forward primer psToc132A-NdeI-F2 (5′-
gggcatatggawsttggagatgacaagatagagg-3′) and the reverse primer
psToc132G-XhoI-R1 (5′-gggctcgagtgcacttgcacgatcaaagctaaa-3′ ).
The sequence without the primer regions (Supplementary Figure
S1B) has been submitted to the GenBank and received the
accession number KT033462. The PCR products were cloned
into the pCRTM-Blunt II-TOPOR© (Invitrogen) to generate
pTOPO-psToc132AG. After confirming the sequence, the
DNA fragment of psToc132AG was excised by NdeI and
XhoI from pTOPO-psToc132AG. Because the psToc132AG
cDNA fragment has an endogenous XhoI site, only the longer
psToc132 DNA fragment, in which XhoI cut at the XhoI site
on the vector backbone, was subcloned into the NdeI and XhoI
site of pET22b (Invitrogen) to generate the plasmid pET22b-
psToc132AG-His6. The sequence was confirmed again and
the pET22b-psToc132AG-His6 plasmid was transformed into
the Escherichia coli strain BL21 (DE3) for protein induction.
Protein expression of psToc132AG-His6 was induced by 1 mM
IPTG at 37◦C for 3 h, purified by TALON resins (CLONTECH
Laboratories) with 50 mM imidazole, dialyzed with 50 mM
Tris-HCl, pH 8.0, concentrated by Amicon Ultra-15 (Millipore)
and used to raise the anti-Toc132 antibodies used in this study.
During preparing the manuscript, another clone encoding
a partial pea Toc132AG domains has been reported (Chang
et al., 2014) and the amino acid sequence is different from the
psToc132AG clone we obtained. Full-length pea OEP24 cDNA
(EMBL accession number AJ001009) was amplified from a first-
strand cDNA library of pea leaves and cloned into the NdeI/XhoI
site of pET22b. OEP24 protein was then expressed and purified
from E. coli and used for antibody production. Antibodies
against other TOC and TIC proteins were prepared as described
(Chou et al., 2003; Tu et al., 2004). Antibodies against cpHsc70
and Lhcb1 were purchased from Agrisera (AS08 348 and AS01
004, respectively), and the antibody against Arabidopsis plastid
PGI was a gift of Dr. Jychian Chen.

Results

Optimization of the Protocol for Leucoplast
Isolation
Several reports have described protein import into isolated
leucoplasts (Wan et al., 1996; Yan et al., 2006). We first followed
an established protocol to isolate leucoplasts from roots of pea
seedlings grown for 4–5 days in the dark (Bowsher et al., 1989).
Leucoplasts isolated from pea roots have been studied extensively.

FIGURE 2 | Reducing the leucoplast concentration in import reactions
increases import efficiency. (A) Isolated leucoplasts (500 or 113.67 μg of
proteins) and chloroplasts (500 μg of proteins) were incubated under import
conditions with 18 μL in vitro-translated [35S]Met-prRBCS or
[35S]Met-prTic40 and 3 mM ATP in import buffer in a final volume of 200 μL
for 25 min. After import, intact leucoplasts and chloroplasts were re-isolated
and analyzed by SDS-PAGE. The gels were stained with Coomassie blue and
dried for fluorography. 4% of the plastids in each import reaction were loaded.
Tr, 1% equivalent of the in vitro-translated proteins used in each import
reaction. Cpt, chloroplasts; Leu, leucoplasts; pr, precursor form; int, imported
intermediate form; m, imported mature form. (B) Imported proteins in
experiments as shown in (A) were quantified and the import efficiencies were
calculated. Import efficiency was defined as % of [35S]-labeled precursor
proteins used that were found as imported mature or intermediate proteins in
re-isolated plastids. The values have been corrected for the difference in
number of methionine residues among the various forms. Data shown are
mean ± SD of three independent experiments, ∗p < 0.05 (Student’s t-test).
The p-value of 500 μg Cpt versus 113.67 μg Leu of prTic40 import is 0.095.

They are on average 2.5 μm in diameter and contain starch
grains, plastoglobuli, and also a few lamellae-type structures
(Emes and England, 1986; Bowsher et al., 1989). When we tested
the import of several precursor proteins from our collection, we
found only prTic40 was imported and only to a small degree (data
not shown).We therefore sought to improve the import efficiency
of isolated leucoplasts. Because EDTA was reported to have a
protective effect on recovering intact chloroplasts (Somerville
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FIGURE 3 | The mitochondrial precursor protein prAOX was not imported into isolated leucoplasts. Isolated leucoplasts (113.67 μg) were incubated with
in vitro-translated [35S]Met-prAOX, [35S]Met-prRBCS, or [35S]Met-prTic40 under import conditions for 25 min. After import, the leucoplasts were treated with
0.2 mg/mL thermolysin for 30 min on ice, and intact leucoplasts were re-isolated and analyzed by SDS-PAGE. 4% of the plastids in each import reaction were
loaded. The gels were stained with Coomassie blue and dried for fluorography. Tr, 1% equivalent of the in vitro-translated proteins used in each import reaction. Leu,
leucoplasts; pr, precursor form; int, imported intermediate form; m, imported mature form.

and Ogren, 1981) and BSA may protect plastids during isolation
by limiting the activity of proteases (Seigneurin-Berny et al.,
2008), we increased the concentrations of EDTA and BSA in the
homogenization buffer. As shown in Figure 1A, the amount of
processed Tic40 slightly increased and precursors associated with
the leucoplasts slightly decreased with higher concentrations of
BSA (Figure 1A, compare lanes 6–8). Precursors of Tic40 are
processed twice upon import into chloroplasts, generating an
intermediate and a mature form (Li and Schnell, 2006; Tripp
et al., 2007). The leucoplast imported prTic40 we observed was
mostly the intermediate form (Figure 1A, int). We also noticed
that poor import occasionally occurred concomitant with dark
brown leucoplast pellets. We surmised that some oxidative stress
might have occurred during the isolation. It has been shown
that pea roots contain a higher phenol oxidase activity than
do pea leaves (Henry et al., 1979) and it is also possible that
isolated leucoplasts are more sensitive to oxidative damages than
do isolated chloroplasts. We therefore added reducing agents
(2 mM ascorbic acid, 0.1 mM DTT, and 1.2 mM glutathione,
designated as ADG in Figure 1B) to the homogenization buffer
(Schulz et al., 2004; Aronsson and Jarvis, 2011). Indeed after
adding the reducing agents, we no longer observed dark-brown
leucoplast pellets and the import efficiency of prTic40 further
increased (Figure 1B, lanes 5–6). Under the modified conditions,
a very small amount of import could even be detected for prRBCS
(Figure 1B, lane 3).

Reducing the Number of Leucoplasts in Import
Reactions Increases Import Efficiency
After optimizing the leucoplast isolation conditions, we next
tried to compare the import behaviors of various precursors

into leucoplasts and chloroplasts. An equal amount of total
proteins (Yan et al., 2006) or an equal number of plastids (Wan
et al., 1996) was used as the basis when comparing import
efficiencies of different plastids. To determine the number of
plastids, the isolated leucoplasts and chloroplasts were counted
using the Multisizer 3 Coulter Counter (Beckman Coulter).
We used chloroplasts isolated from 7-days-old seedlings for
robust import and to minimize the age difference between the
leucoplast and chloroplast samples. From three independent
preparations of leucoplasts and chloroplasts, the average size of
the isolated leucoplasts and chloroplasts was estimated to be
1.81 ± 0.21 μm and 3.24 ± 0.23 μm, respectively (Table 1).
The same plastid preparations were then used for protein
concentration determination and the average protein content
per plastid was calculated to be 1.85 ± 0.63 and 8.13 ± 1.42
pg/plastid for leucoplasts and chloroplasts, respectively (Table 1).
We then used protein content as an estimate of plastid numbers
throughout our analyses. For example, 500 μg of plastid proteins
would represent approximately 2.71 × 108 leucoplasts and
6.15 × 107 chloroplasts. For import into chloroplasts, we used
500 μg of chloroplasts (∼6.15 × 107 plastids) in a 200 μL
import reaction. We then either used 500 μg of leucoplasts for
comparison on an equal protein basis or 113.67 μg of leucoplasts
(∼6.15 × 107 plastids) for comparison on an equal plastid
number basis. After import, 4% of each import reaction was
analyzed by SDS-PAGE. Interestingly, a lower concentration of
leucoplasts (113.67 μg/reaction) in the import reactions resulted
in a significant increase of prTic40 import efficiency (Figure 2A,
compare lanes 6–8), compared to when 500 μg/reaction were
used, which was the amount we used for Figure 1. Using this
lower leucoplast input, the import efficiency of prTic40 was
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FIGURE 4 | Translocon protein abundance in leucoplasts and
chloroplasts compared on an equal number of plastids basis. Various
amounts of isolated leucoplasts and chloroplasts were analyzed by
SDS-PAGE and immunoblotting with antibodies indicated at left. The amount
of protein loaded in each lane and the equivalent number of plastids are
indicated above the lanes.

almost equal to its efficiency into chloroplasts and most of the
imported proteins were in the mature form (Figure 2A, lanes
7 and 8). The import efficiency of prRBCS into leucoplasts was
also slightly increased when a lower amount of leucoplasts was
used, but the efficiency was still much lower than its efficiency
into chloroplasts (Figures 2A, lanes 2–4, 2B). From these data,
we decided to compare the import of different precursors into
leucoplasts and chloroplasts on an equal plastid number basis in
all subsequent analyses.

Mitochondrial Precursor prAOX is not
Imported into Isolated Leucoplasts
The leucoplast preparations were reported to have about 1%
contamination of mitochondria (Emes and England, 1986;
Bowsher et al., 1989). Furthermore, it has been reported

that chloroplast precursors can be imported into isolated pea
mitochondria (Rudhe et al., 2002). To verify that the import we
observed was not due to mis-sorting of plastid precursors to the
mitochondria in the leucoplast preparation, we isolated cDNA
clone encoding the soybean mitochondrial alternative oxidase
precursor protein (prAOX), which is one of the most widely used
precursor proteins for studying protein import into isolated plant
mitochondria. The precursor form of prAOX is about 36 kDa.
After being imported into isolated mitochondria, it is processed
to a 32-kDa mature protein, which is protected exogenously
added protease (Whelan et al., 1995; Rudhe et al., 2002; Lister
et al., 2007). [35S]Met-labeled prAOX was synthesized and used
in the leucoplast import assays as prTic40 and prRBCS. If the
import we observed was due to import of prRBCS and prTic40
into the mitochondria in the leucoplast preparation, then a
mitochondrial precursor like prAOX should import equally well
or even better. As shown in Figure 3, although some prAOX
signals were detected after import, these signals were degraded
after treating the leucoplasts with thermolysin. No imported
mature protein was detected even after over-exposure of the
fluorograph (Figure 3, lanes 3 and 4). In contrast, both prRBCS
and prTic40 produced mature proteins after import, and these
mature proteins were thermolysin resistant, indicating that they
were inside the leucoplasts (Figure 3, lanes 7, 8, 11, and 12).

Most TOC/TIC Components are more
Abundant in Chloroplasts than in Leucoplasts
To investigate the translocon composition of leucoplasts,
representative translocon proteins were analyzed by
immunoblots. We used phosphoglucoisomerase (PGI), a plastid
enzyme in the starch biosynthesis pathway and expressed in both
leaves and roots, as a non-translocon stromal reference protein.
We also used OEP24, a non-translocon plastid outer membrane
protein expressed in both leaves and roots (Pohlmeyer et al.,
1998), for a general assessment of the amount of the envelope
proteins. When compared on the basis of an equal number
of plastids, the amount of PGI in chloroplasts was similar or
slightly lower than that in leucoplasts (Figure 4). The amount
of OEP24 and the translocon proteins Toc75 and Toc34 was
about 1.5x to 2.5x higher in chloroplasts than in leucoplasts. In
comparison, abundances of Toc132, Tic110, Hsp93, cpHsc70,
and Tic40 were much higher in chloroplasts. Toc159 is known
to be extremely sensitive to protease and is easily degraded
during plastid isolation (Bolter et al., 1998). In chloroplasts,
we detected, in addition to the full-length Toc159, at least one
lower molecular weight band that is most likely a partially
degraded Toc159 fragments. We could not detect any full-length
Toc159 either in our leucoplast preparation (Figure 4) or when
roots were directly ground up in SDS-PAGE sample buffer in
liquid nitrogen (data not shown). Very low amounts of smaller
fragments were detected in leucoplasts (data not shown) but our
antibody was not specific enough to exclude cross-reactivity with
other Toc159 members. Nonetheless, even if Toc159 is present
in the leucoplasts of pea roots, it is much less abundant than in
chloroplasts. In addition, no chlorophyll a/b binding protein of
photosystem II (Lhcb1) could be detected, suggesting that our
leucoplasts were not contaminated with chloroplasts.
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FIGURE 5 | Precursor proteins show different plastid preferences. (A) Isolated leucoplasts (113.67 μg protein) and chloroplasts (500 μg protein) were
incubated with various in vitro-translated [35S]Met-precursors under import conditions for 25 min. After import, intact leucoplasts and chloroplasts were re-isolated
and analyzed by SDS-PAGE. The gels were stained with Coomassie blue and dried for fluorography. 4% of the plastids in each import reaction were loaded. Tr, 1%
(for prFd-protAHis and prPDH E1α) or 1.2% (for prCpn10-2) equivalent of the in vitro-translated proteins used in each import reaction. Cpt, chloroplasts; Leu,
leucoplasts; pr, precursor form; m, imported mature form. (B) Imported mature proteins in experiments as shown in (A) were quantified and the import efficiencies
were calculated. Import efficiency was defined as % of [35S]-labeled precursor proteins used that were found as mature proteins in re-isolated plastids. The values
have been corrected for the difference in number of methionine residues between the precursor and mature forms. Data shown are mean ± SD of three independent
experiments, ∗p < 0.05, ∗∗p < 0.001 and the p-value of prCpn10-2 Cpt versus Leu is 0.67 (Student’s t-test).

Import of prFd-protAHis, prPDH E1α, and
prCpn10-2 into Leucoplasts
We had determined that pea root leucoplasts had a lower
amount of Toc132 and almost no Toc159. If the interactions with
these Toc159 family members contribute to plastid preference,
a precursor that prefers Toc159 should import much better into
chloroplasts, while a precursor that prefers Toc132 should exhibit
a smaller difference. Our data with prRBCS indeed support
this (Figure 2B). We further tested another two precursors that
have been directly demonstrated to select between Toc159 and
Toc132: the transit peptide of ferredoxin precursor (prFd) prefers
Toc159 while the transit peptide of pyruvate dehydrogenase E1α
subunit precursor (prPDH E1α) prefers Toc132 (Ivanova et al.,
2004; Smith et al., 2004; Inoue et al., 2010). For prFd, we used
the construct prFd-protAHis , which contains ferredoxin transit
peptide fused to Staphylococcal protein A (protA; Smith et al.,
2004). As shown in Figure 5, prFd-protAHis imported well into
chloroplasts but was nearly undetectable in leucoplasts, similar
to the results for prRBCS (Figure 2). In comparison, although
prPDH E1α also imported better into chloroplasts, its import was
at least half as strong in leucoplasts in our in vitro system.

We further tested several additional precursors but did not
find any precursors with higher import efficiency into leucoplasts
than into chloroplasts in our system. However, we did find
several precursors similar to prTic40 that exhibited no import
bias between leucoplasts and chloroplasts in our in vitro system.
One example was the precursor of chaperonin 10-2 (prCpn10-2),
which imported very well into both chloroplasts and leucoplasts
(Figure 5B). The import pathways prCpn10-2 and prTic40 used
may be partially different from those of prRBCS and prPDH E1α.

Discussion

We performed initial quantifications of translocon components
of pea root leucoplasts. Considering that the diameter of
chloroplasts we used is about 1.7 times that of leucoplasts,
the chloroplast surface area should be about three times that
of leucoplasts. However, the amount of chloroplast Toc75
and Toc34 is only about twice that in leucoplasts. Therefore,
the density of Toc75 and Toc34 is not necessarily higher in
chloroplasts. If the non-translocon protein OEP24 is present in
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about the same density in chloroplasts and leucoplasts, then
the density of Toc75 and Toc34 in the two plastids would
also be similar. On the other hand, other essential translocon
components, like Tic110, Hsp93 and cpHsc70, are clearly less
abundant in leucoplasts. We did not analyze the amount of
other essential components like Tic20 and Tic56 (Kikuchi et al.,
2013; Köhler et al., 2015) due to unavailability of antibodies
recognizing the pea orthologous well and their amounts in
leucoplasts remain to be determined. However, based on our
current data, it is likely that similar numbers of Toc75 and Toc34
subunits are coupled with lower numbers of other translocon
components in leucoplasts. This composition may reflect that,
under normal physiological conditions, the protein import
demand of leucoplasts is not as high as young chloroplasts. Once
precursors are bound to the TOC complex, leucoplasts can afford
a lower import rate than chloroplasts.

It has been proposed that the precursor selectivity between
leucoplasts and chloroplasts may also be due to the distinct
substrate preference of Toc159 versus Toc132 (Yan et al., 2006;
Li and Teng, 2013). We therefore tested the three precursors
that have been directly shown to prefer one receptor to the
other. In agreement with the much higher abundance of
Toc159 in leaf chloroplasts, prRBCS and prFd-protAHis, which
show a preference for Toc159, also imported much better into
chloroplasts. Toc132 is still more abundant in chloroplasts but
is present in leucoplasts at a reasonable amount. And indeed,
prPDH E1α, which shows a preference for Toc132, had a
leucoplast import efficiency about 50% that of chloroplasts in
our current in vitro system. Unfortunately the transit peptide
of prPDH E1α is the only transit peptide that has been shown
biochemically to prefer Toc132 over Toc159. The importance of
Toc132 in leucoplast import will need to be tested with more
precursors with clear preferences for Toc132.

We did not find any precursors with higher import efficiency
into leucoplasts than into chloroplasts in our system. It is possible
that our leucoplast in vitro import system is still not as optimized
as that of chloroplasts. However, compared to prRBCS/prFd
and prPDH E1α, we found a third group of precursors that
have similar import efficiencies into both plastids in our current
in vitro system. Previous reports have indicated that prFNR,
prRCA and the precursor of leucoplast pyruvate kinase also
imported equally well into the two plastids (Wan et al., 1995,
1996). Although in those reports leucoplasts and chloroplasts
were isolated from different species, it is likely that these
precursors share some import characteristics with prTic40 and
prCpn10-2 that we analyzed here. Unlike precursors that clearly
prefer Toc159 or Toc132, the import of these precursors did
not decline in leucoplasts. They may use some novel component
present in similar amounts in the two plastids or they may simply
bypass the need for the Toc159 family protein and use Toc34 and

Toc75 directly. However, it is also possible that these precursors
import into leucoplast through distinct pathways. It would be
interesting to further study their import mechanism and identify
the motifs in their transit peptides that confer efficient leucoplast
import.

The transit peptide of prRBCS is the most widely used
transit peptide for directing passenger proteins into plastids
in transgenic plants, even when the passenger proteins were
meant for non-green plastids like leucoplasts. For example, the
prRBCS transit peptide was used to deliver the bacterial carotene
desaturase into rice grain leucoplasts for the development of the
Golden Rice (Ye et al., 2000; Paine et al., 2005). As shown here and
other reports (Wan et al., 1996; Yan et al., 2006; Primavesi et al.,
2008), the import efficiency of this transit peptide into leucoplasts
is rather poor. The precursors that exhibited equally high
efficiency into both chloroplasts and leucoplasts in our in vitro
system, like prTic40 and prCpn10-2, offer promising potential
that their transit peptides can confer better import of passenger
proteins in transgenic plant leucoplasts than the prRBCS transit
peptide. They could be valuable tools in manipulations of crops
in which leucoplasts provide the major nutrient source.
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