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Glutathione (GSH) and ascorbate (ASA) are associated with the abscisic acid

(ABA)-induced abiotic tolerance in higher plant, however, its molecular mechanism

remains obscure. In this study, exogenous application (10µM) of ABA significantly

increased the tolerance of seedlings of common wheat (Triticum aestivum L.)

suffering from 5 days of 15% polyethylene glycol (PEG)-stimulated drought stress, as

demonstrated by increased shoot lengths and shoot and root dry weights, while showing

decreased content of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Under

drought stress conditions, ABA markedly increased content of GSH and ASA in both

leaves and roots of ABA-treated plants. Temporal and spatial expression patterns of

eight genes encoding ASA and GSH synthesis-related enzymes were measured using

quantitative real-time reverse transcription polymerase chain reaction (qPCR). The results

showed that ABA temporally regulated the transcript levels of genes encoding ASA-GSH

cycle enzymes. Moreover, these genes exhibited differential expression patterns between

the root and leaf organs of ABA-treated wheat seedlings during drought stress.

These results implied that exogenous ABA increased the levels of GSH and ASA in

drought-stressed wheat seedlings in time- and organ-specific manners. Moreover, the

transcriptional profiles of ASA-GSH synthesis-related enzyme genes in the leaf tissue

were compared between ABA- and salicylic acid (SA)-treated wheat seedlings under

PEG-stimulated drought stress, suggesting that they increased the content of ASA and

GSH by differentially regulating expression levels of ASA-GSH synthesis enzyme genes.

Our results increase our understanding of the molecular mechanism of ABA-induced

drought tolerance in higher plants.
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Introduction

It is known that biotic and abiotic stresses (including drought)
induces the generation of reactive oxygen species (ROS), such
as the superoxide radical (O·

2) and hydrogen peroxide (H2O2)
(Liu et al., 2009; Borges et al., 2014). The accumulation of ROS
damages lipids and proteins, results in cell death, and inhibits
plant growth (Li et al., 2011). To alleviate ROS accumulation
under stress conditions, both enzymatic and non-enzymatic
antioxidants are present in plants. The enzymatic antioxidants
include superoxide dismutase (SOD), catalase (CAT), glutathione
reductase (GR), and ascorbate peroxidase (APX) (Asada, 1992),
while the non-enzymatic antioxidants include glutathione (GSH)
and ascorbate (ASA) (Li et al., 2011). The SOD catalyzes the
dismutation of O·

2 to O2 and H2O2, which is subsequently
reduced to H2O and O2 by CAT, APX, GR, etc. (Asada, 1992).
ASA andGSH function as cofactors of enzymes of the antioxidant
pathways, both can also directly quench ROS (Hernandez et al.,
2001; Hossain et al., 2012).

The plant hormone abscisic acid (ABA) regulates many
important plant developmental processes and is known to induce
tolerance to various abiotic stresses; e.g., drought, salt, and
low temperature, suggesting that it has significant agronomic
potential (Giraudat et al., 1994). The involvement of ABA in
mediating drought stress has been extensively explored, and
many studies have examined the mechanism of ABA action at
the physiological and molecular levels (Ferrandino and Lovisolo,
2014), and their findings have already been reviewed (Verslues
and Zhu, 2007; Chinnusamy et al., 2008; Mehrotra et al., 2014).
Increased levels of endogenous ABA have been reported in many
plant species under abiotic stress, such as drought stress (Aimar
et al., 2014), and exogenous ABA decreases ROS accumulation
by inducing activities or expression levels of many antioxidative
enzymes, resulting in enhanced abiotic tolerance, although
the data supporting this hypothesis remain inconsistent. For
instance, application of exogenous ABA in drought-stressed
kiwifruit plant significantly enhances the activities of guaiacol
peroxidase (POD), CAT, SOD, and APX (Wang et al., 2011).
In drought-stressed Cotinus coggygia, however, ABA decreases
activities of CAT, although it also markedly increases activities of
SOD and POD (Li et al., 2010).

Moreover, exogenous ABA can increase content of ASA and
GSH and enhance plant tolerance to abiotic stresses (Jiang
and Zhang, 2002; Liu et al., 2011). To our knowledge, the
molecular mechanism of ASA and GSH biosynthesis regulated
by exogenous ABA application has not been reported. Wheat is
an important drought-sensitive cereal crop whose growth and
grain yield are severely affected by drought stress (Doyle and
Fischer, 1979; Gao et al., 2011). Polyethylene glycol (PEG) 6000
is often used to stimulate drought stress in higher plants (Xiong
et al., 2010; Benesova et al., 2012). In this study, transcript levels
of the genes encoding ASA-GSH cycle enzymes were measured

Abbreviations: ABA, abscisic acid; ASA, ascorbate; DHAR, dehydroascorbate
reductase; GPX, glutathione peroxidase; GR, glutathione reductase; GS,
glutathione synthetase; GSH, glutathione; GST, glutathione-S-transferase; H2O2,
hydrogen peroxide; MDA, malondialdehyde; MDHAR, monodehydroascorbate
reductase; PEG, polyethylene-glycol; SA, salicylic acid.

using qPCR in ABA-treated wheat seedlings suffering from PEG-
stimulated drought stress to help us further understand the
molecular mechanism of ABA-enhanced drought tolerance in
higher plants.

Materials and Methods

Plant Materials and Growth Conditions
Seeds of the common wheat (Triticum aestivum L.) cv. Yumai
34 were sterilized with 0.01% (m/v) HgCl2 followed by washing
with distilled water. Sterilized seeds were grown hydroponically
in full-strength Hoagland’s solution (Elberse et al., 2003) in glass
dishes (diameter 15 cm) in a FPG-300C-30D incubator (Ningbo
Laifu Technology Co., Beijing, China) under a 14-h photoperiod,
irradiance of 250µmol m−2 s−1, day/night temperature of
25/15◦C, and relative humidity of 60/75%. Each dish contained
approximately 60 seedlings. After 2 weeks seedlings showed
approximately three leaves, and two dishes were grown under
the above conditions with fresh Hoagland medium (control,
CK), two dishes were incubated with fresh Hoagland medium
supplemented with PEG-6000 (15%) solution for drought
treatment, and another two dishes were transferred to Hoagland
solution supplemented with PEG-6000 (15%) plus 10µM ABA
(Wei et al., 2009) (PEG and ABA treatment, PEG + ABA).
Solution (100mL) was exchanged every day in all treatments. The
uppermost fully expanded leaves and the longest roots of wheat
seedlings were separately collected at 0, 1, 2, 3, 4, and 5 days after
initiating drought stress, and were immediately frozen in liquid
nitrogen and stored at−80◦C before assessment of physiological
parameters and gene expression profiles.

Plant Measurements and Analysis
Growth parameters (plant height, root length, fresh and dry
weight of root and leaf tissues) were recorded every day during
the stress period. Ten individual wheat seedlings were randomly
harvested from each dish. Plant heights and dry and fresh weights
of roots and leaves were measured and calculated.

Assays of Malondialdehyde (MDA) and H2O2

Content in Leaves and Roots of Wheat Seedlings
Lipid peroxidation was determined by estimating the MDA
content using the method described by Zheng et al. (2008). The
content of H2O2 was measured by monitoring the absorbance of
the titanium-peroxidee complex at 390 nm, following themethod
of Jessup et al. (1994).

Assays of GSH and ASA Content
The content of GSH and ASA was measured according to
the methods of Kampfenkel et al. (1995) and Smith (1985),
respectively.

Determination of the Transcript Levels of the
Eight Genes Encoding ASA–GSH Cycle Enzymes
by qPCR
The genes encoding ASA-GSH synthesis-related enzymes
are illustrated in Supplementary Figure S1. These genes are
glutathione-S-transferase 1 (GST1), glutathione-S-transferase
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2 (GST2), glutathione peroxidase 1 (GPX1), phospholipid
hydroperoxide glutathione peroxidase 2 (GPX2), glutathione
reductase (GR), dehydroascorbate reductase (DHAR),
monodehydroascorbate reductase (MDHAR), and glutathione
synthetase (GS) (Chen et al., 2011), and the genes encoding these
enzymes were previously isolated from common wheat in our
laboratory (Li et al., 2013). Total RNA was extracted using the
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s instructions and treated with RNase-free DNase
I (Takara Biotechnology [Dalian] Co., Ltd., Dalian, China)
to remove contaminating genomic DNA. First-strand cDNAs
were synthesized from 2µg of total RNA using Super-Script II
reverse transcriptase (Invitrogen, Carlsbad, CA, USA). qPCR
was performed using a SYBR Premix Ex Taq (Perfect Real Time)
kit (Takara Biotechnology [Dalian] Co., Ltd.) on a Light Cycler
480 Real-Time PCR System (Roche Diagnostics Ltd., West
Sussex, UK) according to the manufacturer’s instructions. Each
reaction (20µL) comprised 10µL of SYBR Green Supermix
(2×), 1µL of diluted cDNA, and 0.5µL of forward and reserve
primers. The relative transcript levels were calculated using the
2−11Ct method, with the wheat β-actin (GenBank Accession
no. AB181991) and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (GenBank Accession no. EF592180) genes as two
internal controls. All primers are listed in Supplementary Table
S1. Each data point was expressed as the average ± SD of three
independent replicates.

Statistical Analysis
Data were analyzed statistically using one-way analysis of
variance and Duncan’s multiple range tests to determine
significant differences among group means. Significant
differences from the control values were determined at P < 0.05.
All recorded values represent the means of the results of three
replicates.

Results

Effects of Exogenous ABA on Phenotypes and
Growth Parameters of Wheat Seedlings Exposed
to PEG-stimulated Drought-stress Conditions
In the present study, wheat seedlings suffering from 15% PEG-
stimulated drought stress showed time-dependent characteristics
(Figure 1). Wheat seedlings suffering from drought stress
showed no visible changes before 3 days, and then exhibited
significant and deleterious phenotypes, such as curled and wilted
leaves, shorter plant heights, and inhibited growth compared to
control plants (Figure 1). These qualitative phenotypic effects
were confirmed by quantitative analysis (Table 1). However, in
the presence of exogenous 10µM ABA, the effect of drought
stress on wheat seedling growth was significantly abrogated.
This was also demonstrated by the significantly increased plant
heights, fresh and dry shoot weights, and fresh and dry root
weights (Table 1). After 5 days, plant height, shoot fresh weight,
shoot dry weight, root fresh weight, and root dry weight of PEG+

ABA treated wheat seedlings were significantly higher than those
of sole PEG-treated wheat seedlings by 11.4, 21.8, 21.4, 34.9, and

23.1%, respectively. These results showed that ABA improved the
drought tolerance of wheat seedlings.

In this study, we also found that growth of wheat seedlings was
significantly inhibited by 10µM ABA under normal conditions,
which was also confirmed by qualitative and quantitative data
(Figure 1, Table 1, Supplementary Figure S2). We speculated
that changes in transcriptional levels in this treatment may be
associated with wheat growth, and not stress tolerance. In this
study, wheat seedlings treated with 10µM ABA under normal
conditions were not used in further experiments.

MDA and H2O2 Content in Leaves and Roots of
Wheat Seedlings Exposed to PEG-stimulated
Drought Stress Conditions in Response to
Exogenous ABA
MDA and H2O2 content in drought and PEG+ ABA treatments
also increased in a time-dependent manner (Table 2). However,
the MDA and H2O2 content in root and leaf tissues of
PEG + ABA-treated wheat seedlings was significantly lower
than those of solely PEG-treated wheat seedlings after 3 days of
drought (Table 2). After 5 days of drought stress, the MDA and
H2O2 content in root and leaf tissues of PEG + ABA-treated
wheat seedlings were markedly lower than those of sole PEG-
treated wheat seedlings by 8.7 and 31.0%, and 13.3 and 22.6%,
respectively (Table 2). These results indicated that exogenous
ABA application alleviated the accumulation of MDA and H2O2

induced by drought.

Effects of Exogenous ABA on GSH and ASA
Content in Root and Leaf Tissues of Wheat
Seedlings Exposed to PEG-stimulated Drought
Stress Conditions
GSH content increased gradually in both leaf and root tissues
of PEG-treated wheat seedlings after drought stress, and
exogenous ABA application significantly accelerated this increase
(Figures 2A,B). After 5 days of drought stress, GSH content
in both root and leaf tissues of PEG + ABA treated wheat
seedlings was 29.9 and 33.3% higher, respectively, than those in
the tissues of solely PEG-treated wheat seedlings. In contrast,
ASA content in root and leaf tissues of solely PEG-treated wheat
seedlings decreased rapidly with prolonged drought stress, but
ABA application inhibited this effect (Figures 2C,D). After 5
days of drought stress, ASA content of the root and leaf of
PEG + ABA-treated wheat seedlings was 68.5 and 49.7% higher,
respectively, than those in the tissues of solely PEG-treated wheat
seedlings.

Transcript Levels of Genes Encoding Enzymes
Involved in the ASA-GSH Cycle in Leaves and
Roots of Wheat Seedlings Exposed to
PEG-stimulated Drought Stress
GST1, GST2, GPX1, GPX2, GR, DHAR, MDHAR, and GS
transcript levels were measured using qPCR with the Actin gene
as the internal control in leaf and root tissues of wheat seedlings
(Figures 3, 4). Similar results were obtained using GAPDH
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FIGURE 1 | Phenotypic changes of wheat seedlings with exogenous

application of 10 µM ABA under 15% PEG-stimulated drought stress

for 5 days. CK, control; PEG, 15% PEG-6000; PEG + ABA, 15% PEG and

10µM ABA treatment. Three independent biological replications were

performed with two dishes each, and about 60 wheat seedlings were

planted in a dish.

gene as another internal control, as indicated in Supplementary
Figures S3, S4.

In root and leaf tissues of control wheat seedlings, the
expression levels of the above mentioned eight genes encoding
ASA-GSH synthesis-related enzymes remained almost constant
(Figures 3, 4). Under PEG-stimulated drought-stress conditions,
the expression patterns of these eight genes varied in the root

and leaf tissues of wheat seedlings. In roots of PEG-treated
wheat seedlings, GST1 expression was significantly induced at
1 day of stress, decreased rapidly, peaked again at 4 days, and
then slowly decreased after 5 days of PEG-stimulated drought
stress (Figure 3A). GST2, GPX1, GPX2, GR, MDHAR, and GS
genes exhibited similar expression patterns in roots of wheat
seedlings exposed to PEG-stimulated drought stress. Transcript
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TABLE 1 | Effect of exogenous ABA application on growth characteristics of wheat seedlings suffering from PEG-stimulated drought stress for 5 days.

Growth parameters Treatments 0 day 1 day 2 days 3 days 4 days 5 days

Plant height (cm) Control 15.06 ± 0.49 16.14 ± 0.54 17.02 ± 0.35 18.41 ± 0.49 19.35 ± 0.49a 22.15 ± 0.55a

ABA 15.69 ± 0.55 16.34 ± 0.43 17.11 ± 0.39 17.90 ± 0.41b 18.98 ± 0.34b

PEG 15.32 ± 0.58 15.46 ± 0.44 15.94 ± 0.35 16.16 ± 0.40c 16.71 ± 0.38c

PEG + ABA 15.54 ± 0.56 16.01 ± 0.51 16.79 ± 0.38 17.09 ± 0.45b 18.61 ± 0.63b

Shoot fresh weight (g·plant−1 ) Control 0.161 ± 0.019 0.217 ± 0.016 0.257 ± 0.012 0.262 ± 0.014 0.291 ± 0.014a 0.381 ± 0.014a

ABA 0.190 ± 0.013 0.217 ± 0.012 0.230 ± 0.014 0.241 ± 0.011b 0.298 ± 0.013b

PEG 0.175 ± 0.015 0.188 ± 0.018 0.194 ± 0.016 0.212 ± 0.012b 0.234 ± 0.017b

PEG + ABA 0.184 ± 0.014 0.205 ± 0.013 0.213 ± 0.018 0.224 ± 0.013b 0.285 ± 0.013b

Shoot dry weight (g·plant−1) Control 0.019 ± 0.002 0.022 ± 0.002 0.025 ± 0.002 0.033 ± 0.001a 0.037 ± 0.001a 0.041 ± 0.001a

ABA 0.021 ± 0.001 0.023 ± 0.001 0.028 ± 0.001b 0.033 ± 0.001b 0.036 ± 0.000b

PEG 0.021 ± 0.002 0.022 ± 0.000 0.024 ± 0.002b 0.026 ± 0.001c 0.028 ± 0.001c

PEG + ABA 0.021 ± 0.001 0.023 ± 0.002 0.027 ± 0.001b 0.032 ± 0.001b 0.034 ± 0.001b

Root fresh weight (g·plant−1) Control 0.091 ± 0.011 0.098 ± 0.014 0.124 ± 0.010 0.148 ± 0.011a 0.194 ± 0.010a 0.233 ± 0.011a

ABA 0.094 ± 0.011 0.119 ± 0.011 0.129 ± 0.099b 0.141 ± 0.011b 0.157 ± 0.009b

PEG 0.093 ± 0.012 0.097 ± 0.011 0.099 ± 0.010b 0.101 ± 0.007c 0.106 ± 0.009c

PEG + ABA 0.092 ± 0.011 0.112 ± 0.013 0.120 ± 0.107b 0.130 ± 0.012b 0.143 ± 0.010b

Root dry weight (g·plant−1) Control 0.010 ± 0.001 0.011 ± 0.002 0.015 ± 0.001 0.017 ± 0.000a 0.018 ± 0.000a 0.022 ± 0.001a

ABA 0.010 ± 0.001 0.011 ± 0.001 0.014 ± 0.000b 0.016 ± 0.000b 0.017 ± 0.000b

PEG 0.010 ± 0.001 0.011 ± 0.001 0.012 ± 0.000b 0.012 ± 0.000c 0.013 ± 0.000c

PEG + ABA 0.010 ± 0.002 0.011 ± 0.001 0.013 ± 0.001b 0.015 ± 0.000b 0.016 ± 0.001b

At 0 day of PEG-stimulated drought stress (before stress), the growth parameters of wheat seedlings are same, because PEG or ABA are not immersed in Hoagland’s solution at this

time point, and sizes and heights of seedlings in all treatments are uniform at this time point. Average values of 10 plants from one dish were considered as one replication and three

independent biological replications were performed. Different letters indicate a significant difference at P < 0.05.

levels of these six genes were enhanced or inhibited in root tissue
within 1–2 days after initiation of PEG-stimulated drought stress,
peaked at 3 days, and slowly or rapidly decreased thereafter
(Figures 3B–E,G,H).DHAR expression in roots was significantly
induced at 1 day after PEG-stimulated drought stress, whereas
it decreased rapidly thereafter (Figure 3F). During the PEG-
treatment period, exogenous ABA significantly increased GST1
transcript levels at day 2 (Figure 3A), those of GPX1 at day 1
(Figure 3C), GPX2 at days 1 and 5 (Figure 3D), GR at days 1
and 2 (Figure 3E), DHAR at days 3, 4, and 5 (Figure 3F), and
MDHAR and GS at days 1, 4, and 5 (Figures 3G,H) after PEG
treatment.

During PEG-stimulated drought stress, transcript levels of
eight genes encoding ASA-GSH synthesis-related enzymes in
leaf differed significantly compared to those in root tissue. At
all time points after PEG treatment, GST1 and GPX1 transcript
levels were markedly inhibited (Figures 4A,C). GST2 and DHAR
genes were induced early, peaked at 2 days after PEG treatment,
and then rapidly decreased (Figures 4B,F). GPX2, GR, and GS
expression levels were strongly inhibited at 1 day after PEG
treatment, increased and peaked separately at days 2 and 3,
then increased, and rapidly decreased at subsequent time points
(Figures 4D,E,H). MDHAR transcript levels were enhanced at
1 day after PEG treatment, whereas they decreased rapidly at
subsequent time points (Figure 4G). During the PEG-treatment
period, exogenous ABA significantly increased the transcript

levels of GST1 at days 1, 4, and 5 (Figure 4A), GST2 at days 3,
4, and 5 (Figure 4B), GPX1, GPX2 and GS at days 2, 3, and 4
(Figures 4C,D,H), GR at days 1, 3, and 4 (Figure 4E), DHAR
at days 1 and 4 (Figure 4F), and MDHAR at days 1 and 3
(Figure 4G) after PEG treatment.

Discussion

Exogenous ABA Enhances the Tolerance of
Wheat Seedlings Suffering to PEG-stimulated
Drought Stress
Actual soil drought stress is rarely used, because components of
soil are very complicated, and it is difficult to control all soil
components. In addition, it is also very difficult to discriminate
water stress from other abiotic stresses in soil system. However, it
is important for water stress experiment to establish a stable and
controlled condition (Zhang et al., 2004). PEG have been used
extensively to induce plant water deficit in a relatively controlled
manner, appropriate to experimental protocols because it is
a very low chronic toxicity, molecules with mol wt greater
than 3000 are apparently not absorbed at all, and plant water
relations can be similar whether the plants are growing in
soil or in a PEG solution having an equal water potential
(Kaufmann and Eckard, 1971; Mexal et al., 1975; Carpita et al.,
1979).
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TABLE 2 | Effect of exogenous ABA on content of MDA and H2O2 in root and leaf tissues of wheat seedlings suffering from PEG-stimulated drought

stress for 5 days.

Parameters Treatments 0 day 1 day 2 days 3 days 4 days 5 days

MDA content in leaf Control 5.06 ± 0.10 4.99 ± 0.21 4.95 ± 0.17 5.00 ± 0.12 5.09 ± 0.14c 5.17 ± 0.14c

PEG 5.25 ± 0.14 5.83 ± 0.13 6.38 ± 0.16 6.66 ± 0.13a 7.22 ± 0.13a

PEG + ABA 5.16 ± 0.16 5.58 ± 0.12 5.91 ± 0.12 6.12 ± 0.14b 6.59 ± 0.14b

MDA content in root Control 5.59 ± 0.31 5.55 ± 0.28 5.52 ± 0.24 5.56 ± 0.27c 5.45 ± 0.25c 5.60 ± 0.23c

PEG 5.88 ± 0.35 6.40 ± 0.27 7.86 ± 0.30a 9.11 ± 0.28a 11.39 ± 0.29a

PEG + ABA 5.75 ± 0.28 6.08 ± 0.35 6.39 ± 0.36b 7.12 ± 0.32b 7.86 ± 0.20b

H2O2 content in leaf Control 1.07 ± 0.09 1.04 ± 0.07 1.04 ± 0.05 1.08 ± 0.07c 1.08 ± 0.07c 1.02 ± 0.07c

PEG 1.27 ± 0.03 1.42 ± 0.10 1.66 ± 0.09a 1.88 ± 0.08a 1.96 ± 0.11a

PEG + ABA 1.18 ± 0.08 1.26 ± 0.06 1.39 ± 0.05b 1.55 ± 0.08b 1.70 ± 0.08b

H2O2 content in leaf Control 1.19 ± 0.07 1.19 ± 0.01 1.19 ± 0.08 1.21 ± 0.08c 1.19 ± 0.10c 1.22 ± 0.07c

PEG 1.28 ± 0.08 1.46 ± 0.05 1.75 ± 0.07a 2.31 ± 0.07a 2.57 ± 0.07a

PEG + ABA 1.23 ± 0.05 1.28 ± 0.08 1.44 ± 0.05b 1.62 ± 0.07b 1.99 ± 0.06b

At 0 day of PEG-stimulated drought stress (before stress), the physiological parameters of wheat seedlings are same, because PEG or ABA are not immersed in Hoagland’s solution

at this timepoint, and sizes and heights of seedlings in all treatments are uniform at this time point. The uppermost fully expanded leaves and longest roots of three seedlings were

separately collected in one replication and three independent biological replications were performed. Different letters indicate a significant difference at P < 0.05. Units of MDA and

H2O2 content, µmol.g
−1 FW.

In this study, application of exogenous 10µMABA decreased
the growth inhibition caused by 15% PEG 6000-stimulated
drought stress, as manifested by increased growth parameters
(plant height, shoot and root fresh weights, and shoot and
root dry weights), and decreased MDA and H2O2 content
(Tables 1, 2). These suggest that exogenous ABA enhances
the tolerance of wheat seedlings to drought stress, similar to
the previous reports in maize, bermudagrass, and grapemvine
(Todorov et al., 1998; Lu et al., 2009; Ferrandino and Lovisolo,
2014). However, ABA-enhanced drought tolerance might also
be related to its protective roles, such as closing stomata, and
decreasing evapotranspiration and solute uptake (Kirkham,
1983). In addition, PEG has some disadvantages in stimulating
water stress, including its uptake by plants, hypoxia, and mineral
contamination (Lawlor, 1970; Janes, 1974; Reid, 1978; Yaniv and
Werker, 1983; Jacomini et al., 1988; Verslues et al., 1998; Blum,
2013). Thus, ABA-induced drought tolerance in wheat plant
could need to be further measured under actual soil drought
stress conditions.

ABA Temporally Regulates the Transcriptional
Levels of the Genes Encoding ASA-GSH Cycle
Enzymes in Wheat Seedlings, Resulting in
Increased GSH and ASA Content
GSH and ASA are major non-enzymatic antioxidants, and the
enzymes and antioxidants in the ASA-GSH cycle play important
roles in scavenging of ROS (Shan and Liang, 2010; Liu et al., 2012;
Rakić et al., 2014). GSH andASA content in abiotic-tolerant plant
varieties are significantly higher than those in abiotic-sensitive
varieties (Vaidyanathan et al., 2003). Overexpression of the genes
encoding ASA-GSH cycle enzymes in higher plants confers
enhanced tolerance to abiotic stresses (e.g., salt, low temperature)
by maintaining higher content of GSH and ASA (Eltayeb et al.,

2006; Duan et al., 2012; Sultana et al., 2012). Our findings
indicated that ASA content declined in solely PEG-treated wheat
seedlings (Figure 2), indicating that PEG-stimulated drought
stress could disturb synthesis of ASA. However, content of GSH
increased in this treatment (Figure 2), possibly combating the
oxidative stress generated due to drought stresses. This suggested
that drought stress had the differential effects on between ASA
and GSH synthesis. Under abiotic stresses, various expression
profiles of different antioxidative enzymes and antioxidants have
also been reported in previous studies (Li et al., 2010; Wang et al.,
2011; Hossain et al., 2012).

In the present study, much higher content of ASA and GSH
was observed in both root and leaf tissues of PEG+ ABA-treated
wheat seedlings (Figure 2), implying that the drought tolerance
enhanced by exogenous ABA application in wheat seedlings may
be related to increased content of GSH and ASA. It has been
reported that there may be no post-transcriptional, translational,
or post-translational regulations of the genes encoding ASA-GSH
cycle enzymes (Shan and Liang, 2010; Chen et al., 2011; Liu et al.,
2012). Transcriptional analysis enables quantification of changes
in transcript levels of genes. Therefore, transcriptional analysis
can facilitate identification of genes involved in the regulation
of metabolism and provide valuable insight into the molecular
mechanisms of many biosynthetic pathways (Ohdan et al., 2005).
In this study, the expression levels of eight genes encoding
ASA-GSH cycle enzymes were determined in PEG-stimulated
drought-stressed wheat seedlings to identify their associations
with the increased GSH and ASA content of wheat seedlings after
exogenous ABA application.

Our results showed that, in root and leaf tissues of PEG-
treated wheat seedlings to which ABA had been applied, the
transcript profiles of ASA-GSH synthesis-related genes varied in
a time-dependent manner, and the transcript levels of at least
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FIGURE 2 | Effects of exogenous ABA on content of GSH and

ASA in roots and leaves of wheat seedlings suffered from

PEG-stimulated drought stress. (A,C), GSH and ASA content in root

of wheat seedling suffering from PEG-stimulated drought stress,

respectively; (B,D), GSH and ASA content in leaf of wheat seedling

suffering from PEG-stimulated drought stress, respectively. The

uppermost fully expanded leaves and longest roots of three seedlings

were separately collected in one replication and three independent

biological replications were performed. Different letters indicates

significant differences (P < 0.05).

one of the genes were markedly enhanced by ABA application
at each time point (Figures 3, 4, Supplementary Figures S3, S4).
This may be associated with the increased content of GSH
and ASA during the PEG-stimulated drought-stress period in
these two tissues, as well as the enhanced drought tolerance of
PEG + ABA-treated wheat plants (Figure 1). These results are
also supported by several previous studies of maize and wheat, in
which the transcript levels of diverse genes encoding ASA-GSH
cycle enzymes were temporally regulated by SA under cold- and
salt-stress conditions (Liu et al., 2012; Li et al., 2013).

Transcriptional Patterns of ASA-GSH
Synthesis-related Genes in Root and Leaf
Tissues of PEG-treated Wheat Seedlings Treated
with Exogenous ABA
Figures 3, 4 and Supplementary Figures S3, S4 show that the root
and leaf tissues of drought-stressed wheat seedlings exhibited
similar transcriptional patterns of ASA-GSH synthesis genes after
pretreatment with ABA. Transcript levels of several genes at
various time points, such asGR at day 1,DHAR at day 4,MDHAR
at day 1, and GS at day 4, were increased by ABA in both the

roots and leaves of PEG-treated wheat seedlings (Supplementary
Table S2). These results suggested that root and leaf tissues may
show similar responses to exogenous ABA application. However,
differences in the transcriptional patterns in root and leaf tissues
were also observed. For example, transcript levels of GST1 at
days 1 and 4, GST2 at days 3, 4, and 5, GPX1 at days 2, 3,
4, GR at days 3 and 4, and GS at days 2 and 3 significantly
increased in the leaves of wheat seedlings subjected to PEG +

ABA treatment, whereas transcript levels of these genes markedly
decreased at the above time points in root tissue (Supplementary
Table S2). These suggest that the mechanisms of action of ABA
differ between root and leaf tissues of wheat seedlings. The
differences in the transcript levels of ASA-GSH synthesis-related
genes identified between root and leaf tissues may be related
to differences in GSH and ASA content in the two tissues
(Figure 2), or to the different functions, growth environments,
and sensitivities of roots and leaves to PEG-stimulated drought
stress and ABA. The difference in the transcriptional profiles
of root and leaf tissues further suggests that exogenous ABA
application may have profound and distinct effects on these two
tissues.
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FIGURE 3 | Effects of exogenous ABA on transcript levels of the

eight genes encoding ASA-GSH cycle enzymes in root of wheat

seedlings suffering from PEG-stimulated drought stress.

Transcripts were analyzed by qPCR using Actin gene as internal

control. (A–H), transcript levels of GST1, GST2, GPX1, GPX2, GR,

DHAR, MDHAR, and GS genes, respectively. The three seedlings were

collected in one replication and three independent biological

replications were performed. Each value is the mean ± standard

deviation of three independent measurements. Different letters indicate

significant differences (P < 0.05).
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FIGURE 4 | Effects of exogenous ABA on transcript levels of the eight

genes encoding ASA-GSH cycle enzymes in leaf of wheat seedlings

suffering from PEG-stimulated drought stress. Transcripts were

analyzed by qPCR using Actin gene as internal control. (A–H), transcript

levels of GST1, GST2, GPX1, GPX2, GR, DHAR, MDHAR, and GS genes,

respectively. The uppermost fully expanded leaves and longest roots of three

seedlings were collected in one replication and three independent biological

replications were performed. Each value is the mean ± standard deviation of

three independent measurements. Different letters indicate significant

differences (P < 0.05).
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Effects of ABA and Other Plant Hormones on the
Transcriptional Profiles of Genes Encoding
ASA-GSH Synthesis-related Enzymes under
PEG-stimulated Drought Stress
qPCR has been used previously to examine the transcriptional
profiles of genes encoding ASA-GSH synthesis-related enzymes
regulated by SA in drought- and salt-stressed wheat seedlings,
and cold-stressed eggplant (Chen et al., 2011; Kang et al., 2013; Li
et al., 2013). The transcriptional profiles of genes encoding ASA-
GSH synthesis-related enzymes in the leaf tissue of PEG-treated
wheat seedlings in the present study were compared to our
previous findings on genes regulated by SA (Kang et al., 2013),
because there are many similarities between the two studies;
e.g., use of identical materials (leaf tissue of wheat seedlings),
experimental conditions (15% PEG-stimulated drought stress),
and several sampling time-points (1 and 3 days after initiation
of PEG-stimulated drought stress). Expression of GST at day 1,
GST2 at day 3, GPX1 at day 2, GR at days 1 and 3, DHAR at days
2 and 3,MDHAR at day 1, and GS at day 2 were induced by both
ABA and SA in the leaf tissue of wheat seedlings under PEG-
stimulated drought stress (Supplementary Table S3). However,
the expression profiles of the majority of genes encoding ASA-
GSH synthesis enzymes were differentially regulated by ABA and
SA under PEG-stimulated drought conditions (Supplementary
Table S3). These results suggest that multiple plant hormones
may increase the GSH and ASA content, possibly by differentially
regulating the expression of genes encoding ASA-GSH synthesis
enzymes.

Conclusions

Exogenous application of 10µMABA significantly enhanced the
tolerance of wheat seedlings to PEG-stimulated drought stress,
as shown by alleviated growth inhibition, reduced content of
MDA and H2O2, and increased content of GSH and ASA in the
root and leaf tissues. The increased GSH and ASA content may

be associated with upregulated expression levels of ASA-GSH
synthesis enzyme genes in time- and organ-specific manners.
The transcriptional profiles of eight genes encoding ASA-GSH
synthesis enzymes regulated by ABA differed between the root
and leaf tissues of PEG-treated wheat seedlings. Comparison of
our results with the findings of previous studies showed that,
under PEG-stimulated drought-stress conditions, ABA and SA
induced differential transcriptional profiles of genes encoding
ASA-GSH synthesis enzymes in wheat seedlings. Our findings
can provide specific information on the molecular mechanisms
of the ASA and GSH synthesis regulated by ABA in drought-
stressed plants.
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