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Budburst is a key adaptive trait that can help us understand how plants respond to a chang-
ing climate from the molecular to landscape scale. Despite this, acquisition of budburst
data is constrained by a lack of information at the plant scale on the environmental stimuli
associated with the release of bud dormancy. Additionally, to date, little effort has been
devoted to phenotyping plants in natural populations due to the challenge of accounting for
the effect of environmental variation. Nonetheless, natural selection operates on natural
populations, and investigation of adaptive phenotypes in situ is warranted and can validate
results from controlled laboratory experiments. To identify genomic effects on individual
plant phenotypes in nature, environmental drivers must be concurrently measured, and
characterized. Here, we designed and evaluated a sensor to meet these requirements for
temperate woody plants. It was designed for use on a tree branch to measure the timing
of budburst together with its key environmental drivers; temperature, and photoperiod.
Specifically, we evaluated the sensor through independent corroboration with time-lapse
photography and a suite of environmental sampling instruments. We also tested whether
the presence of the device on a branch influenced the timing of budburst. Our results
indicated the following: the temperatures measured by the budburst sensor’s digital
thermometer closely approximated the temperatures measured using a thermocouple
touching plant tissue; the photoperiod detector measured ambient light with the same
accuracy as did time lapse photography; the budburst sensor accurately detected the
timing of budburst; and the sensor itself did not influence the budburst timing of Populus
clones. Among other potential applications, future use of the sensor may provide plant
phenotyping at the landscape level for integration with landscape genomics.
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INTRODUCTION
Budburst is when plants initiate tissue growth from their buds,
signaling the end of ecodormancy, and the beginning of the grow-
ing season (Lang et al., 1987). The timing of budburst in plants
influences biomass accumulation and carbon sequestration, and
informs us about the responses of genes and ecosystems to a
changing climate (Menzel et al., 2006; Aitken et al., 2008). Cli-
mate change may alter the timing of budburst with potentially
serious implications (Chuine, 2010), since it could change the
amounts of chilling and forcing units sensed by vegetative buds,
causing budburst to occur early, late, or not at all (Pope et al.,
2013). The advancing date of budburst over recent decades has
been documented for a number of species and across a range of
biomes (Chuine, 2010). Phenological shifts in agricultural crops
can alter the beginning and length of growing seasons, and can also
cause crop failures (Chmielewski et al., 2004). A deeper under-
standing of plant response to climate change is imperative for
addressing the effects of future climate change on agriculture and
forest management (Badeck et al., 2004).

The timing of vegetative budburst in populations of temperate
trees is determined largely by air temperature and genetics (Camp-
bell and Sorenson, 1973; Chuine and Cour, 1999; St. Clair et al.,
2005; Harrington et al., 2010). For some species, photoperiod and
plant water status provide additional cues to the timing of bud-
burst (Yakovlev et al., 2006; Lagercrantz, 2009; Linares et al., 2012).
Air temperature, however, is perhaps the most widely studied
and easily measured environmental cue. Phenological models for
trees in temperate regions typically include a chilling requirement,
representing the effect of cold temperatures on releasing endodor-
mancy (Bailey and Harrington, 2006). We designed a sensor to
measure two environmental cues that affect the timing of bud-
burst, temperature and photoperiod, to gather more information
about environmental effects on bud phenology in nature.

Despite the increasing evidence for genomic and epigenomic
bases of budburst phenology (Yakovlev et al., 2011; Yordanov et al.,
2014), our understanding of budburst processes remains limited.
Although the molecular basis of budburst is widely studied for
model tree species (Hsu et al., 2011; McKown et al., 2013; Yordanov
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et al., 2014), studies for non-model species, including conifers, are
limited to coarse quantitative trait associations (Jermstad et al.,
2001), low coverage screens of candidate genes (Eckert et al., 2009),
differential gene expressions before and after budburst (Yakovlev
et al., 2006, 2008; Mathiason et al., 2009), and some recent work
in epigenetics of spruce (Yakovlev et al., 2011). A greater under-
standing of the molecular and genomic processes behind budburst
could be achieved for model and non-model species by measur-
ing the timing of budburst concurrently with its environmental
cues.

One challenge we face in deciphering the nature of adaptive
processes like budburst in woody plants is the development of
new methods of high-throughput phenotyping to relate genes
to traits. Molecular data in genomics and systems biology are
now being generated in high quantity, which necessitates prac-
tical phenotyping methods that can accommodate large numbers
of individual plants. Additionally, emulating natural conditions
can be difficult in laboratory, green house, or common garden
settings (Granier et al., 2006; Poorter et al., 2012). Consequently,
it is not surprising to find studies that identify adaptive markers
and genes for plants in laboratories that either do not extrap-
olate to other laboratories (Massonnet et al., 2010) or to natural
plant populations (Mishra et al., 2012). Furthermore, to date, there
have been very few efforts to identify adaptive genes in natu-
ral populations because the environment in most ecosystems is
impossible to control, and thus presents a challenge to estab-
lish traditional cause-and-effect relationships. These difficulties,
in addition to others, hinder advancement of our understand-
ing of the non-linear interactions between a plant’s genes, life
stage, growth stage, and the environment (Hänninen and Tanino,
2011).

Data acquisition for the timing of budburst itself is currently
limited in scale. Remotely sensed data from satellites are difficult
to resolve to a single species, and often budburst occurs during
cloudy weather, obscuring the actual date of the event (Schwartz
et al., 2002). Human observation data are cost-prohibitive and
difficult to collect in remote areas. The eddy covariance method
for measuring carbon fluxes can infer aspects of phenology like
budburst from increased photosynthetic rates; however, these
inferences do not demonstrate cause-and-effect, are not resolv-
able to individual trees or species, and can be difficult to interpret
in sub-optimal weather conditions (Niemand et al., 2005; Chiang
and Brown, 2007). Near-surface digital time lapse cameras are not
calibrated scientific instruments (Sonnentag et al., 2012); they are
not designed to measure temperature at or near buds, and they
suffer from issues of battery life, file storage, and impracticality of
distribution across a landscape.

Current methods for measuring foliar temperatures also leave
room for further innovation. Infrared gas analyzers control leaf
temperature to better measure variables like respiration (Bolstad
et al., 1999; Xu and Griffin, 2006), but are expensive and are not
designed to measure ambient foliar temperatures of organisms in
the field. Thermocouples placed against the undersides of needles
(Martin et al.,1999) or inside plant tissues (Michaletz and Johnson,
2006) are fragile and risk being moved or broken during long-term
deployments. Iteratively calculating leaf temperatures to balance
an energy budget (De Boeck et al., 2012) requires collecting other

micrometeorological data, which can be an expensive investment
in equipment and time. Placing leaves in water baths of known
temperatures is useful for assessing heat tolerance, as is the use of
freezers to assess cold tolerance (Cunningham and Read, 2006),
but these techniques are not suitable for field study. Although
thermal cameras are non-invasive and provide greater spatial cov-
erage and temporal sampling than most other approaches (Meron
et al., 2013; Prashar and Jones, 2014), they are costly and the image
processing is difficult.

Although air temperature alone has proven successful for many
phenological models, we know that leaf, bud, and meristem tem-
peratures differ from air temperatures (Grace, 2006; Michaletz
and Johnson, 2006), even in moderate environments (Savvides
et al., 2013), and that foliar temperatures are a likely more physi-
ologically relevant (Still et al., 2014). The digital thermometer we
describe here is durable, ready for long-term field deployment, and
designed to provide an indirect metric of foliar temperature. To
our knowledge, it is the only existing thermometer designed with
a clear acrylic coating to more closely approximate foliar tempera-
ture compared to air temperature for cost-effective yet biologically
relevant information. The highly localized collection of tempera-
ture data provides additional value, since temperatures can vary
up to 10◦C within a single tree (Stockfors, 2000; Leuzinger and
Körner, 2007).

Here, we report results from several sensor validation experi-
ments. Our goal was to innovate sensor technology and validate
its performance to improve our capacity to measure budburst and
related environmental drivers for high-throughput phenotyping
in nature. To ensure the data collected by this sensor are accurate,
reliable, and non-invasive, we asked the following questions:

• Does the sensor accurately record temperature, photoperiod,
and the timing of budburst?

• Does the presence of the sensor itself influence the timing of
budburst?

MATERIALS AND METHODS
THE BUDBURST SENSOR (SENSOR)
Principle of sensor operation
The budburst sensor used a pair of plastic optical fibers to detect
budburst. After being attached to a branch below a bud, one of
these fibers guided light from a green LED outward to illumi-
nate the bud while the other fiber received light reflected from the
bud and guided the signal to a photodetector and signal ampli-
fier (Figure 1). Light pulses were emitted from the illuminating
fiber at 320 Hz, a frequency not harmonically related to common
man-made light sources, for approximately 2 s (Li et al., 2013).
An analog switch routed the light received from the LED through
amplifiers with gain +1 (LED illuminated) and −1 (LED dark).
This formed the multiplier action of a lock-in detection scheme to
rectify the signal (Horowitz and Hill, 1989; Sydenham and Thorn,
2005; Li et al., 2013). Additionally, by averaging the photodetector
output when the LED is dark, the sensor provided ambient light
information which we used to determine photoperiod. The data
were then transmitted to a flash drive and stored with a timestamp
(Figure 2). The sensor’s integrated circuit thermometer measured
kinetic temperatures, and was protected by a coating of clear,
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FIGURE 1 |The bud break sensor’s fiber optic cables targeting a dormant bud, with digital thermometer below.

waterproof acrylic (Figure 1). The electronics and batteries were
housed in a plastic case designed to be impervious to water.

Using the sensor
The sensor was designed to be simple to use. By connect-
ing the sensor to a terminal emulator on a computer via USB

port, one can set the real-time clock, sampling intervals, device
identification, and instrument calibration. Sampling intervals can
range from once every ten minutes to once per 6 h, allowing
users to balance battery life with sampling resolution. Dur-
ing calibration, the sensor’s LED brightens and dims until the
device finds a proper signal to noise ratio for the target object.
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FIGURE 2 | Schematic diagram of the bud break sensor.

This calibration can be done in the field by pressing a sin-
gle button, once the sensor is in place and targeting an object
of interest. After disconnecting the sensor from the computer
and shutting the housing, it is ready for deployment. The
main body of the sensor can be strapped to trunks or branches
greater than 3 cm diameter, and the wire-mounting system
attaches just below the bud with cable (zip) ties. The final
positioning of the sensor wires can then be adjusted by mov-
ing the bent aluminum wire on the plastic attachment system
(Figure 1). The sensor needs to be removed after budburst
occurs to prevents girdling the tree stem as it begins seasonal
growth.

VALIDATION EXPERIMENTS
Temperature
To assess the sensor’s digital thermometer, comparisons were made
from two data collection periods. The digital thermometer was
compared with air and thermocouple temperatures during the
winter, and compared with air, thermocouple, and foliar tem-
peratures during the spring for different trees. Thermocouples
and the sensors’ digital thermometers were nestled on test buds.

The instruments used for these validation experiments provided
a suite of co-occurring measurements to corroborate the digi-
tal thermometer’s temperature measurements. Each experiment
consisted of sensors, Type-T thermocouples, and one thermal
hygrometer (Campbell Scientific® HMP45C) aspirated as per
Thomas and Smoot (2013). The spring experimental period also
included one thermal imager (FLIR® SC305), a net radiometer
(Hukseflux® NR-01), and a three-dimensional sonic anemometer
(Campbell Scientific® CSAT3). The first test evaluated the digi-
tal thermometer’s performance on a potted Pinus pinea tree (0.5
m in height) during warm spring weather at Oregon State Uni-
versity’s Botany and Plant Pathology farm just east of Corvallis,
Oregon, for 7 days in April and May 2013. The thermal imager
was situated 0.5 m above the ground and 2 m away from the plant
foliage, pointing 20◦ east of north to encompass the entire tree. The
second test investigated the digital thermometer’s measurements
on a taller Pseudotsuga menziesii tree during winter conditions
on the Oregon State University campus for 14 days in January
2014. Due to the cost of instrumentation, complete replication of
the spring data collection period was not possible for the winter
experiment.
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Sensor effect on budburst
Sensor placement onto plant tissue may influence the timing
of budburst. This could occur due to changes in the microcli-
mate immediately surrounding a bud if the sensor collects heat
energy from the sun during the daytime, or produces its own
heat from turning the energy stored in its batteries to electric-
ity. Additionally, thigmotropic responses in plants can occur from
moderate, subtle stimuli (Chehab et al., 2009), raising the ques-
tion of whether budburst may be affected by the sensor touching
branches. Furthermore, since conifers can have systemic responses
to localized perturbations (Bonello and Blodgett, 2003), a thig-
motropic response from a specific bud may influence the entire
tree. To address this, we tested whether the presence of the sen-
sor could affect budburst on trees with sensors attached to their
branches. Specifically, we tested for a difference in median bud-
burst and a difference in days between phenological phases, with
test units consisting of 18 trees with sensors present versus 18
trees with sensors absent. We examined the timing of budburst
on 36 trees in a common garden north of Corvallis, Oregon, dur-
ing March, and April 2014. The trees tested were 2 years old,
with trees spaced 1.5 m apart within rows and 3 m apart between
rows, and a maximum distance of 49 m between sampled trees.
To reduce the influence of genetic variation, all trees studied were
clones of the Populus tremula × Populus alba hybrid genotype
717-1B4.

Twenty budburst sensors were placed on 16 poplars at the
common garden study site on March 1, and the condition and
temperature of the buds were monitored for 2 months. Twelve
trees had one sensor, four trees had two sensors, and of the 16
trees with no sensors, four had two buds included in the study.
This allowed us to test whether phenological differences between
control and sensor trees could be due to random chance alone.
One vegetative bud per tree was examined on all pairs. Bud condi-
tion was recorded during these site visits using five discrete classes
(Table 1) simplified from Turok et al. (1996). The time-lapse
images were compared with sensor output to aid in interpret-
ing the effect of bud swelling and shoot elongation on the sensor
output.

Photoperiod detector
Sensor photoperiod measurements were corroborated with time
lapse cameras (Wingscapes® TimelapseCam 8.0) during January
2014 on the Oregon State University campus and during April 2014
in a common garden north of Corvallis, Oregon. The cameras
operated from 4 am to 9 pm during each sampling event, which
provided several hours of dark images before sunrise and after
sunset. Photoperiod calculated from brightness values (BVs) of

Table 1 |The five discrete budburst classes used, modified fromTurok

et al. (1996).

0 Dormant bud; no sign of any activity; brown color.

1 Bud swollen; scales reddish; no breakage of bud tissue.

2 Tip of bud is bursting; shoot is visible.

3 Budburst; shoot is green; very young leaves observed.

4 Green leaves separated and growing; venation observable.

time lapse image pixels was compared to values from the sensor
with simple Wilcoxon signed-rank tests.

DATA ANALYSIS
Temperature
We took several steps to process the thermal infrared (TIR) images
after the time-lapse image regions of interest (ROIs) containing
budburst sensors and thermocouples were identified (12 × 12 pix-
els in size). After calculating means for the thermal ROI’s raw
emittances, the data were radiometrically calibrated in MATLAB
(MATLAB and Statistics Toolbox Release 2012b, The MathWorks,
Inc., Natick, MA, USA) to correct for emissivity effects in accor-
dance with the Stefan–Boltzmann Law. The thermal images were
then corrected for reflected sky temperatures from the foliage sur-
face, as defined by Kirchhoff ’s Law. Emissivity values for the foliage
were calculated from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) emissivity libraries for new and old pine
needles (MODIS UCSB Emissivity Libraries, n.d.). The emissivity
values within these libraries that fell within the thermal imager’s
spectral bands were averaged to define our target’s emissivity. We
assumed our study trees’ transmissivity to be zero. After the data
processing was completed, root mean squared errors (RMSEs)
and correlation coefficients were calculated pair-wise between
the temperature recorded by the sensor and the calculated foliar
temperatures, air temperatures, and thermocouple temperatures.
This was performed on the whole time series, as well as smaller
components representing day, night, clear, and overcast condi-
tions. Mean temperatures for each hour of the day were also
calculated for the budburst sensor’s digital thermometer, air tem-
perature, and foliar temperature. To better assess the biological
relevance of the difference between these sensors, chilling and forc-
ing units were calculated for each instrument as per Harrington
et al. (2010).

Budburst sensing
The time series produced by the sensors were smoothed using a
zero-phase fifth-order Butterworth filter to eliminate the diurnal
noise in the signal. The time series were then visually compared
with time lapse movies of buds opening and visual observations
of budburst phase.

Photoperiod
Threshold values were used to define daytime periods for BVs from
the time lapse images and for digital numbers (DNs) from the
budburst sensors’ DNs. Visual examination of the data indicated
that sensible threshold values for the budburst sensors ranged from
40 to 70 DNs, while a BV of 20 discriminated light-versus-dark
for the time lapse camera. Daytime occurrence was determined
using hourly values that exceeded threshold values. Correlation
coefficients were then calculated from sensor DN and camera BV
data collected during the winter temperature experiment and the
spring budburst experiment.

Sensor effect on phenology
The visually scored budburst classes were transformed to first dif-
ferences = y(t)−y(t−1), where y(t) is the bud score at time t. The
first differences produced the number of days between any given
bud score, which we used to develop statistics for the two study
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test and control groups. We used a Wilcoxon signed-rank test to
assess whether the number of days between budburst classes 2
and 3 differed between test and control groups. We also used the
same signed-rank test to determine whether there was a statisti-
cally significant difference in the date of budburst between sample
groups because the signed-rank test was robust to non-normally
distributed data (Ott and Longnecker, 2010). For the eight trees
with two study buds each, one bud per tree was randomly selected
for inclusion in the analysis to maintain independence among
analyzed sample units.

RESULTS
TEMPERATURE
In general, the temperatures measured by the sensor’s digital
thermometer were a better approximation of thermocouple tem-
peratures than were the air and foliar temperatures (Figure 3).
In the spring when downwelling shortwave radiation was below
150 W m−2 (over 12 h a day), digital thermometer values fell
between air temperatures measured with the thermohygrometer
and TIR foliar temperatures; during higher irradiance conditions,
the digital thermometers measured values higher than the air
and TIR foliar temperatures (Figure 4). In cold weather, chill-
ing units calculated from the digital thermometer were similar to
units calculated from other devices, and the same finding held
for forcing units calculated in warm weather. Across seasons, the
temperatures from the sensor’s digital thermometer best approx-
imated temperatures from a thermocouple, and air temperature
secondarily.

Calculations of chilling and forcing units helped to illus-
trate biological relevance to the differences between measurement
types. During the winter data collection period, the chilling units
estimated between the measured air temperatures, digital ther-
mometer, and thermocouple were within 31 units of each other,
but the differences in accrued forcing units were much larger.
Conversely, during the spring data collection period, the forc-
ing units estimated by the measured air and foliar temperatures,
digital thermometer, and thermocouple were within 24 units of
each other, but differences in accrued chilling units were much
larger (Table 2).

BUDBURST SENSING
By comparing sensor output with confirmed budburst dates
derived from site checks and time lapse images, eleven of the 20
sensors (55%) detected budburst (Figure 5). For each of these time
series, there was a noticeable and abrupt increase in reflected light
for the time period measured. The reflected light changed from a
low, flat line before budburst to a higher, flat line after budburst.
Seven of the failing sensors (35%) succumbed to water damage
prior to budburst, and thus, were unable to detect budburst. One
sensor’s (5%) signal did not show an increased signal at budburst,
and an additional bud did not burst, providing a signal for the sen-
sor (5%) to detect. Overall, of the 12 operational sensors, 91.6%
of them successfully detected budburst.

PHOTOPERIOD
The sensor’s photoperiod detector was able to determine
ambient light conditions as could the time lapse imagery

FIGURE 3 | Co-occurring temperatures color -coded by time of day. The
black 1:1 line indicates perfect agreement between the budburst sensor
digital thermometer (y -axis) and other measured temperatures (x -axis).
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FIGURE 4 | Average temperatures and corresponding irradiance

variations for the bud break sensor’s digital thermometer (squares), air

temperature (circles), thermocouple (squares), and foliar temperature

(triangles).

Table 2 | Chilling and forcing units calculated from different

temperatures (Harrington et al., 2010).

Time

period

Chilling

units

Forcing

units

Budburst sensor digital thermometer Winter 1269 183

Spring 111 505

Thermocouple Winter 1238 200

Spring 117 501

Air Winter 1265 284

Spring 137 484

Foliar Spring 128 481

(Figure 6). Each sensor’s photoperiod values correlated strongly
with those calculated from the imagery (r2

winter > 0.99,
r2

spring > 0.98).

SENSOR EFFECT ON PHENOLOGY
There was no significant difference between median budburst
dates for buds with sensors versus buds without sensors (p = 0.82).
There was also no significant difference between the number of
days between budburst classes 2 and 3 amongst control and test
groups (p = 0.24).

DISCUSSION
Overall, for the sensors unaffected by water damage, the field tests
of each sensing component matched or exceeded our expectations.
The signal from the photoperiod detector detected the beginnings
and endings of daylight. The acrylic-coated digital thermometer
measured temperatures very similarly to thermocouples placed
against foliage, and the digital thermometer’s values fell between
air and TIR foliar temperatures when solar irradiance was low. The
sensor did not influence the timing of budburst, and successfully
detected the timing of budburst. These results provide evidence

FIGURE 5 | Smoothed time series from the 11 sensor outputs showing

an increased signal near the date of bud break, indicated by the

vertical dotted line, using a zero-phase fifth order Butterworth filter.

that the budburst sensor is a more versatile choice for measur-
ing budburst than time-lapse cameras because it also collects
temperature data.

TEMPERATURE
The digital thermometer’s durability, ease of deployment, and
co-occurring measurements make it a competitive alternative to
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FIGURE 6 | Mean measurements of daylight from the bud break

sensor’s photoperiod detector (in DN units) and time lapse images (in

brightness values units) with 5 and 95% quantiles shaded.

other temperature measurement devices for field and laboratory
research on plants. The close correspondence of measurements
between thermocouples and the digital thermometer suggest that
the digital thermometer could be used in lieu of thermocouples,
which can be fragile and difficult to deploy. When four sensors
were deployed on the limbs of a large conifer tree and paired with
thermocouples, all of the thermometers were still functioning at
the end of data collection, whereas three of the four thermocou-
ples had broken. The self-contained setup also made deployment
within a tree crown much quicker for the sensor than for ther-
mocouples, as it does not require external wiring to an energy
source and data logger. Thermal cameras can cost 10s of 1000s of
dollars and require extensive processing to record accurate tem-
peratures. The need for a constant power source and computer
complicates the deployment of thermal cameras in the field. The
power source issue extends to air temperature data logging setups
as well. Furthermore, the highly localized measurements made by
the digital thermometer near a bud provide useful information
about the conditions near the bud site, even if it is not measuring
bud temperature.

In cold weather, there was better agreement between mea-
surement methods for chilling units than for forcing units
(Table 2). In warm weather, there was better agreement
between calculated forcing units than chilling units. We con-
clude that chilling and forcing units calculated from data col-
lected by the sensor’s digital thermometer tend to approximate
units calculated from other instruments during relevant peri-
ods (chilling units in cold weather, forcing units in warm
weather).

There were numerous potential sources of error for the
measurements of TIR foliar temperature. Systematic deviation
between the sensor’s digital thermometer temperatures and mea-
sured TIR foliar temperatures in the spring was likely a result of
increased latent heat exchange between the foliage and air from
transpiration. Increased solar influence, the small size of the tree,
and a larger variance between day and night temperatures could
explain the higher measurement error in the spring for com-
parisons with TIR foliar temperature. Accuracy of the thermal

camera is reported to be up to ±2◦C. Four assumptions made
while recording and processing thermal images could have led
to additional error: uniform emissivity across pixels, uniform
reflectance across pixels, ignored boundary-layer resistance, and
a full transmissivity. In agreement with theory (Jones, 1992), TIR
foliar temperatures tended to be warmer than the air tempera-
tures during cold weather, and cooler than the air during warm
weather.

BUDBURST SENSING
The 40% rate of damaged sensors was unusually high compared
with our thermal validation experiments, which had a 25% sen-
sor damage rate or lower. We believe that the positioning of
the sensor housings during the budburst sensing tests made the
electronics vulnerable to several heavy rains that occurred dur-
ing the data collection period and, thus, increased the rate of
water damage to the sensors. The plastic housings for the sen-
sors’ electronics were stored on the ground at the base of the tree
because the saplings were not large enough to strap the boxes
to their trunks. We suspect that the number of sensors damaged
could have been reduced if the devices were either kept off the
ground or if they had better waterproofing. Additional water-
proofing modifications will be made to the housing in future
models.

The sensor is in the final innovation phase, and planned
modifications will further optimize the instrument for future
commercialization. In addition to improved waterproofing, the
photodetector that receives the budburst-sensing signal needs to
be altered to reduce its sensitivity to sunlight. This change will
improve the precision of the sensor’s detection of the budburst
event. The attachment of the fiber optic cables to the plant also
requires further testing and refinement. The varying ranges of
sensor response may also be the result of millimeter differences
in distance between the cables and the bud. Future investigation
is necessary to ascertain optimal distances and angles to the bud
required for optimal sensor output, as well as testing on differing
bud types. The results of such tests could enable new methods
of processing the budburst-sensing signal; if the magnitude and
ranges of sensor responses were more homogenous, then the date
of budburst could potentially be inferred from the smoothed sig-
nal output exceeding a threshold value. Refinements to the fiber
optic cable attachment will also help to shed light on the sensor’s
ability to remain in position, relative to the bud, after three, or
more months of data collection.

Our experiment confirmed that the sensor presence did not
affect bud break of Populus clones for the time period studied.
However, to be absolutely certain that the sensors have no effect
on Populus budburst, testing through longer-term deployment is
necessary. For example, the sensor batteries can accommodate
placement in the fall and retrieval in the spring after budburst.
This test will also confirm how well the sensor wires stay in place
through a winter. Proof of successful operation throughout a win-
ter prior to budburst will establish the sensor’s viability for studies
necessitating such deployment lengths. Additionally, testing across
a variety of species is necessary as the physiological response to
sensor placement may vary across species or populations (Braam,
2005).
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This sensor was designed to sense budburst at the scale of a
single bud, in addition to two environmental drivers of budburst.
Since not all buds on woody plants break dormancy at the same
time, the bud selected may not represent the mean budburst of a
whole tree. If it is possible to model these within-tree variations as
a function of temperature, then it could enable use of the sensor
on a single bud to approximate the trait at the level of a whole
tree.

Since it is difficult to control the environment in forests,
we suggest that by accounting for the effect of environmen-
tal drivers on phenotypes and extracting genomic samples, one
could test new hypotheses regarding the genomic basis of those
phenotypes. Our sensor allows for measuring plant pheno-
type in nature with simultaneous measurements of budburst,
temperature, and photoperiod on vegetative buds. The measure-
ment of adaptive traits like budburst and their environmental
drivers can allow us to step closer to decoding complex pro-
cesses like the genomic basis of natural phenotypes and how
temperate trees will adapt to changing climate (Houle et al.,
2010).

This sensor could enable a new caliber of data and insight
that can expand our ability to predict the response of natural
and agricultural plant populations to a changing climate. Such
data could help provide the precision, throughput, and standard-
ization necessary for genome-wide association studies to find the
genes underlying adaptive traits, and to better understand molecu-
lar, genomic, and ecological mechanisms of phenology and related
processes (Neale and Kremer, 2011). Such ground-based quantifi-
cation also reduces bias from human observations of phenology.
Investigations using the budburst sensor in large-scale analyses
could help determine if universal response functions can pre-
dict budburst in natural populations for evergreen and deciduous
species, or determine the degree of correlation between vegetative
and reproductive budburst (Wang et al., 2010). Furthermore, since
variation in the date of budburst, if measured precisely and contin-
uously, quantifies biological effects of climatic variation (Keeling
et al., 1996; Cleland et al., 2007), the sensor’s data can validate
satellite measurements and components of land surface models to
understand and predict biogeophysical interactions (Studer et al.,
2007). Applied research applications in orchards, vineyards, and
other agricultural crops further extend the utility of the budburst
sensor.

PHOTOPERIOD DETECTOR
The sensor’s photoperiod detector has been shown to perform as
well as a time-lapse camera does for determining photoperiod.
Knowing that microsite light availability in forest understories
can be highly heterogeneous (Parent and Messier, 1996), the
primary advantage of using this photoperiod detector instead
of a time-lapse camera is the improved resolution of having a
direct measure of photoperiod at the bud. This could yield sub-
tle differences of the light environment at the bud that would
not be learned from time-lapse photography or by calculating
the solar track from a geographic coordinate. This informa-
tion, coupled with localized temperature data, will provide
researchers with unprecedented environmental data at the bud
scale.

CONCLUSION
We designed a sensor for measuring budburst and its drivers in
temperate woody plants. The device is one of the first instru-
ments to measure an adaptive trait in nature along with two
environmental factors that influence the phenotype: temperature
and photoperiod. We envision this tool will have interdisciplinary
application while facilitating progress in the fields of landscape
phenomics and budburst phenology. Future work utilizing many
budburst sensors across tree populations at a landscape level could
provide new insights into the genomes of both model species and
conifers, interactions between vegetation and the atmosphere, and
the response of ecosystems to climate change. We will not seek
a patent for this technology. We invite interested researchers to
contact us to explore avenues of future collaboration.
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