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Crown gall tumors are formed mainly by actions of a group of genes in the T-DNA that is
transferred from Agrobacterium tumefaciens and integrated into the nuclear DNA of host
plants.These genes encode enzymes for biosynthesis of auxin and cytokinin in plant cells.
Gene 6b in the T-DNA affects tumor morphology and this gene alone is able to induce
small tumors on certain plant species. In addition, unorganized calli are induced from
leaf disks of tobacco that are incubated on phytohormone-free media; shooty teratomas,
and morphologically abnormal plants, which might be due to enhanced competence
of cell division and meristematic states, are regenerated from the calli. Thus, the 6b
gene appears to stimulate a reprogramming process in plants. To uncover mechanisms
behind this process, various approaches including the yeast-two-hybrid system have been
exploited and histone H3 was identified as one of the proteins that interact with 6b. It has
been also demonstrated that 6b acts as a histone H3 chaperon in vitro and affects the
expression of various genes related to cell division competence and the maintenance of
meristematic states. We discuss current views on a role of 6b protein in tumorigenesis
and reprogramming in plants.
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INTRODUCTION
Agrobacterium tumefaciens strains that harbor tumor inducible
(Ti) plasmids cause crown gall tumors upon infection of dicot
plants. Ti plasmids of Agrobacterium transfer their T-DNAs to the
chromosomal DNAs of plants. These T-DNAs contain three gene
loci involved in this tumorigenesis, tmr, tms (tms1 and tms2), and
tml. The tmr and tms loci contain genes involved in the biosyn-
thesis of cytokinins and auxins, respectively. The tml locus was
originally identified as the mutated gene that causes tumors larger
than those induced by the wild-type T-DNA (Garfinkel et al.,
1981). It contains two genes 6a and 6b: the former encodes an
unknown protein whereas the molecular characteristics of the
latter had also remained undefined until Terakura et al. (2007)
identified them recently. Gene 6b in the tml loci is conserved in the
T-DNA of all strains of Agrobacterium and is actively transcribed
in the tumor cells (Willmitzer et al., 1983; Otten and De Ruffray,
1994). In addition, some plant species that were infected with
Agrobacterium stains having T-DNAs containing only the 6b genes
showed the formation of small but significantly sized tumors at the
infection sites (Hooykaas et al., 1988; Tinland et al., 1989). When
6b was introduced into leaf disks, which were then incubated on
hormone-free medium, unorganized calli were formed (Wabiko
and Minemura, 1996). Transgenic plants regenerated from these
calli exhibited morphological defects in various organs (Tinland
et al., 1992; Wabiko and Minemura, 1996; Gális et al., 1999, 2002;
Helfer et al., 2003; Terakura et al., 2006). The defects appear to
be due to increased meristematic states and cell division poten-
tials. These observations suggest that the 6b proteins play roles in

the maintenance of tumorigenic states as well as the induction of
dedifferentiation and differentiation (reprogramming process) of
plant organs.

In the present mini review, we will summarize the results of
recent studies, including our own, to present a novel understand-
ing of the molecular characteristics of 6b protein and discuss how
6b might act as a reprogramming factor. We focus here on the
subcellular localization of 6b protein; relationships between such
localization and the ability of 6b to induce tumorigenic states;
plant genes that are affected by 6b; plants proteins that interact
with 6b; and, finally, a molecular function of 6b.

STRUCTURAL FEATURES OF 6b PROTEIN
The 6b gene of A. tumefaciens AKE10 strain (Wabiko and Mine-
mura, 1996) encodes a protein with 208 amino acid residues that
contains an acidic region (Figure 1A: residues 164–184) near
the carboxyl terminus, suggestive of interactions with other pro-
teins to generate complexes. The acidic region is essential for
the generation of abnormal phenotypes by 6b (Terakura et al.,
2006). It is worth pointing out that when the GAL4 DNA binding
domain is fused to 6b protein, the fusion protein has a transac-
tivation activity, which requires the acidic region (Kitakura et al.,
2002).

The remaining amino acid sequence of 6b exhibits weak sim-
ilarity to those sequences of several proteins encoded by other
genes in the Ti and Ri plasmids of A. rhizogenes T-DNAs, rolB,
rolC, ORF13, and ORF14 that belong to the plast family (Spena
et al., 1987; Levesque et al., 1988; Stieger et al., 2004). Despite
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FIGURE 1 | Morphological defects in the transgenic plants that express

6b protein. (A) Schematic domain organization of 6b protein. The acidic
region (residues 164–184) is present in 6b. (B) Photographs showing clearly
the reported phenotypes of transgenic tobacco plants. Transgenic plants
transformed with the empty vector (a,c) or 6b gene (b,d,e). The 6b-transgenic
seedling (b) and young plant (d) exhibiting mild defects and the 6b-plant (e)

exhibiting severe defects. Arrowheads indicate protrusions on the abaxial side
of leaves. Scale bars: 10 mm. (C) Photographs showing clearly the reported
phenotypes of non-transgenic and transgenic Arabidopsis plants. The
6b-transgenic Arabidopsis plants (a,c); non-transgenic Col-0 plants (b,d). Scale
bars: 1 mm (a,b), 10 mm (c,d). Some of pictures were published previously
(Terakura et al., 2006).

of their weak similarities, they also induce commonly abnormal
growth and morphology of both roots and shoots, and aber-
rant accumulation of sugars and metabolites (Cardarelli et al.,
1987; Spena et al., 1987; Lemcke and Schmülling, 1998; Helfer
et al., 2002; Stieger et al., 2004; Mohajjel-Shoja et al., 2011). The
amino acid sequence of the ORF13 protein contains a retinoblas-
toma (Rb)-binding motif (LXCXE), and it binds to the maize
Rb protein (Stieger et al., 2004); however, 6b does not have this
motif.

Although 6b protein contains no motif similar to the nuclear
localization signal (NLS), 6b protein localizes to the nucleus
(Kitakura et al., 2002). Only the RolB protein in the plast fam-
ily has also been shown to localize to plant nuclei (Moriuchi
et al., 2004). Tobacco plants that express a glucocorticoid-receptor-
fused 6b protein show the abnormal phenotypes described above
only after being treated with dexamethasone, which stimulates
nuclear import of the protein (Terakura et al., 2006). This result
suggests that the nuclear localization of 6b is required for the
appearance of morphological defects of plants and abnormal cell
proliferation. Mechanisms of nuclear localization of the 6b pro-
tein, however, have remained unknown. There are two possible
explanations for such a localization of 6b. (1) The relative molecu-
lar mass of 6b protein is sufficiently small enough (approximately
20,000) to be transported into the nucleus by passive diffusion
and it might be trapped there by a certain nuclear protein. (2)
As mentioned below, 6b interacts with the NtSIP1 and NtSIP2
proteins, which are tobacco transcription factor-like nuclear pro-
teins (Kitakura et al., 2002, 2008). Therefore, 6b proteins might

be transported into the nucleus through an interaction with these
endogenous nuclear proteins. Regardless of the molecular mecha-
nisms involved, however, 6b appears to play a role in the expression
of some genes that might be involved in cell proliferation and
differentiation.

CHARACTERISTICS OF TRANSGENIC PLANTS THAT
EXPRESS 6b
PHENOTYPIC CHARACTERISTICS OF TOBACCO PLANTS THAT
EXPRESS 6b
The shoots and leaves of transgenic tobacco plants derived from
calli, which are induced by the expression of 6b and cultured
on hormone-free-medium, show various morphological defects
(Figure 1B; Tinland et al., 1992; Wabiko and Minemura, 1996;
Helfer et al., 2003; Terakura et al., 2006). In the tobacco transgenic
plants that show mild defects, cotyledons and leaves are curled
upwardly at an early growth stage (Figure 1Bb,d) and generate
a number of outgrowths from the abaxial surface (Figure 1Bd).
Transgenic plants that show the severe phenotype produce leaves
with long petioles and an unexpanded lamina associated with
rod-shaped protrusions (Figure 1Be). Expression of 6b in trans-
genic tobacco plants also induces abnormal venation patterns
of cotyledons, which sometimes include veins with inverted
adaxial–abaxial polarity (Kakiuchi et al., 2007). In hypocotyles
of these transgenic tobacco seedlings, basipetal auxin transport
was reduced, which might be related to morphological abnormal-
ities as described above (Kakiuchi et al., 2006). Takahashi et al.
(2013) suggested that 6b protein is involved in modulating auxin
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and cytokinin localization and affects proliferation of tumorigenic
cells expressing 6b.

To understand the molecular basis for the upward curling of
leaves and the protrusion at the leaf abaxial side of tobacco trans-
genic plants with the 6b gene, Terakura et al. (2006) measured
levels of Cyclin B1 and NACK1 transcripts (as markers for the cell
cycle) in mature leaves of 6b-transgenic plants and carried out in
situ hybridization with sections of mature leaves and cDNAs of
NACK1. Transcript levels of these genes were increased and these
genes were ectopically transcribed on the abaxial side of mature
leaves, suggesting increased cell division competence in the abaxial
domain of 6b-transgenic leaves.

In addition to aberrant morphology and patterns of cell divi-
sion, expression of 6b in tobacco plants stimulates sugar uptake
and retention, which might cause expansion of leaf and root tissues
of transgenic tobacco (Clément et al., 2006, 2007). Expressions of
rolC and tobacco endogenous rolC homolog also induce simi-
lar effects on sucrose uptake, suggesting a functional relationship
between rolC and 6b (Mohajjel-Shoja et al., 2011).

In several Arabidopsis mutants that have defects in the establish-
ment of leaf adaxial–abaxial polarity, similar leaf morphological
defects are observed (McConnell and Barton, 1998; Eshed et al.,
2001; Ueno et al., 2007; Kojima et al., 2011; Ishibashi et al., 2012).
A model has been proposed whereby the appropriate cell differ-
entiation of leaf adaxial and abaxial domains is required for the
development of flat leaf lamina, and thus defects in the estab-
lishment of leaf adaxial–abaxial polarity cause inhibition of the
leaf laminar expansion (Waites and Hudson, 1995; Emery et al.,
2003). In the transgenic tobacco plants that express 6b, the adaxial–
abaxial polarity of leaves might be affected as a consequence of
aberrant expression of tobacco genes that are involved in the
establishment of such a polarity.

PHENOTYPES OF Arabidopsis PLANTS THAT EXPRESS 6b
In the transgenic Arabidopsis plants that express the 6b gene, mor-
phological defects were also observed, such as the upwardly curled
leaves, protrusion at the leaf abaxial side, and apparent serrations
in the leaf lamina (Figure 1C; Terakura et al., 2006). In addition,
the Arabidopsis transgenic plants that express 6b genes from the
Agrobacterium vitis AB4 strain or A. tumefaciens Tm4 strain gener-
ate rod-like shaped leaves with short lamina along the longitudinal
axis and a long petiole (Helfer et al., 2003). These phenotypes are
somewhat similar to those of the Arabidopsis plants in which the
ASYMMETRIC LEAVES2 (AS2) gene is ectopically overexpressed
(Iwakawa et al., 2002).

To understand the molecular bases for the above mentioned
phenotypes of Arabidopsis transgenic plants, Terakura et al. (2006)
measured the transcript levels of a number of genes related to leaf
morphology and cell division. The results showed increases in lev-
els of transcripts of the Cyclin B1 and AtNACK1 genes (cell cycle
markers); class 1 KNOX genes (markers for meristem mainte-
nance: STM, BP, KNAT2, and KNAT6); and CUC genes (markers
for meristem maintenance and separation of organs from the
meristem: CUC1, CUC2, and CUC3). These data suggest that the
meristematic state and cell division competence are increased in
6b-transgenic Arabidopsis plants. Transcript levels of HD-ZIP III
and ASYMMETRIC LEAVES1 (markers for adaxial development)

or of KAN1and FIL (markers for abaxial development), however,
were not significantly affected by 6b expression (Terakura et al.,
2006). The results of microarray analyses do not allow us to sim-
ply explain the molecular basis of the abnormal leaf morphology
of the 6b-transgenic Arabidopsis.

THE 6b GENE ENHANCES DEVELOPMENTALLY INDETERMINATE STATES
AND CELL PROLIFERATION POTENTIAL IN PLANTS
The tobacco leaf disks that are transcribed under control of
the Cauliflower mosaic virus 35S promoter generate white or
green abnormal cell proliferation. During the callus formation
by 6b expression, the amounts of endogenous phytohormones,
cytokinin and auxin, are not changed (Wabiko and Mine-
mura, 1996). It seems likely that the 6b gene might directly
or indirectly induce the expression of genes required for for-
mation of calli. Gene 6b also suppresses both the shoot for-
mation induced by cytokinins in vitro (Spanier et al., 1989;
Wabiko and Minemura, 1996) and the root formation induced by
auxin and rolABC (Tinland et al., 1990), suggesting that 6b pro-
tein not only induces the cell proliferation under hormone-free
conditions but also suppresses the cell differentiation induced by
cytokinins and auxins.

Transcripts levels of genes for meristem (stem cell) mainte-
nance, class 1 KNOX genes, are increased in Arabidopsis and
that the expression of class 1 KNOX genes of tobacco (NTH15,
NTH1, NTH20, and NTH22) is also increased in the leaves of
6b-transgenic tobacco plants (Terakura et al., 2006). These results
suggest an increase in the undifferentiated states of cells in these
6b-transgenic plants.

MOLECULES INTERACTING WITH 6b PROTEIN
To unveil the molecular functions of 6b protein, Kitakura et al.
(2002, 2008) and Terakura et al. (2007) have sought for 6b-
interacting proteins of the tobacco cultured cell line BY-2. They
screened tobacco cDNA libraries by yeast two-hybrid systems
and eventually identified three positive cDNAs of interest in
terms of tumorigenicity, cell division competency, and the forma-
tion of morphologically malformed leaves. Kitakura et al. (2002,
2008) identified two of these genes designated Nicotiana Six-b
Interacting Protein 1 and 2 (NtSIP1 and NtSIP2); and Terakura
et al. (2007) identified a third gene, NtSIP3.

NtSIP1 IS LOCALIZED TO NUCLEI AND ENHANCES THE NUCLEAR
LOCALIZATION OF THE 6b PROTEIN IN TOBACCO CELLS
NtSIP1 encodes a protein that consists of 318 amino acid residues
with a molecular mass of 34.8 kD (Kitakura et al., 2002). The
region from residue 72 to residue 131 of NtSIP1 is predicted to
form three-helices with short intervening loops. This region is
similar to the triple helix motif of rice transcription factor GT-2,
which controls the transcription level of the PHYA gene (Dehesh
et al., 1992). There are two basic regions that resemble a NLS.
In the Arabidopsis genome, several homologs of the NtSIP1 gene
exist. The amino acid residues of NtSIP1 are 43% identical to
those of the predicted protein of F14P22.220, 36% identical to
those of MOP10_9, 34% identical to those of F9F8.9, and 27%
identical to those of F11B9.6. Phylogenetic tree analysis indicates
that NtSIP1 is closely related to F14P22.220 of Arabidopsis. Amino
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acid sequences corresponding to a triple helix motif and NLSs
are conserved in all of these deduced sequences. In BY-2 cells,
NtSIP1 localizes in the nuclei. Accumulated NtSIP1 transcripts
are detected in roots, stems, mature leaves, and shoot apices that
contain the shoot apical meristem, and those transcript levels are
significantly higher in shoot apices than in other organs (Kitakura
et al., 2002). NtSIP1 enhances the nuclear localization of 6b pro-
tein in BY-2 cells, and the acidic region of 6b is necessary for
the interaction with NtSIP1 and the enhancement of the nuclear
localization of 6b (Kitakura et al., 2002).

NtSIP2 HAS HOMOLOGY TO TNP1 ENCODED BY THE TRANSPOSABLE
ELEMENT Tam1 OF Antirrhinum majus
The NtSIP2 gene is predicted to encode a protein with 424 amino
acid residues, and the predicted protein exhibits homology to
TNP1 encoded by the transposable element Tam1 of A. majus
(Kitakura et al., 2008). The predicted amino acid sequence of
NtSIP2 is 30% identical and 50% similar to that of the TNP1
protein (Nacken et al., 1991). NtSIP2 has three short stretches of
basic amino acid residues that are similar to the NLS sequence. The
NtSIP2 transcripts are detected in a variety of plant tissues with-
out significant quantitative difference. Almost all NtSIP2 protein
is localized to the nucleolus. Since significant amounts of the 6b
protein are also detected in the nucleolus, NtSIP2 in the nucleolus
might be interacted with the 6b protein. NtSIP2 might play a role
in transporting 6b into the nucleolus by binding activity and the
6b-NtSIP2 complex might act as a transcriptional repressor within
the nucleolus.

NtSIP3
NtSIP3 encodes histone H3
By using the yeast two-hybrid system with a 6b sequence lacking
the DNA region corresponding to the acidic region (Figure 1A),
Terakura et al. (2007) identified two tobacco cDNAs for mem-
bers of the tobacco histone H3 protein family. The predicted
amino acid sequences of the two tobacco clones are identi-
cal to those of histone H3.1 (DNA replication-dependent H3)
and H3.2 (replication-independent H3) of Arabidopsis (John-
son et al., 2004), respectively, which are collectively designated
as NtSIP3. The tobacco histone H3.2 clone was used for in
vitro binding assay and in vivo binding by BiFC (bimolecu-
lar fluorescence complementation) analysis. The results of these
experiments have shown that the 6b protein directly inter-
acts with tobacco histone H3.2 in vitro and in vivo. Protein
6b also binds to Arabidopsis histone H3.1 (At3g27360.1) and
H3.2 (At4g40030.1) in vitro. In the tobacco BY-2 cells, 6b pro-
tein interacts with chromatin. The amino acid sequence of 6b
without the acidic region binds to the histone fold region of his-
tone H3.2 (60–135 residues) and the C-terminal region of 6b
(185–208 residues) is required for the binding (Terakura et al.,
2007).

It was examined whether 6b can bind other core histones (H2A,
H2B, and H4). The results show that it binds to histone H3 specifi-
cally (Terakura et al., 2007). Since the histone fold consists of three
αhelices that are involved in the formation of nucleosomes, 6b pro-
tein might have some effect on the formation of the nucleosome
in vivo (Figure 2).

FIGURE 2 | Working hypothesis of 6b action. See details in text. NtSIPs
represent NtSIP1 or NtSIP2. They might independently bind to 6b and/or
both might simultaneously bind to 6b.

6b protein has histone chaperone activity
Histone chaperones are known to be factors that enhance the for-
mation of nucleosomes in vitro (Loyola and Almouzni, 2004).
Histone chaperones, such as HIRA (histone regulator A) and
ASF1 (antisilencing factor 1), bind to the histone fold domains
of core histones (Munakata et al., 2000; Ray-Gallet et al., 2002).
Furthermore, histone chaperones, such as NAP-1 (nucleosome
assembly protein-1; Ishimi and Kikuchi, 1991), nucleophos-
min/B23 (Okuwaki et al., 2001), yeast FK506bp (Kuzuhara and
Horikoshi, 2004), and nucleolin (Angelov et al., 2006), contain
acidic regions of amino acid sequence. The β sheet structure
of ASF1 is required for the interaction with histone, and other
histone chaperones, such as NAP-1, RbAp46/48, p60 (a com-
ponent of Chromatin Assemby Factor-1 complex) and HIRA,
are also predicted to contain similar β sheet structures (English
et al., 2006). Intriguingly, the C-terminal amino acids that are
required for the interaction with histone H3 are predicted to
form the β-sheet structure. The 6b protein is similar to known
histone chaperones in terms of the following three points: (1)
the physical association of 6b with the histone fold of histone
H3; (2) the presence of the β-sheets in the C-terminus of 6b
(Wang et al., 2011); and (3) the presence of the acidic region
in 6b.

By using a supercoiling assay, 6b protein was demonstrated
to have histone chaperone-like activity in vitro (Terakura et al.,
2007). The C-terminal region is required for the cell division-
stimulating activity, interaction with histone H3, and histone
chaperon-like activity of 6b, suggesting that such activity is
related to the ability of 6b to induce cell proliferation. AB6b
from A. vitis AB4 strain also binds to histone H3 and has
histone chaperone-like activity. Similarly as for AK6b, AB6b
also induces severe morphological defects in transfected plants
(Helfer et al., 2003). Histone chaperones affect the histone dynam-
ics, such as histone conservation (Dutta et al., 2001), histone
transport (Ito et al., 1996; Mosammaparast et al., 2002), and
chromatin structure conversion (Smith and Stillman, 1989; Belot-
serkovskaya et al., 2003; Adkins et al., 2004; Boeger et al., 2004;
Schermer et al., 2005) to control the transcription and DNA
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replication in the nucleus (Loyola and Almouzni, 2004; Polo
and Almouzni, 2006). The 6b protein might act as a histone
chaperone in vivo and regulate the chromatin structure to affect
gene transcription for cell proliferation and plant differentiation
(Figure 2).

FUTURE PROSPECTS
Through the analyses of its interacting molecules, Agrobacterium
6b protein functions in the nucleus and the nucleolus of plant
cells, in which it might interact with NtSIP1, NtSIP2, and his-
tone H3 and act as a histone chaperone to alter expression
patterns of genes related to tumorigenicity, cell proliferation,
and reprogramming of plant cells (Figure 2). It is generally
accepted that histone chaperons affect epigenetic status of chro-
matin mainly by replacing canonical histones with replacement
histones (differing in several amino acid residues from canon-
ical ones), which can alter patterns of gene expression (Skene
and Henikoff, 2013). Formation of crown gall tumors largely
depends on expression of genes for enzymes involved in cytokinin
and auxin biosynthesis. The histone chaperone activity of 6b
might affect chromatin structures to regulate the expression lev-
els of the genes related to auxin and cytokinin biosynthesis.
Plants have various silencing mechanisms to repress expression
of transgenes, such as those from pathogens, by chromatin
remodeling, DNA methylation, histone modification, and/or
the RNAi system (Zilberman and Henikoff, 2005). Expression
of the phytohormone biosynthesis genes in the T-DNA region
might be down-regulated by the silencing mechanisms of host
plants. Histone chaperone activity of 6b might compromise
actions of the plant silencing systems. Suppression of the gene
silencing systems by 6b might promote expression of genes for
auxin and cytokinin biosynthesis, which might affect the host
range of Agrobacterium strains to induce crown gall tumors
(Hooykaas et al., 1988). Genetic manipulation of the 6b gene might
contribute to improving Agrobacterium-mediated gene transfer
technologies.

Apart from the histone chaperone activity of 6b, the crystal
structure of this protein exhibits a certain extent of the structural
similarity to an ADP ribosylation factor of Arabidopsis, and the
6b protein bears a biochemical role in ADP ribosylation under
conditions used by Wang et al. (2011). Relationships between this
activity, phenotypes and alteration of patterns of gene expression
generated by 6b remain to be elucidated.

It is notable that transcript levels of cell division- and meristem-
related genes such as class 1 KNOX and CYCLIN genes are
increased. These data support the hypothesis that the cell prolifer-
ation potential and meristematic states might be enhanced by 6b.
Accumulation levels of transcripts of a number of auxin-inducible
genes, such as those of the GH3, IAA, and ACS family genes, are
decreased in 6b-expressing transgenic Arabidopsis plants (Terakura
et al., 2007). These results might imply that various physiological
and cellular statuses that are controlled by such auxin-inducible
genes might be altered by 6b expression. It should be critical to
identify direct target genes of 6b to uncover molecular frame-
works of cell reprogramming and intriguing to examine whether
plant endogenous histone chaperons might have reprogramming
activities.
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