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Asparagine (N )-linked protein glycosylation is a ubiquitous co- and post-translational
modification which can alter the biological function of proteins and consequently affects
the development, growth, and physiology of organisms. Despite an increasing knowledge
of N -glycan biosynthesis and processing, we still understand very little about the biological
function of individual N -glycan structures in plants. In particular, the N -glycan-processing
steps mediated by Golgi-resident enzymes create a structurally diverse set of protein-linked
carbohydrate structures. Some of these complex N -glycan modifications like the presence
of β1,2-xylose, core α1,3-fucose or the Lewis a-epitope are characteristic for plants and are
evolutionary highly conserved. In mammals, complex N -glycans are involved in different
cellular processes including molecular recognition and signaling events. In contrast, the
complex N -glycan function is still largely unknown in plants. Here, in this short review, I
focus on important recent developments and discuss their implications for future research
in plant glycobiology and plant biotechnology.
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INTRODUCTION
N-Glycosylation is a major co- and post-translational modi-
fication of proteins in all eukaryotes. It has been estimated
that the majority of all secretory proteins are N-glycosylated
(Apweiler et al., 1999). N-Glycosylation is initiated in the ER by
transfer of a preassembled oligosaccharide (Glc3Man9GlcNAc2)
precursor to asparagine residues within the sequence motif Asn–
X–Ser/Thr (X represents any amino acid except proline) on
nascent polypeptide chains. In addition, N-glycosylation at the
unusual Asn–X–Cys site has also been described for some pro-
teins (Matsui et al., 2011; Zielinska et al., 2012). Upon transfer
of the oligosaccharide, the N-glycan is rapidly processed by
highly specific α-glucosidases and α-mannosidases that remove
terminal glucose and mannose residues, respectively. Incom-
pletely trimmed N-glycans (Glc0−3Man5−9GlcNAc2) that contain
different amounts of mannose residues (also called oligoman-
nosidic N-glycans) are mainly found on ER-resident proteins
(Figure 1A). The mannose trimming reactions are carried out
by α-mannosidases (MNS1–MNS3) that act in the ER and Golgi
(Liebminger et al., 2009). The Man5GlcNAc2 oligosaccharide,
which is the final product of these early N-glycan-processing
steps is used by GNTI as a acceptor substrate for the trans-
fer of a single N-acetylglucosamine (GlcNAc) residue to the
exposed α1,3-mannose of the N-glycan (Strasser et al., 1999).
This enzymatic reaction is absolutely required for all further
N-glycan modifications and results in the formation of com-
plex N-glycans in the Golgi apparatus. In particular, GNTI
generates the GlcNAc1Man5GlcNAc2 N-glycan that is further

Abbreviations: EMS, ethyl methanesulfonate; ERAD, ER-associated degra-
dation; GNTI, β1,2-N-acetylglucosaminyltransferase I; FUT11/12, core α1,3-
fucosyltransferase; XYLT, β1,2-xylosyltransferase

processed by Golgi-α-mannosidase II (GMII), GNTII, XYLT,
and FUT11/12 (Figure 1B). All these enzymes are absolutely
dependent on GNTI activity and reside in the cis/medial-Golgi
apparatus of plants where they might form a multi-protein com-
plex that could play a role for the organization of the glycosylation
enzymes within the Golgi and subsequently also for the con-
trolled processing of N-glycans (Schoberer and Strasser, 2011;
Schoberer et al., 2013). GNTI is evolutionary highly conserved
and present in land plants including mosses as well as in some
microalgae (Strasser et al., 1999; Koprivova et al., 2003; Baïet
et al., 2011). Due to its central function in initiation of com-
plex N-glycan formation, GNTI controls the final N-glycosylation
pattern on individual glycoproteins which can influence their
biological function. XYLT and FUT11/12 attach β1,2-xylose
and core α1,3-fucose residues, respectively, to different accep-
tor substrates and create common complex plant N-glycans like
GlcNAc2XylFucMan3GlcNAc2 (GnGnXF, Figure 1A). Such com-
plex N-glycans are not present in mammals and thus can elicit an
unwanted anti-carbohydrate immune response when for exam-
ple present on plant-produced recombinant glycoproteins (Bardor
et al., 2003; Jin et al., 2008).

The final N-glycan modification steps take place in the
trans-Golgi and are carried out by the Lewis-type β1,3-
galactosyltransferase (GALT1) and the α1,4-fucosyltransferase
(FUT13) which generate the Lewis a-trisaccharide [Fucα1-
4(Galβ1-3)GlcNAc-R] on complex N-glycans (Strasser et al.,
2007b). The Lewis a-type structures seem ubiquitous in the plant
kingdom (Fitchette et al., 1999; Wilson et al., 2001), but they are
only present on a small number of still widely unknown glycopro-
teins and the biological function of these large complex N-glycans
remains to be shown.
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FIGURE 1 | (A) Examples for two characteristic types of N -glycans linked
to the Asn–X–Ser/Thr sequence of proteins: oligomannosidic (e.g., Man8)
and complex-type (e.g., GnGnXF) N -glycans. (B) Possible route in the
formation of complex N -glycans in plants. Upon transfer of the
preassembled oligosaccharide, the first N -glycan trimming reactions are
catalyzed by α-glucosidases I (GCSI)/ II (GCSII) and α-mannosidase 3
(MNS3). Complex N -glycan formation is initiated in the Golgi apparatus by
β1,2-N -acetylglucosaminyltransferase I (GNTI, highlighted in red).
MNS1/2, Golgi α-mannosidase I (two forms with largely redundant
function are present in A. thaliana); GMII, Golgi α-mannosidase II; GNTII,
β1,2-N -acetylglucosaminyltransferase II; XYLT, β1,2-xylosyltransferase;
FUT11/12, core α1,3-fucosyltransferases (two forms with largely
redundant function are present in A. thaliana); GALT1, Lewis-type
β1,3-galactosyltransferase; FUT13, α1,4-fucosyltransferase. Structural
analysis of N -glycans from different A. thaliana mutants and in vitro
enzyme activity assays revealed that downstream of GNTI the substrate
specificity of the processing enzymes is less stringent (Strasser et al.,
2006, 2007b). Not shown: the possible removal of terminal GlcNAc
residues by β-hexosaminidases (HEXO proteins) which generates
paucimannosidic N -glycans in post-Golgi compartments or in the
extracellular space (Liebminger et al., 2011). (C) The phenotypes of
characteristic N -glycan-processing mutants are shown. While an
N -glycan-processing defect (mns1 mns2 mns3) upstream of GNTI results
in a severe root and shoot phenotype in A. thaliana (Liebminger et al.,
2009), cgl1 (or gntI, the allelic A. thaliana T-DNA knockout mutant) does
not display any growth or developmental phenotype under normal growth
conditions (von Schaewen et al., 1993; Kang et al., 2008). In contrast, rice
gnt1 displays a severe growth phenotype resulting in early lethality
(Fanata et al., 2013). The major N -glycan structures of the mutants are
indicated.

Truncated N-glycans are generated by removal of terminal
GlcNAc residues in post-Golgi compartments. These pauciman-
nosidic N-glycans have been found on vacuolar and extracellular
glycoproteins (Strasser et al., 2007a; Liebminger et al., 2011).

THE FUNCTION OF OLIGOMANNOSIDIC N -GLYCANS
Early N-glycan-processing reactions mediated by α-glucosidase
I and II are essential for Arabidopsis and presumably also for
other plant species (Taylor et al., 2000; Boisson et al., 2001;
Gillmor et al., 2002; Soussilane et al., 2009; Farid et al., 2011;
Wang et al., 2014). The generated oligomannosidic N-glycans
are implicated in folding of nascent polypeptides and play an
important role during ER-quality control processes and ERAD
of misfolded or incompletely assembled glycoproteins (Aebi,
2013). The overall principles of these processes are conserved
in eukaryotes. Recent findings suggest that monoglucosylated
N-glycans in the ER are important for association with the
lectins calreticulin or calnexin also in plants. For example, the
pattern recognition receptor EFR involved in innate immunity
and a misfolded variant of the brassinosteroid receptor BRI1
displayed a selective interaction with the plant-specific calretic-
ulin 3 (Jin et al., 2009; Li et al., 2009). Additional data suggest
that N-glycans present on these heavily glycosylated leucine-
rich repeat receptor kinases are subjected to re-glucosylation
by the folding sensor UDP-glucose:glycoprotein glucosyltrans-
ferase (UGGT) and glucosidase-mediated de-glucosylation fol-
lowed by a release from the calreticulin/calnexin quality con-
trol cycle (reviewed in Liu and Li, 2014; Tintor and Saijo,
2014). Moreover, specific mannose residues present on termi-
nally misfolded glycoproteins play also a crucial role for the
selective disposal via ERAD (Hong et al., 2009, 2012; Hüttner
et al., 2012, 2014) and a complete block of mannose removal
in the Arabidopsis mns1 mns2 mns3 triple mutant causes also
a severe root growth phenotype (Figure 1C; Liebminger et al.,
2009).

THE FUNCTION OF COMPLEX N -GLYCANS
In all higher eukaryotes, GNTI is the central enzyme that initiates
complex N-glycan formation on secreted and membrane-bound
proteins that are trafficking through the Golgi to their final
destination. Early studies in mice revealed that GNTI is essen-
tial for the development of embryos (Ioffe and Stanley, 1994;
Metzler et al., 1994), but cultured mammalian cells can survive
in the absence of complex N-glycans (Stanley et al., 1975). More
recent genetic approaches revealed that the structurally diverse
complex N-glycans on mammalian proteins participate in many
different biological processes and distinct alterations are often
associated with diseases (Lowe and Marth, 2003; Dennis et al.,
2009). Drosophila melanogaster deficient in GNTI activity are
viable, but display distinct phenotypes like abnormal brain devel-
opment and a reduced life span (Sarkar et al., 2006). Caenorhab-
ditis elegans GNTI-null mutants develop normally but are more
susceptible to bacterial pathogens (Schachter, 2010). Together
these findings highlight the importance of complex N-glycan
modifications in various organisms.

In spite of the fact that complex N-glycans are ubiquitously
present in plants (Wilson et al., 2001), their biological function is
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virtually unknown. The first mutant lacking complex N-glycans
was isolated more than two decades ago by EMS mutagene-
sis of Arabidopsis and subsequent screening for lines that lack
β1,2-linked xylose and core α1,3-fucose residues (von Schaewen
et al., 1993). The isolated complex glycan 1 (cgl1) mutants dis-
played a defect in the formation of complex N-glycans due to
a point mutation in the gene coding for GNTI (Strasser et al.,
2005). Consequently, in cgl1 all endogenous glycoproteins carry
exclusively oligomannosidic N-glycans with Man5GlcNAc2 as pre-
dominant oligosaccharide. Remarkably, the Arabidopsis cgl1 plants
are viable, fertile and do not display any obvious phenotype
under different growth conditions including heat (30◦C) and
cold (8◦C) stress or increased light conditions (von Schaewen
et al., 1993; Figure 1C). Related studies identified various other
Arabidopsis mutants with distinct defects in N-glycan-processing
steps downstream of GNTI. In line with data for cgl1, no clear
growth or developmental phenotypes were observed for Arabidop-
sis mutants that produce hybrid structures (Strasser et al., 2006)
or complex N-glycans devoid of β1,2-xylose and core α1,3-fucose
residues (Strasser et al., 2004). In agreement with these findings,
neither the complete elimination nor the overexpression of the
Lewis a-type structures on complex N-glycans caused a substan-
tial change in Arabidopsis growth or development when grown
under long day conditions (16 h-light/8 h-dark) at 22◦C (Strasser
et al., 2007b). Up to now, the only evidence for a biological
function of complex N-glycans in Arabidopsis was found when
cgl1 and other mutants were subjected to osmotic and salt stress
(Kang et al., 2008). Reduced root growth on media containing
high NaCl concentrations indicated that complex N-glycans are
implicated in tolerance to salt stress. However, a deeper under-
standing of complex N-glycan function in Arabidopsis and studies
that associate distinct complex N-glycan structures on individ-
ual glycoproteins with the enhanced salt sensitivity are completely
missing.

Based on the aforementioned studies, it has been suggested
that N-glycan processing in the Golgi is dispensable for the
normal development of plants and plays only a role under cer-
tain stress conditions. A recent study by Fanata et al. (2013)
challenges our current view and provides strong evidence that
complex N-glycans play indeed an essential role in some plant
species. A homozygous Oryza sativa line (gnt1) with a T-DNA
insertion in the single rice GNTI gene was identified that com-
pletely abolished GNTI mRNA expression. As a consequence of
missing GNTI transcripts and in accordance with the central
function of GNTI in the formation of complex N-glycans, the
rice gnt1 mutant displayed only oligomannosidic N-glycans with
approximately 75% Man5GlcNAc2 structures. Almost the same
amounts of Man5GlcNAc2 N-glycans were found for Arabidop-
sis cgl1 (von Schaewen et al., 1993; Strasser et al., 2005). However,
in marked contrast to Arabidopsis cgl1, a severe phenotype with
arrested seedling development and lethality before reaching the
reproductive stage was reported for rice gnt1 (Fanata et al., 2013;
Figure 1C). In addition, rice gnt1 plants displayed defects in
cell wall composition and cytokinin insensitivity. Although the
final confirmation that the observed severe phenotypes are indeed
linked to defects in gnt1 is missing as the cytokinin defect caused
problems with complementation of the gnt1 plants, all other data

are convincing and indicate that complex N-glycans are essen-
tial in some plant species. How can we explain this discrepancy
between Arabidopsis and rice? Based on data from total N-glycan
analysis and annotation of the rice genome, it is quite likely
that the N-glycan-processing steps in the Golgi are very simi-
lar between the two species (Figure 1B). However, there might
be subtle differences in cell-/tissue-specific expression of cer-
tain N-glycan-processing enzymes that might have been missed
by total N-glycan analysis from whole plant organs. Interest-
ingly, the rice genome contains more than one glycosyltransferase
with homology to Arabidopsis GALT1 (Strasser et al., 2007b) and
it seems that the formation of Lewis a-type structures occurs
more frequently in rice than in Arabidopsis (Léonard et al., 2004;
Strasser et al., 2004, 2007b). The rice GALT1 homologs belong to
Carbohydrate-Active enzyme glycosyltransferase-family 31, which
contains a large number of enzymes with quite diverse func-
tions (Strasser et al., 2007b; Basu et al., 2013). These GALT1
candidates have not been characterized and in the absence of
data from plants devoid of Lewis a-type structures, their con-
tribution to the development of rice remains an open question.
Moreover, N-glycosylation defects are generally pleiotropic and
affect numerous secretory as well as membrane-anchored pro-
teins. Consequently, the observed phenotype in rice gnt1 could
arise from several different glycoproteins that are dysfunctional in
the absence of Golgi-mediated N-glycan processing. As rice gnt1
displays reduced cellulose contents, glycoproteins involved in cel-
lulose biosynthesis could be affected (Fanata et al., 2013). While
impaired N-glycosylation or N-glycan processing has also been
linked to changes in cellulose contents in Arabidopsis (Burn et al.,
2002; Gillmor et al., 2002; Zhang et al., 2009) gntI/cgl1 does not
contain significantly altered cellulose contents compared to wild-
type Arabidopsis (Kang et al., 2008). Recently, it was also shown
that the heavily glycosylated endoglucanase KORRIGAN1, whose
enzymatic activity is important for efficient cellulose formation,
does not need complex N-glycans for its function (Liebminger
et al., 2013).

Based on the detected cytokinin insensitivity it was speculated
that members of the cytokinin-receptor family are N-glycosylated
and their function might be impaired in the rice gnt1 line (Fanata
et al., 2013). These histidine sensor kinases contain an extracel-
lular domain of approximately 280 amino acids with putative
N-glycosylation sites (Caesar et al., 2011; Steklov et al., 2013).
The degree of N-glycosylation and the N-glycan structures of
cytokinin receptors are not very well known, but for Arabidop-
sis AHK3 N-glycosylation could be shown by transient expression
in tobacco (Caesar et al., 2011). Notably, in Arabidopsis as well as
in maize these receptors were primarily found in the ER implying
that cytokinin binding takes place in this compartment (Caesar
et al., 2011; Lomin et al., 2011; Wulfetange et al., 2011). If so, then
Golgi-processed complex N-glycans are very likely not present
on cytokinin receptors and consequently these receptors are not
directly affected in GNTI-deficient rice.

IMPLICATIONS FOR PLANT GLYCOBIOLOGY
To understand the mechanisms underlying the observed defects
in rice gnt1 and compare them with data from other plants
species a number of key experimental approaches have to be
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explored: (i) It is very important to isolate other rice N-glycan-
processing mutants to pin down the complex N-glycan structure
or individual sugar residue that is crucial for the growth and devel-
opment of rice. (ii) There is an urgent need for high-throughput
glycoproteome approaches that enable the isolation of a large
number of glycoproteins and mapping of the corresponding N-
glycan structures from different plant species. Advances in this
field will be crucial for structure–function analysis and identi-
fication of target glycoproteins. Plant N-glycoproteome studies
have been reported recently (Zhang et al., 2011; Zielinska et al.,
2012; Song et al., 2013), but compared to other posttranslational
modifications these approaches are still too limited (Albenne
et al., 2013). (iii) Information on regulation of glycosylation
enzymes as well as information on cell-type or organ-specific
occurrence of certain glycan structures is almost completely
missing. Tools that have been used for the cell-type-specific
analysis of protein expression (Petricka et al., 2012) should also
be applied to unravel the N-glycoproteome in different plant
species. (iv) Up to now, null mutants devoid of N-glycan pro-
cessing have been characterized from Arabidopsis and rice, but
information on the significance of N-glycosylation and com-
plex N-glycan formation in other vascular plants is missing.
Together, the highlighted experimental approaches will enable us
to decode the biological function of the so far largely unknown
complex N-glycan modifications like the attachment of β1,2-
xylose, core α1,3-fucose, and the formation of the Lewis a-type
structures.

IMPLICATIONS FOR PLANT BIOTECHNOLOGY
Plants are emerging hosts for the manufacturing of valuable
recombinant proteins. Recently, the first plant-produced recom-
binant biopharmaceutical, a recombinant human glucocerebrosi-
dase, has been approved for enzyme replacement therapy in
humans and is commercially available in the United States
(Grabowski et al., 2014). Many biopharmaceutical proteins like
human immunoglobulins or hormones are glycosylated and the
composition of the glycans very often affect protein–protein inter-
actions leading to altered efficacies of the recombinant drugs
or unwanted side-effects like fast clearance from the blood or
increased immunogenicity. Consequently, for the pharmaceutical
industry as well as for structure–function studies, there is a grow-
ing demand to modify and control protein glycosylation of expres-
sion hosts. The ultimate aim of these approaches is the production
of recombinant glycoproteins with defined and homogenous gly-
can structures (Rich and Withers, 2009; Dalziel et al., 2014).
Developments during the last 10 years have shown that plants are
amenable to glyco-engineering and capable of producing valuable
recombinant glycoproteins with defined human-like structures
(Castilho and Steinkellner, 2012; Nagels et al., 2012; Bosch et al.,
2013). The absence of any growth phenotype in Arabidopsis cgl1
laid the foundation for N-glycan engineering of other species like
Nicotiana benthamiana and Lemna minor as well as of rice suspen-
sion cells (Cox et al., 2006; Strasser et al., 2008; Shin et al., 2011).
In these studies, gene silencing of XYLT and FUT11/12 was used
to eliminate the non-human and potentially immunogenic β1,2-
xylose and core α1,3-fucose residues from complex N-glycans
of recombinant proteins. Overall, these glyco-engineering efforts

were quite successful, but the plants still produced low amounts
of complex N-glycans like GnGnXF. A detailed characterization
of null mutants for XYLT and FUT11/12 will reveal whether these
and other plant species tolerate the absence of β1,2-xylose and
core α1,3-fucose residues on endogenous glycoproteins during
their whole life cycle. In addition, further studies are necessary
to investigate in detail the consequences on growth, develop-
ment, reproduction and stress response of stable engineered
plants that carry human-type complex N-glycan modifications.
So far, these knock-in approaches were limited to a small num-
ber of plant species and mainly to stable expression of single
mammalian glycosyltransferases (Bakker et al., 2001; Rouwendal
et al., 2007; Castilho et al., 2008; Sourrouille et al., 2008; Frey
et al., 2009; Nagels et al., 2011). In contrast, most of the more
advanced glyco-engineering approaches that require the concerted
action of several mammalian enzymes were done by simultaneous
transient expression of whole glycosylation pathways (Castilho
et al., 2010, 2012, 2013). The stable expression of the proteins
and enzymes involved in multi-step N-glycan processing like the
formation of highly sialylated complex N-glycans without any
negative effects on plant growth and development remains to be
shown.

In the light of the recent findings from rice, glyco-engineering
in some plant species might require new strategies and implemen-
tation of more elaborate tools to overcome adverse phenotypes
linked with extensive N-glycan remodeling. In terms of plant gly-
cobiology, the new findings from rice open the door for an exciting
new era.
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