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Miro GTPase, a member of the Ras superfamily, consists of two GTPase domains flanking
a pair of EF hand motifs and a C-terminal transmembrane domain that anchors the protein
to the mitochondrial outer membrane. Since the identification of Miro in humans, a series
of studies in metazoans, including mammals and fruit flies, have shown that Miro plays
a role in the calcium-dependent regulation of mitochondrial transport along microtubules.
However, in non-metazoans, including yeasts, slime molds, and plants, Miro is primarily
involved in the maintenance of mitochondrial morphology and homeostasis. Given the high
level of conservation of Miro in eukaryotes and the variation in the molecular mechanisms of
mitochondrial transport between eukaryotic lineages, Miro may have a common ancestral
function in mitochondria, and its roles in the regulation of mitochondrial transport may have
been acquired specifically by metazoans after the evolutionary divergence of eukaryotes.

Keywords: mitochondria, Miro, Ras GTPase, metazoan, Saccharomyces cerevisiae, Dictyostelium discoideum,

Arabidopsis thaliana

INTRODUCTION
Mitochondria are essential organelles for aerobic energy produc-
tion and metabolism in eukaryotic cells. They frequently undergo
changes in morphology and intracellular distribution through
fusion, fission, and cytoskeleton-dependent transport, presum-
ably to sustain their functional homeostasis. Severely damaged
mitochondria can be the target of an autophagic degradation
mechanism termed mitophagy (Logan, 2010; Westermann, 2010;
Chan, 2012; Otera et al., 2013; Friedman and Nunnari, 2014).
The functions and dynamics of mitochondria are linked to evo-
lutionarily conserved proteins localized to the mitochondrial
outer membrane. For example, voltage-gated anion channels
(VDAC) regulate the flow of metabolites, including ATP and
ADP, across the outer membrane (Lemasters and Holmuhame-
dov, 2006; Colombini, 2012). The translocase of the outer
mitochondrial membrane (TOM) complex is the main path-
way for mitochondrial protein transport, while the topogenesis
of mitochondrial outer membrane β-barrel (TOB)/sorting and
assembly machinery (SAM) complex plays an important role
in the assembly of outer membrane proteins (Pfanner et al.,
2004; Neupert and Herrmann, 2007; Endo and Yamano, 2010).
Dynamin-related GTPases are recruited to the outer membrane
and form a ring-like oligomer that constricts mitochondria,
leading to fission (Kuroiwa et al., 2006; Bui and Shaw, 2013;
Chappie and Dyda, 2013).

The Miro protein is a mitochondrial outer membrane-localized
GTPase that is highly conserved throughout eukaryotes. In meta-
zoans, Miro is a component of the protein complex that regulates
mitochondrial transport. However, accumulating evidence from
studies of non-metazoans, including plants, suggests that Miro
is involved in the maintenance of mitochondrial morphology
and homeostasis. Here, we review the studies investigating Miro

GTPases in diverse eukaryotes and reconsider the molecular func-
tions and physiological roles of Miro in the light of eukaryotic
evolution.

MOLECULAR STRUCTURE OF Miro GTPases
Miro GTPase is anchored to the mitochondrial outer membrane
by its C-terminal transmembrane domain, leaving its N-terminus
exposed to the cytoplasm. Its cytoplasmic region contains two
structurally distinct GTPase domains that are separated by a pair
of EF hand motifs (EF hands 1 and 2; Fransson et al., 2003,
2006; Frederick et al., 2004; Guo et al., 2005; Yamaoka and Leaver,
2008; Vlahou et al., 2011; Figure 1). Miro was originally classi-
fied as an atypical Rho GTPase based on sequence similarity of
the N-terminal GTPase domain to Rho family proteins (Frans-
son et al., 2003). However, later studies found that both GTP
domains lack the conserved G-3 DxxG motif (Bourne et al., 1991)
and the Rho-specific insert region (Freeman et al., 1996; Walker
and Brown, 2002), suggesting that they represent two independent
subfamilies of the Ras GTPase superfamily (Frederick et al., 2004;
Wennerberg and Der, 2004; Boureux et al., 2007; Reis et al., 2009).
A recent study of Miro in fruit flies showed that its C-terminal
GTPase domain is most structurally similar to Rheb, a Ras sub-
family member (Mazhab-Jafari et al., 2012; Klosowiak et al., 2013).
Correspondingly, the catalytic rates of the two GTPase domains
of the budding yeast Miro homolog Gem1p are comparable to
those of the Ras family and are significantly slower than those
of the dynamin family (Koshiba et al., 2011). The two conserved
EF hands of Miro have been shown to bind Ca2+ (MacAskill
et al., 2009; Koshiba et al., 2011) and the flanking regions of the
EF hands are highly conserved among eukaryotes (Vlahou et al.,
2011). Klosowiak et al. (2013) showed that these regions contain
non-canonical “hidden” EF hands (hEF hands 1 and 2) followed
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FIGURE 1 | Molecular structure of the Miro GTPase. Schematic representation of the molecular structure of Miro according to Klosowiak et al. (2013).
Domain names are described in the text. The bar indicates a length corresponding to 100 amino acid residues.

by single helices (LM helices 1 and 2; Figure 1). The hEF hands
have a typical helix–loop–helix structure and stabilize the adja-
cent EF hands by forming an anti-parallel EF hand β-scaffold.
The structure of the Miro LM helices resembles extrinsic ligands
bound to EF hand proteins, as reported for the protein complexes
of Troponin I and Troponin C (Vinogradova et al., 2005) and mol-
luscan myosin heavy chain and light chain (Houdusse and Cohen,
1996; Klosowiak et al., 2013). The EF–hEF hand pair combined
with the LM helix can be found in various Ca2+-binding proteins
including the pollen protein polcalcin (Neudecker et al., 2004), the
retinal protein recoverin (Tanaka et al., 1995; Ames et al., 2006),
and human guanylate cyclase-activating protein GCAP3 (Stephen
et al., 2006). Miro is a monomeric protein that assumes a compact
and linear conformation in solution and undergoes no significant
conformational rearrangement into another stable form and/or
oligomerization in response to ions or nucleotides (Klosowiak
et al., 2013). Conformational changes of Miro may require an
interacting partner, similar to other EF hand proteins (Grabarek,
2006; Klosowiak et al., 2013).

Miro GTPases EMERGED BEFORE THE DIVERGENCE OF
EUKARYOTES
An extensive phylogenetic analysis by Vlahou et al. (2011) showed
that at least one Miro homolog is present in almost all eukaryotic
genomes. The phylogeny of Miro homologs shows a clear corre-
lation with that of eukaryotic species and no obvious homolog
can be found in prokaryotes. This suggests that Miro appeared at
an early stage of eukaryotic evolution, perhaps before the diver-
gence of extant eukaryotic species (Vlahou et al., 2011); however,
the exceptions are found in several species. First, Miro is absent
from eukaryotic species that possess mitosomes and hydrogeno-
somes instead of canonical aerobic mitochondria, including the
phylum Microsporidia and the genus Entamoeba. Second, the
genomes of several species possessing aerobic mitochondria, such
as the phylum Apicomplexa and the order Mamiellales, lack Miro.
Third, Miro homologs in the order Trypanosomatid have a non-
functional version of EF hand 2 and lack the N-terminal GTPase
domain, possessing instead a novel domain without similarity
to any other defined sequences. Fourth, in the class Oligohy-
menophorea, the C-terminal Miro GTPase domains are replaced
by sequences that are not conserved, even within the class. Fifth,

Miro homologs from Amoebozoa and Stramenopiles have a non-
functional C-terminal GTPase domain that lacks the conserved
residues. These variations are found separately in different eukary-
otic lineages, suggesting that the molecular structure of Miro was
modified independently to meet the functional demands of the
protein in each lineage after the divergence of eukaryotes (Vlahou
et al., 2011).

METAZOAN Miro GTPases
Miro IS A Ca2+-DEPENDENT REGULATOR OF MITOCHONDRIAL
TRANSPORT IN METAZOANS
Mitochondrial transport is essential for neuronal energy sup-
ply to the axons and for the transmission of signals from the
cell body to the synaptic junctions. Disruption of mitochon-
drial distribution in neurons is deleterious and is associated with
neurodegenerative diseases, including dominant optic atrophy,
Charcot-Marie-Tooth, Alzheimer’s, Huntington’s, and Parkin-
son’s diseases (Chen and Chan, 2009; Harris et al., 2012; Saxton
and Hollenbeck, 2012). In axons, mitochondria are transported
along microtubules by the action of kinesins and dyneins as
anterograde and retrograde motors, respectively. A screening
of genetically mosaic mutant fruit flies identified allelic lethal
mutations of Miro that cause abnormal larval locomotion and
premature lethality. In the mutant neurons, mitochondria are
abnormally clustered in the cell body and are often absent from the
synaptic terminals, suggesting a requirement for Miro in antero-
grade mitochondrial transport along axons (Guo et al., 2005).
Subsequent studies showed that Miro forms a protein complex
with the kinesin-associated protein Milton (Stowers et al., 2002),
which recruits kinesins to mitochondria for anterograde transport
(Glater et al., 2006). Two mammalian Milton homologs, GRIF-1
(also known as OIP98, huMilt2, or TRAK2) and OIP106 (also
known as huMilt1 or TRAK1; Beck et al., 2002; Stowers et al.,
2002; Iyer et al., 2003; Brickley et al., 2005; Smith et al., 2006),
associate with Miro, suggesting that Miro is a component of
a conserved protein complex involved in mitochondrial trans-
port (Fransson et al., 2006; Wang and Schwarz, 2009; Weihofen
et al., 2009). Mitochondrial transport is dependent on cytoso-
lic Ca2+ (Rintoul et al., 2003; Yi et al., 2004), and a role for
Miro in its regulation has been demonstrated (Saotome et al.,
2008; MacAskill et al., 2009; Wang and Schwarz, 2009; Chang
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et al., 2011). However, several different models for the underly-
ing mechanism have been proposed. Wang and Schwarz (2009)
proposed that Miro interacts with kinesin via Milton indepen-
dently of Ca2+. In this model, increased cytosolic Ca2+ causes the
N-terminal kinesin motor domain to dissociate from microtubules
and interact with Miro, resulting in the arrest of mitochon-
drial transport (Wang and Schwarz, 2009). MacAskill et al. (2009)
proposed an alternative model by which Miro directly asso-
ciates with kinesin without the aid of Milton. In this model,
an increase in cytosolic Ca2+ inhibits the association and allows
Miro to be released from kinesin (MacAskill et al., 2009). Accu-
mulating evidence suggests that Miro is also involved in the
regulation of retrograde mitochondrial transport (Russo et al.,
2009; Wang and Schwarz, 2009; Misko et al., 2010; Morlino et al.,
2014).

Several neuron-specific proteins that modify the function
of Miro in mitochondrial transport were identified recently.
Syntaphilin associates with the kinesin that is released from
Ca2+-binding Miro, leading to stationary mitochondrial dock-
ing through interaction with microtubules in axons (Chen
and Sheng, 2013). The hypoxia-inducible protein HUMMR
interacts with Miro and the mammalian Milton homologs,
and biases axonal transport of mitochondria in the antero-
grade direction, presumably for the maintenance of neu-
ronal functions and survival during hypoxia (Li et al., 2009).
Alex3, another protein associated with Miro-mediated mito-
chondrial transport machinery in neurons, is unique to
Eutherian mammals. Alex3 originated through a Eutherian-
specific gene duplication and may be linked to the increase
in brain complexity in Eutherians (López-Doménech et al.,
2012).

Miro IS A TARGET OF PARKIN-MEDIATED DEGRADATION IN
MAMMALIAN CELLS
Recent evidence suggests that Miro-mediated mitochondrial
transport is associated with Parkinson’s disease (PD), a common
neurodegenerative disorder characterized by motor disturbances.
A form of autosomal recessive juvenile PD is caused by mutations
in the mitochondria-targeted Ser/Thr kinase PINK1 and the E3
ubiquitin ligase Parkin. PINK1 and Parkin operate together in a
common pathway involved in the regulation of multiple aspects
of mitochondrial quality control, including mitochondrial bio-
genesis, fusion and fission, transport, and mitophagy (Chen and
Chan, 2009; Scarffe et al., 2014). PINK1 and Parkin are recruited
to the damaged mitochondrial outer membrane, where they phos-
phorylate and ubiquitinate various proteins including VDACs
and the mitochondrial fusion proteins mitofusins (Geisler et al.,
2010; Ziviani et al., 2010; Chen and Dorn, 2013). Recent studies
showed that Miro is also a target of the PINK1-Parkin pathway,
although its ubiquitination pattern remains unclear (Weihofen
et al., 2009; Wang et al., 2011; Liu et al., 2012; Sarraf et al., 2013;
Birsa et al., 2014). The Parkin-mediated proteasomal degradation
of Miro leads to the dissociation of kinesin from mitochondria
and the subsequent arrest of mitochondrial transport. These
events may quarantine the damaged mitochondria to facilitate
mitophagic clearance (Wang et al., 2011; Liu et al., 2012; Birsa
et al., 2014).

Miro IS INVOLVED IN MITOCHONDRIAL MORPHOLOGY AND Ca2+
HOMEOSTASIS IN METAZOANS
Several studies suggest that metazoan Miro plays different roles
in mitochondrial dynamics and function other than mitochon-
drial transport. Overexpression of Miro and its mutant proteins
influences mitochondrial morphology (Fransson et al., 2003, 2006;
Glater et al., 2006; Saotome et al., 2008; Weihofen et al., 2009).
Overexpression experiments showed that Miro and Drp1, a
dynamin GTPase associated with mitochondrial fission, function
in an antagonistic manner in mitochondrial morphology, suggest-
ing that Miro may play a role in the maintenance of mitochondrial
morphology by suppressing Drp1-mediated mitochondrial fis-
sion (Saotome et al., 2008). Miro is also likely to be involved
in mitochondrial Ca2+ homeostasis. Chang et al. (2011) showed
that mitochondrial Ca2+ content is negatively correlated with the
velocity of mitochondrial transport. Overexpression of a non-
functional EF hand mutant version of Miro decreased Ca2+ entry
into mitochondria, suggesting that Miro is primarily involved in
the regulation of mitochondrial Ca2+ influx and homeostasis,
which, in turn, influences mitochondrial transport (Chang et al.,
2011; Niescier et al., 2013).

NON-METAZOAN Miro GTPases
Miro IS INVOLVED IN THE MAINTENANCE OF MITOCHONDRIAL
MORPHOLOGY AND INHERITANCE IN Saccharomyces cerevisiae
In the budding yeast Saccharomyces cerevisiae, the single-copy Miro
homolog Gem1p plays a role in mitochondrial morphology and
inheritance. The mitochondrial compartment in wild-type yeast
is characterized by a branched network of tubular structures at
the cell cortex (Koning et al., 1993; Frederick et al., 2004). In
the gem1 knockout mutant, mitochondria show a globular, col-
lapsed tubular, or grape-like morphology without an obvious
impact on the mitochondrial membrane structures, suggesting
that Gem1p is required for the maintenance of mitochondrial
morphology. Amino acid substitution experiments suggest that
the function of Gem1p in the regulation of mitochondrial mor-
phology requires both the GTPase domains and the EF hands
(Frederick et al., 2004). The gem1 knockout mutant also shows
impaired cell growth on synthetic glycerol media, implying that
Gem1p is required for proper mitochondrial respiration (Freder-
ick et al., 2004). Genetic analysis showed that the GEM1 pathway
is independent from the known mitochondrial morphology path-
ways, including those related to mitochondrial fusion and fission
(Frederick et al., 2004). Further analyses suggested that Gem1p is
involved in a pathway that influences mitochondrial inheritance
and is independent of other pathways mediated by the myosin-
interacting proteins Mmr1p and Ypt11p (Frederick et al., 2004,
2008).

Miro PLAYS A ROLE IN MITOCHONDRIA–ENDOPLASMIC RETICULUM
INTERACTION
Accumulating evidence suggests that mitochondria and the endo-
plasmic reticulum (ER) physically interact with one another
and play roles in various cellular processes, including phos-
pholipid biosynthesis and mitochondrial fission (Rowland and
Voeltz, 2012; Friedman and Nunnari, 2014; Vance, 2014). Korn-
mann et al. (2009) showed that loss of MDM12, a subunit of
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the ER–mitochondria encounter structure complex (ERMES)
that is essential for various mitochondrial functions (Boldogh
et al., 2003; Youngman et al., 2004; Meisinger et al., 2007), can
be rescued by an artificial tethering of mitochondria and the
ER. ERMES localizes to mitochondria–ER contact sites and is
visualized as punctate structures, suggesting its critical role in
mitochondria–ER interactions (Kornmann et al., 2009). Gem1p
interacts with ERMES; however, this interaction is not required
for the assembly of the ERMES complex (Kornmann et al., 2011;
Stroud et al., 2011). Imaging analysis suggests that Gem1p nega-
tively regulates ER-associated mitochondrial fission (Murley et al.,
2013). Studies suggest that the mitochondria–ER interaction
mediates the exchange of phosphatidylserine (PS) and phos-
phatidylethanolamine (PE) between the two organelles, allow-
ing phosphatidylcholine (PC) biosynthesis (Rowland and Voeltz,
2012; Vance, 2014). Disruption of ERMES impairs the con-
version of PS to PC, and knockout of gem1 has deleterious
effects in mutants defective in PS synthesis, suggesting that
Gem1p plays a role in lipid exchange through the activity of

ERMES (Kornmann et al., 2009, 2011). However, several dis-
crepancies remain to be clarified (Nguyen et al., 2012; Vance,
2014).

Miro IS INVOLVED IN MITOCHONDRIAL HOMEOSTASIS IN
Dictyostelium discoideum
The slime mold Dictyostelium discoideum has a single copy of the
gemA gene, which encodes a Miro homolog. The gemA knockout
mutants show impaired cell growth on nutrient media without any
obvious defects in cell division, implying that GemA is involved
in mitochondrial function (Vlahou et al., 2011). In D. discoideum,
mitochondrial transport is primarily mediated by microtubules
(Fields et al., 2002; Vlahou et al., 2011). The gemA mutants show
no obvious phenotype with respect to mitochondrial size, mor-
phology, or intracellular distribution. Co-immunoprecipitation
assays suggest that GemA does not associate with the Dic-
tyostelium kinesin Kif5. These findings indicate that Miro does
not play a role in microtubule-dependent mitochondrial trans-
port in D. discoideum (Vlahou et al., 2011). However, the absence

Table 1 | Molecular function and interacting proteins of Miro GTPase from various eukaryotes.

Gene names Mitochondrial functions Interacting proteins

Metazoans Mammals Miro-1, Miro-21 (humans) Microtubule-dependent transport6−20 GRIF-1/OIP98/huMilt2/TRAK26,9

OIP106/huMilt1/TRAK16,14

Kinesin9

Dynein20

PINK114−17

Parkin15−17

Mitofusin219

HUMMR (neuron-specific)12

Alex3 (Eutherian neuron-specific)13

Morphology1,6,7,14,21 –

Ca2+ homeostasis18 –

Mitochondria-ER interaction22 –

Drosophila melanogaster dMiro2/Miro21 Microtubule-dependent transport2,21 Milton8,21

Non-metazoans Saccharomyces cerevisiae GEM13 Morphology3,22,23,26 –

Inheritance3,23 –

Mitochondria-ER interaction22,24,25,26 Mdm34p22,25

Mmm1p22,25

Mdm10p25

Mdm12p25

Dictyostelium discoideum gemA4 Homeostasis4 –

Arabidopsis thaliana MIRO1, MIRO2, MIRO35 Morphology5,27 –

Inheritance27 –

Summary table showing gene names, mitochondrial functions, and interacting proteins of Miro from mammals, fruit fly (D. melanogaster), budding yeast (S. cerevisiae),
slime mold (D. discoideum), and plant (A. thaliana). Superscript numbers correspond to the following references: (1) Fransson et al. (2003); (2) Guo et al. (2005); (3)
Frederick et al. (2004); (4) Vlahou et al. (2011); (5) Yamaoka and Leaver (2008); (6) Fransson et al. (2006); (7) Saotome et al. (2008); (8) Wang and Schwarz (2009); (9)
MacAskill et al. (2009); (10) Russo et al. (2009); (11) Chen and Sheng (2013); (12) Li et al. (2009); (13) López-Doménech et al. (2012); (14) Weihofen et al. (2009); (15)
Wang et al. (2011); (16) Liu et al. (2012); (17) Birsa et al. (2014); (18) Chang et al. (2011); (19) Misko et al. (2010); (20) Morlino et al. (2014); (21) Glater et al. (2006); (22)
Kornmann et al. (2011); (23) Frederick et al. (2008); (24) Kornmann et al. (2009); (25) Stroud et al. (2011); (26) Murley et al. (2013); (27) Yamaoka et al. (2011).
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of gemA compromises multiple aspects of mitochondrial func-
tion including total mitochondrial mass, ATP accumulation, and
oxygen consumption, but does not influence glucose consump-
tion, reactive oxygen species (ROS) generation, or mitochondrial
membrane potential. This suggests that the primary role of Miro
in D. discoideum is the regulation of mitochondrial homeostasis
rather than mitochondrial transport (Vlahou et al., 2011).

Miro INFLUENCES MITOCHONDRIAL MORPHOLOGY IN Arabidopsis
thaliana
Plant mitochondria are uniformly spherical and undergo fre-
quent fusion and fission and actin-dependent transport. The
Arabidopsis thaliana genome contains three Miro homologs,
namely, MIRO1 (At5g27540), MIRO2 (At3g63150), and MIRO3
(At3g05310). MIRO1 and MIRO2 are expressed throughout the
plant (Yamaoka and Leaver, 2008), whereas MIRO3 is expressed
specifically in the endosperm (Winter et al., 2007; Bassel et al.,
2008; Day et al., 2008). Insertional mutation of the MIRO1 gene
has multiple effects on plant growth and development includ-
ing impairment of pollen tube growth and embryonic lethality
at an early stage (Yamaoka and Leaver, 2008; Sørmo et al., 2011).
Mutation of the MIRO2 gene enhances the miro1 mutant phe-
notype and includes defects in female gametogenesis associated
with delayed polar nuclear fusion (Sørmo et al., 2011). Imaging
analyses showed abnormally enlarged mitochondria in the miro1
mutant, although their inner membrane structures were likely to
be normal (Yamaoka and Leaver, 2008). The miro1 mutation also
influences mitochondrial inheritance during cell division at an
early stage of embryogenesis (Yamaoka et al., 2011); however, the
mutant mitochondria undergo continuous cytoplasmic streaming
in an actin-dependent manner. In addition, an obvious Milton
homolog is absent from the Arabidopsis genome. These findings
suggest that the primary role of Arabidopsis Miro is in the mainte-
nance of mitochondrial morphology rather than actin-dependent
mitochondrial transport (Yamaoka and Leaver, 2008; Yamaoka
et al., 2011).

CONCLUDING REMARKS
Multiple lines of evidence suggest that, in metazoans, Miro is
primarily involved in the Ca2+-dependent regulation of mito-
chondrial transport; however, in non-metazoans, Miro plays a
primary role in the maintenance of mitochondrial morphol-
ogy and homeostasis (Table 1). The molecular mechanisms of
mitochondrial transport differ between eukaryotic lineages. In
metazoans, microtubule-dependent mitochondrial transport is
well defined, whereas in budding yeast, mitochondrial trans-
port and inheritance are mediated by multiple myosin-dependent
and -independent pathways (Boldogh and Pon, 2007; Freder-
ick and Shaw, 2007; Frederick et al., 2008; Förtsch et al., 2011).
Plants use actin filaments and myosins for mitochondrial trans-
port (Avisar et al., 2008; Peremyslov et al., 2008; Prokhnevsky
et al., 2008; Sparkes et al., 2008; Avisar et al., 2009), although the
molecular interactions linking mitochondria and myosins remain
elusive. These differences suggest that each of the eukaryotic
lineages independently developed their own mitochondrial trans-
port machinery after divergence from the ancestral eukaryotic
cell. In contrast, Miro is present in almost all eukaryotes, and

the phylogeny of Miro homologs and eukaryotic lineages corre-
spond well, suggesting that Miro emerged before the divergence
of eukaryotes. Therefore, it is possible that Miro has a common
ancestral function in every eukaryote that is related to the main-
tenance of mitochondrial morphology and homeostasis, while
it acquired a role in the regulation of mitochondrial transport
specifically in metazoans. The presence of cell-type-specific and
lineage-specific Miro-interacting partners (Table 1) implies that
the molecular nature of Miro promotes its physical interaction
with multiple types of proteins. Identification of Mito-interacting
partners in non-metazoans will provide further insights into the
functions of Miro and the evolution of mitochondrial functions
and dynamics.
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