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Stress caused by environmental conditions or physiological growth can lead to an
accumulation of unfolded proteins in the endoplasmic reticulum (ER) causing ER stress,
which in turn triggers a cytoprotective mechanism termed the unfolded protein response
(UPR). Under mild-short stress conditions the UPR can restore ER functioning and cell
growth, such as reducing the load of unfolded proteins through the upregulation of genes
involved in protein folding and in degrading mis-folded proteins, and through autophagy
activation, but it can also lead to cell death under prolonged and severe stress conditions.
A diversified suite of sensors has been evolved in the eukaryotic lineages to orchestrate
the UPR most likely to suit the cell’s necessity to respond to the different kinds of stress
in a conserved as well as species-specific manner. In plants three UPR sensors cooperate
with non-identical signaling pathways: the protein kinase inositol-requiring enzyme (IRE1),
the ER-membrane-associated transcription factor bZIP28, and the GTP-binding protein β1
(AGB1). In this mini-review, we show how plants differ from the better characterized
metazoans and fungi, providing an overview of the signaling pathways of the UPR, and
highlighting the overlapping and the peculiar roles of the different UPR branches in light of
evolutionary divergences in eukaryotic kingdoms.
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INTRODUCTION
Environmental or physiological conditions that interfere with the
proper protein folding in the endoplasmic reticulum (ER) lead
to an accumulation of potentially toxic mis-folded proteins, a
condition generally termed as “ER stress”. To restore ER home-
ostasis, a network of inter-organelle signaling pathways mediates
the “unfolded protein response” (UPR), leading to an increase
of protein folding capacity in the ER (Walter and Ron, 2011).
If these mechanisms of adaptation and survival to ER stress
fail, the UPR signaling leads the cells toward cell death (Hetz,
2012). Even if several aspects of the UPR are conserved across
eukaryotes, the mechanisms to counteract the ER stress can vary
across plants, metazoans and yeast (Kimata and Kohno, 2011;
Chen and Brandizzi, 2013a; Howell, 2013). This review focuses on
the current understanding of how the UPR signaling pathways ini-
tiate and progress in response to the severity and duration of ER
stress and addresses the overlapping and unique roles of the UPR
response in eukaryotes with emphasis on multicellular eukaryotes.

UPR ARMS IN EUKARYOTES AND THEIR ER
STRESS-SENSING MECHANISMS
In the yeast Saccharomyces cerevisiae, the UPR is mediated by
inositol-requiring enzyme1 (IRE1; Ire1p; Cox et al., 1993; Mori
et al., 1993), an ER-resident protein largely conserved in eukary-
otes. IRE1 is a type I transmembrane protein, with an N-terminal
ER luminal stress-sensing domain, and a Ser/Thr kinase domain
and an endoribonuclease domain in the cytosol (Figure 1A).

Metazoans and plants have expanded their UPR signaling
pathways with additional ER stress sensors (Figures 1B,C). Indeed,
in metazoans, at least three ER transmembrane sensors initiate
the UPR: IRE1 (IRE1α and IRE1β isoforms), the activating tran-
scription factor 6 proteins (ATF6α and ATF6β isoforms), and the
protein kinase RNA-like ER kinase (PERK) (Hetz, 2012). ATF6 is a
type II transmembrane protein, characterized by a C-terminal ER
lumen domain and an N-terminal cytosolic domain containing a
bZIP (basic leucine zipper) transcriptional factor domain, while
PERK is a type I transmembrane protein, with an ER-luminal
stress-sensing domain and a cytosolic Ser/Thr kinase domain
(Figure 1A). In plants, the UPR regulators so far identified are
two IRE1 homologs (IRE1A and IRE1B; Koizumi et al., 2001), a
functional homolog of ATF6 (bZIP28; Liu et al., 2007a), and a
component of the G protein complex (AGB1; Wang et al., 2007).
Intriguingly, the involvement of G protein complex in UPR has not
been observed in other eukaryotes possibly because of a redun-
dancy of the multiple isoforms of the heterotrimeric GTP-binding
proteins in metazoans. Moreover, a functional PERK ortholog has
not been identified in plants.

The mechanisms of how ER stress is sensed have been partially
defined: the UPR sensors may detect ER stress (1) through the
dissociation of their ER-luminal stress-sensing domain from the
ER chaperones, which would be induced by the binding of ER
chaperones to unfolded proteins, as shown for IRE1α, PERK, and
ATF6 in metazoans (Kimata and Kohno, 2011); (2) through the
direct binding of the ER-luminal domain of the UPR sensors to the
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FIGURE 1 | ER stress-sensing proteins in eukaryotes. (A) Schematic
diagram of IRE1-like, PERK and ATF6-like proteins (not to scale). GTSs,
Golgi trafficking signals; TM, transmembrane domain; S1P, site 1
protease cleavage site; S2P, site 2 protease cleavage site; bZIP, basic
leucine zipper domain. (B) Phylogenetic tree analysis of IRE1-like proteins
from Animalia (Homo sapiens, Mus musculus and Caenorhabditis
elegans), Fungi (Saccharomyces cerevisiae) and Plantae (Arabidopsis
thaliana) was constructed by the Unweighted Pair Group Method with
Arithmetic Mean (UPGMA) method using MEGA6 software. NCBI
reference sequences: IRE1 alpha (H.s)-NP_001424, IRE1 beta
(H.s)-NP_150296, IRE1 alpha (M.m)-NP_076402, IRE1 beta
(M.m)-NP_036146, IRE1a (C.e)-NP_001254135, IRE1b (C.e)-NP_001254136,
IRE1 (S.c)-NP_011946, IRE1a (A.t )-NP_565419, IRE1b (A.t )-NP_568444.

The tree is drawn to scale, with branch lengths in the same units as
those of the evolutionary distances used to infer the phylogenetic tree.
The evolutionary distances were computed using the Poisson correction
method. (C) Phylogenetic tree analysis of ATF6-like proteins from
Animalia (H. sapiens, M. musculus and C. elegans) and Plantae (A.
thaliana) was constructed by the UPGMA method using MEGA6
software. NCBI reference sequences: ATF6 alpha (H.s)-NP_031374, ATF6
beta (H.s)-NP_001129625, ATF6 alpha (M.m)-NP_001074773, ATF6 beta
(M.m)-NP_059102, ATF6 (C.e)-NP_510094, bZIP28 (A.t )-NP_187691. The
tree is drawn to scale, with branch lengths in the same units as those
of the evolutionary distances used to infer the phylogenetic tree. The
evolutionary distances were computed using the Poisson correction
method.

unfolded proteins, as shown for IRE1 in yeast (Gardner and Walter,
2011); and (3) through post-translational modifications within
the luminal domain, as observed in mammals for ATF6, where
for example the hypoglycosylation is a monitoring mechanism
for ER homeostasis to sense the glucose starvation or N-linked
glycosylation impairment (Hong et al., 2004).

Upon ER stress induction, the UPR sensors are activated as
follows: (1) the RNase domain of IRE1 is activated through
its oligomerization and trans-autophosphorylation via its own
kinase domain (Korennykh et al., 2009; Ali et al., 2011); (2) ATF6-
orthologs are transported to the Golgi likely via specific trafficking
signals (Shen et al., 2002; Srivastava et al., 2012) with the COPII
vesicles (Schindler and Schekman, 2009; Srivastava et al., 2012),
where the ATF6-orthologs are cleaved by the sequential action

of the site 1 and site 2 proteases (S1P and S2P), thus releasing
their N-terminal cytosolic transcription factor for translocation
to the nucleus (Ye et al., 2000; Liu et al., 2007a); and (3) after PERK
dimerization, one PERK homodimer likely inserts its flexible
activation loop into the catalytic site of the adjacent homod-
imer, resulting in an interdimer trans-phosphorylation (Marciniak
et al., 2006; Cui et al., 2011), that activates the kinase domain
of PERKs. The mechanisms that lead to a role of AGB1 in
the UPR are unknown (Wang et al., 2007; Chen and Brandizzi,
2012). In subcellular fractionation experiments, AGB1 has been
found to be largely associated with the ER (Wang et al., 2007).
Because AGB1 lacks a transmembrane domain, it is possible that
post-translational modifications may modulate its UPR signaling
function.
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THE ACTIVATION OF THE UPR ARMS: THE TRANSLATIONAL
ATTENUATION
The different arms of the UPR have evolved to activate overlapping
but non-identical pathways in order to restore homeostasis, or, if
the ER stress persists, to trigger programed cell death (PCD) in
plants and yeasts, and apoptosis in metazoans (Figure 2). In the
early phases of ER stress responses in metazoans, the overload
of newly synthesized proteins into the protein-overloaded ER is
reduced through the selective degradation of many mRNAs encod-
ing ER-translocating proteins by the IRE1 endonuclease activity,
a process termed “regulated IRE1 dependent decay” (RIDD),
and through the transient attenuation of global protein trans-
lation via PERK. RIDD promotes the rapid mRNA decay of
genes encoding secretory proteins (Hollien and Weissman, 2006;
Han et al., 2009) and a similar mechanism most likely operates
in plants (Mishiba et al., 2013). Interestingly, RIDD-mediated
decrease in ER protein overload was also demonstrated in fis-
sion yeast Schizosaccharomyces pombe, where it functions as
the exclusive UPR mechanism (Kimmig et al., 2012), but not
in the budding yeast Saccharomyces cerevisiae, where, indeed,
the UPR does not appear to attenuate protein translation
(Spear and Ng, 2003).

To attenuate ER stress in metazoans in addition to RIDD, PERK
phosphorylates the α subunit of the eukaryotic translation ini-
tiation factor 2 (eIF2α), inhibiting the 80s ribosome assembly
and down-regulating protein synthesis (Harding et al., 1999). In
mammals, the phosphorylation of eIF2α is a conserved mech-
anism to block general protein translation not solely restricted
to ER stress, and it is carried out by different kinases activated
by diverse cellular stresses. The only eIF2 α-kinase conserved
among eukaryotes is the GCN2 protein: GCN2/eIF2 α path-
way attenuates protein translation under nutrient limitation in
yeasts and mammals (Berlanga et al., 1999; Harding et al., 2000),
and under amino acid starvation, abiotic and biotic stresses and
plants (Lageix et al., 2008; Zhang et al., 2008). Whether the plant
GCN2 may function as the metazoan PERK in the UPR is yet
unknown.

THE ADAPTIVE CELLULAR RESPONSE
Once the first layer of response to ER stress conditions is com-
pleted, in plants, metazoans and yeasts all the UPR stress sensors
promote a coordinated adaptive response to protect the cell against
oxidative stress, to augment protein-folding and secretory capac-
ity in order to ensure that protein exit the ER productively, and to
degrade potentially toxic unfolded proteins, by up-regulating the
genes encoding oxido-reductases, ER chaperones, vesicle traffick-
ing proteins, ER-associated degradation (ERAD) and ER-quality
control (ERQC) components (Travers et al., 2000; Martínez and
Chrispeels, 2003; Kamauchi et al., 2005).

IRE1 AND ITS UNCONVENTIONAL RNA-SPLICING ARM
The IRE1 endonuclease domain catalyzes the non-conventional
cytoplasmic splicing of the mRNA encoding bZIP60/XBP1/HAC1
(in Arabidopsis, metazoans and budding yeast respec-
tively), leading to the translation of a transcription factor
(bZIP60s/XBP1s/HAC1s) that mainly upregulates the expression
of ERQC and ERAD-related genes (Yoshida et al., 2001; Iwata

et al., 2008; Deng et al., 2011). Among the species, the amino acid
sequences of these transcription factors are not highly conserved;
however, a two stem–loop structure accompanied by a consensus
sequence in each loop of the IRE1-splicing mRNA substrates is
remarkably conserved and associated with IRE1-mediated cleav-
age (Oikawa et al., 2010; Deng et al., 2011; Nagashima et al., 2011).
In yeast and metazoans, the spliced substrate becomes a potent
transcriptional activator, since it gains a transcriptional activation
domain in the new C-terminal tail (Mori et al., 2000; Yoshida et al.,
2001). It is noteworthy that in the absence of induced ER stress
in budding yeasts, the unspliced HAC1 (HAC1u) mRNA is not
translated, since an intron in the HAC1u mRNA blocks its trans-
lation (Chapman and Walter, 1997), while in mammalian cells
the unspliced XBP1 (XBP1u) mRNA is translated. XBP1u protein
along with the XBP1u mRNA is associated peripherally with the
ER membrane through an amphipathic region, where it facilitates
the targeting of XBP1u mRNA to IRE1 presumably to increase the
cytoplasmic splicing efficiency providing a rapid response to ER
stress (Yanagitani et al., 2009). Upon prolonged ER stress, XBP1u
forms a complex with XBP1s, leading it to be exported from the
nucleus to the cytoplasm and rapidly degraded by the proteasome,
presumably shutting down the transcription of the XBP1-target
genes (Yoshida et al., 2006). Intriguingly, the IRE1-spliced XBP1s
mRNA loses the ER membrane-anchor domain and it is released
in the cytosol, indicating a different translational place for XBP1u
and XBP1s mRNAs that presumably prevents the excess of degra-
dation of the XBP1s by XBP1u protein during ER stress (Yanagitani
et al., 2009). In plants, experiments based on the expression of in-
frames fluorescent protein fusion with unspliced bZIP60u, have
shown an association of bZIP60u with the ER through its putative
C-terminal transmembrane domain (Deng et al., 2011). However,
the biological roles of unspliced bZIP60 (bZIP60u) on the ER
membrane are currently unknown. Unlike yeast and metazoans,
spliced bZIP60 (bZIP60s) does not gain a transcriptional activa-
tion activity, since the transcriptional activation domain is located
in the N-terminal tail along with a nuclear localization signal.
The IRE1-splicing produces instead a new protein deprived of
the transmembrane domain (Deng et al., 2011; Nagashima et al.,
2011) and characterized by an improved fine regulatory mod-
ulation of its transcription activity as recently reported in rice
(Lu et al., 2012). However, how this tuning is achieved is still not
clear.

ATF6-LIKE TRANSCRIPTION FACTORS
Under ER stress, the transcription factor domain of bZIP28/ATF6
increases the expression of genes involved in protein folding
and of other ER-stress related transcription factors such as
bZIP60/XBP-1, providing a positive feedback for augmenting the
UPR (Yoshida et al., 2001; Liu and Howell, 2010). Moreover, in
metazoans, ATF6 enhances the expression of genes involved in
ERAD, lipid biosynthesis and ER expansion, which are required
to improve the capacity of the secretory pathway (Bommiasamy
et al., 2009).

CONSERVED cis-ELEMENT IN THE UPR TARGET GENES
The UPR genes are induced through the recognition of
cis-acting elements on their promoter regions by the UPR
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FIGURE 2 | Continued
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FIGURE 2 | Continued

UPR pathways in eukaryotes. Accumulation of unfolded proteins inside
the ER lumen triggers to UPR that, during the first layer of response, leads
the cell to adaptation. IRE1 is the only identified ER stress sensor in yeast
and it is widely conserved in metazoan and plants. Moreover, additional ER
stress sensors so far identified are bZIP28 and AGB1 in plants, and ATF6
and PERK1 in metazoan. Activation of PERK leads to phosphorylation of two
proteins: Nrf2 that activates the transcription of genes involved in redox
homeostasis; and eIF2α that decreases the overload of newly synthetized
proteins into the ER and increases the specific translation of the
transcription factor ATF4. Subsequently, ATF4 induces the expression of
genes involved in amino acid metabolism, anti-oxidative stress response,
folding, quality control and autophagy. The activation of IRE1 leads (1) to the
selective degradation of mRNAs (RIDD) encoding ER-translocating proteins,
decreasing the protein loading into the ER, and (2) to the translation of the
bZIP transcription factors Xbp1/bZIP60/Hac1 mRNA in metazoan, plants and
yeast, respectively, that upregulate the UPR target genes mainly involved in
folding, quality control and autophagy. ATF6 in metazoans and bZIP28 in
Arabidopsis are translocated into the Golgi apparatus and cleaved by Site1
and Site2 proteases, releasing the ATF6/bZIP28 transcription factors
domain, which then translocates to the nucleus where it increases the
expression of genes involved in folding, quality control and autophagy. Upon
excessive and prolonged ER stress, all the UPR pathways lead to cell death
in yeast, metazoan, and plants. In plants, the cell death executioners are still
largely unknown, while in metazoan they have been partially defined. In
detail, IRE1 regulates the cell death through the mRNA decay of UPR target
genes and of anti-apoptotic protein (anti-Casp2). In addition, IRE1
interacting with TRAF2 triggers the ASK1/JNK pathway promoting
apoptosis. Moreover, PERK/eIF2α/ATF4, IRE1, and ATF6 induce the
expression of the transcription factor CHOP, involved in the induction of
apoptosis. Blue, eukaryotes; black, metazoan; green, plants; pink, yeast.
Figure adapted from Chen and Brandizzi (2012).

transcription factors. In budding yeast, HAC1s binds and activates
the UPR element-I (UPRE-I, consensus region CAGNGTG;
Mori et al., 1996) and UPRE-II (TACGTG; Fordyce et al.,
2012). In mammalians, XBP1 efficiently binds the UPRE-
I (GA-TGACGT-G[G/A]; Wang et al., 2000; Yamamoto et al.,
2004) and the ER stress responsive element-II (ERSE-II,
ATTGG–N–CCACG; Kokame et al., 2001; Yamamoto et al., 2004),
while ATF6 binds the ERSE-I (ERSE-I, CCAAT–N9–CCACG; Roy
and Lee, 1999) and the ERSE-II (ATTGG–N–CCACG; Kokame
et al., 2001) only in the presence of the nuclear transcription fac-
tor NF-Y (Yamamoto et al., 2004). Interestingly, the mammalian
ERSE-I and UPRE-I elements are conserved in plants (Oh et al.,
2003; Iwata et al., 2008; Liu and Howell, 2010), where other
cis-elements have also been found, such as the pUPRE-II (GAT-
GACGCGTAC; Hayashi et al.,2013) and the pUPRE-III (TCATCG;
Sun et al., 2013). Similar to ATF6 in mammals, bZIP28 binds
the ERSE-I element with assistance from the transcription factors
NF-Y (Liu and Howell, 2010), while bZIP60s directly binds the
pUPRE-III (Sun et al., 2013) and it regulates also promoters con-
taining the cis-element ERSE-I and UPRE-I (Iwata and Koizumi,
2005). The multiple cis-elements involved in the ER stress response
and their differential binding affinities for the UPR transcription
factors presumably fine temporal modulate the UPR signaling and
the ER stress response. Moreover, plants have evolved an additional
layer of UPR regulation. The plant-specific nuclear transcrip-
tion factor NAC103 is indeed induced by ER stress presumably
through bZIP60s, and the encoded protein NAC103 in turn regu-
lates the UPR downstream genes (Sun et al., 2013). However, the
precise mechanisms of the gene regulation networks are largely
unknown.

PERK AS AN OXIDATIVE STRESS-ATTENUATOR
In metazoans, although PERK induces general protein translation
attenuation, it also favors selective protein translation. Specifi-
cally, the PERK-phosphorylated eIF2α activates the translation of
mRNAs with uORF (upstream open reading frame) within their 5’
untranslated region (UTR), like the activating transcription factor
4 (ATF4; Harding et al., 2000). ATF4 protects cells against oxida-
tive stress and ensures the supply of reducing substances (i.e.,
glutathione) by enhancing the metabolism of their precursors
(i.e., sulfur-containing amino acids; Harding et al., 2003). Also
PERK phosphorylates the transcription factor Nrf2 (nuclear fac-
tor erythroid2-releated factor 2), which translocates to the nucleus,
heterodimerizes with the small Maf proteins and activates the tran-
scription of genes involved in the redox homeostasis by binding to
the antioxidant response elements on the target gene promoters
(Cullinan et al., 2003).

AUTOPHAGY AS A PRO-SURVIVAL MECHANISM
Autophagy is an evolutionarily conserved process of bulk degra-
dation, whereby large portions of cytoplasmic and organellar
components are engulfed by double membrane vesicles (termed
as “autophagosome”) and delivered to the lysosome in metazoan,
or to the vacuole in yeast and plants, for degradation and recycling
of macromolecules (Liu and Bassham, 2012). During ER stress,
autophagy is activated in yeast, mammals and plants, and it is
involved in clearing unfolded protein from the ER by supplement-
ing the ERAD pathway and, in turn, alleviating stress (Ding et al.,
2007; Liu et al., 2012). In yeast, IRE1 regulates autophagy through
the splicing of HAC1, which induces the production of Atg8p,
an ubiquitin-like protein required for autophagosome formation
(Yorimitsu et al., 2006). Unlike yeasts, in metazoans, autophagy is
triggered by the kinase activity of IRE1 and PERK. IRE1, indeed,
recruits the adaptor protein TNFR-associated factor2 (TRAF2) on
the ER membranes, thus triggering the activation of the apop-
tosis signal regulating kinase1 (ASK1), which in turn regulates
the activation of the c-Jun-N-terminal kinase (JNK), whose path-
way induces the autophagosome formation (Pattingre et al., 2009).
Moreover, PERK promotes autophagy through the phosphoryla-
tion of eIF2α, which induces the expression of ATF4, recently
considered a key signal for autophagy activation (Matsumoto et al.,
2013). ATF4 in turn activates the expression of autophagy-related
(ATG) genes and of C/EBP-homologous protein (CHOP) tran-
scription factor. CHOP and ATF4 together promote and modulate
the induction of genes implicated in the formation, elongation
and function of the autophagosome (B’chir et al., 2013). Simi-
lar to metazoans, in plants, it has been recently found that IRE1,
specifically the IRE1b isoform, activates autophagy upon ER stress
response independently from the IRE1-mediated bZIP60 mRNA
splicing (Liu et al., 2012). However, the mechanistic features of
plant autophagy under ER stress are mainly unknown, in terms
of the upstream regulator/s of IRE1b as well as its downstream
targets.

UNRESOLVED ER STRESS LEADS TO CELL DEATH
UPR AND APOPTOSIS IN METAZOAN
Upon excessive and prolonged ER stress, in metazoans, all the
three UPR signaling pathways lead to cell death through apoptosis

www.frontiersin.org February 2014 | Volume 5 | Article 69 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Cell_Biology/archive


Ruberti and Brandizzi ER stress-relief in eukaryotes

via the intrinsic mitochondrial pathway. Indeed, UPR regulates
the activity of the pro-apoptotic members of the Bcl-2 family via
transcriptional and post-transcriptional mechanisms, leading the
BAX/BAK-mediated pore formation in the mitochondrial outer
membrane, release of cytochrome c from the mitochondria, and
subsequent activation of caspases, which are critical regulators of
apoptosis via their role in propagating apoptotic signaling cascades
(Rodriguez et al., 2011). However, it is not yet clear whether other
types of cell death occur to eliminate terminally compromised
cells under irreversible ER stress. Intriguingly in metazoans, under
prolonged ER stress autophagy may switch from a pro-survival
process to apoptosis. Several regulators of autophagy machinery
are indeed involved in the apoptosis, such as JNK and CHOP
(Rodriguez et al., 2011).

RIDD AS A PRO-APOPTOTIC EXECUTIONER
In mammals RIDD activity mediated by IRE1α enhances (1)
ER stress intensity through the decay of mRNA encoding UPR
target genes during the transition phase between the adaptive
and apoptotic response (Han et al., 2009), and (2) expression of
pro-apoptotic proteases, like the Caspase 2 (Upton et al., 2008),
through the decay of selected antiapoptotic pre-miRNAs during
the apoptotic response (Upton et al., 2012). In plants, the biolog-
ical significance of RIDD activity in cell fate determination is still
unknown.

ER STRESS INDUCED-CELL DEATH IN YEASTS AND PLANTS
In yeast, ER stress can induce PCD with apoptotic phenotypes
(Hauptmann et al., 2006), as well as in a non-apoptotic process,
where vacuole fragmentation and leaking of vacuolar materials are
cell death features (Kim et al., 2012). Plant cell death executioners
in the UPR are instead largely unknown. Unlike in metazoans,
the plant IRE1 does not seem to have a pro-apoptotic role, given
that the Arabidopsis ire1 double mutants display compromised ER
stress tolerance, instead of a greater survival rate (Nagashima et al.,
2011; Chen and Brandizzi, 2012). Although neither homologs
of Bcl-2 family proteins nor components of the PERK-CHOP
pathways have been identified in plants yet, some regulators of
ER-PCD seem to be conserved across kingdoms. These include
the Bax inhibitor1 (BI-1)-like protein, an ER transmembrane pro-
tein that protects cells against ER-stress induced-cell death (Chae
et al., 2003; Watanabe and Lam, 2008), and the chaperone BiP,
that has a protective function against ER stress induced-cell death
in both mammalian and plant cells (Kishi et al., 2010; Reis et al.,
2011).

OTHER FACTORS THAT CONTROL THE UPR IN PLANTS
Plants have developed UPR roles for evolutionarily conserved gene
family, like for the Bcl-2-associated athanogene7 (BAG7) protein,
and AGB1, the Gβ subunit of heterotrimeric GTP-binding protein
family. In detail, BAG7 a plant ER-localized protein involved in
the UPR aids chaperones like BiP in the protection of cells via a
co-chaperone activity, while in yeast and mammals BAGs have a
nuclear/cytoplasmic localization and are not involved in the main-
tenance of the UPR, but rather in other processes ranging from
proliferation to growth arrest and cell death (Williams et al., 2010).
Furthermore, in plants, AGB1 and IRE1 have antagonistic roles in

the UPR gene induction and they regulate essential and indepen-
dent UPR signaling arms (Wang et al., 2007; Chen and Brandizzi,
2012, 2013b), but the underlying mechanisms are unclear.

CONCLUDING REMARKS
Environmental conditions, such as heat and salt stresses (Liu
et al., 2007b; Deng et al., 2011), as well as physiological events,
like growth and developmental processes (Chen and Brandizzi,
2012; Deng et al., 2013) evoked ER stress. Moreover, UPR has been
recently linked to the phytohormone auxin, a master regulator of
plant physiology, revealing a plant-specific strategy to maintain
balance between stress adaptation and growth regulation (Chen
et al., 2014). Additional studies are required to elucidate the plant
UPR signaling and its molecular components, and how it is fine
regulated during physiological events and environmental stresses.
Also further work is needed to clarify the mechanisms leading
the UPR to switch from cell survival to cell death and to identify
the precise steps downstream of each UPR arm across different
kingdoms.
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