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Brassicas are among the most widely grown and important crops worldwide. Phosphorus
(P) is a key mineral element in the growth of all plants and is largely supplied as inorganic
rock-phosphate, a dwindling resource, which is likely to be an increasingly significant
factor in global agriculture. In order to develop crops which can abstract P from the soil,
utilize it more efficiently, require less of it or obtain more from other sources such as soil
organic P reservoirs, a detailed understanding the factors that influence P metabolism and
cycling in plants and associated soil is required. This review focuses on the current state
of understanding of root traits, rhizodeposition and rhizosphere community interaction
as it applies to P solubilization and acquisition, with particular reference to Brassica
species. Physical root characteristics, exudation of organic acids (particularly malate and
citrate) and phosphatase enzymes are considered and the potential mechanisms of control
of these responses to P deficiency examined. The influence of rhizodeposits on the
development of the rhizosphere microbial community is discussed and the specific features
of this community in response to P deficiency are considered; specifically production of
phosphatases, phytases and phosphonate hydrolases. Finally various potential approaches
for improving overall P use efficiency in Brassica production are discussed.
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INTRODUCTION
Brassicas are one of the most widely grown crops in the world.
Worldwide production in 2011 was estimated at between 45 and 60
million tons (Yadav et al., 2011; Agricultural Marketing Resource
Centre, 2013), the majority of which was oilseed rape (Brassica
napus). B. napus is primarily grown for oil for human consump-
tion and as feedstock for biofuel (biodiesel) production. The
remaining meal is used for animal feed and contains one of the
highest concentrations of phosphorus (P) of all crops (15.1 kg t−1

fresh weight; Potash Development Association). In the UK, over
640,000 ha were under oilseed rape in 2010, with an estimated
value of £702 million (UK Agriculture, 2013). Consequently, these
crops represent a considerable investment of land and resources,
a significant income for farmers, and a substantial component
agricultural revenue at national levels.

Phosphorus is a key mineral element in the growth of all plants
and is largely supplied in Western agricultural practice as inorganic
phosphate (Pi). Widespread P deficiency in soils places serious
constraints on plant productivity worldwide (Lynch, 2007). This is
either because the soil P concentrations are low or because the P is
present in inaccessible forms. In 70% of world agricultural soils, P
forms insoluble compounds making it inaccessible to plants. This
includes being adsorbed to calcium (Ca), iron (Fe), or aluminum
(Al) hydroxides or oxides (Oburger et al., 2011). Approximately 30
million tons of Pi fertilizer is added worldwide to soils each year in
order to alleviate this. Rock-phosphate, the source of agricultural

Pi is a finite resource that, at current rates of usage, is predicted
to become a limiting factor for food production within the next
century (Koppelaar and Weikard, 2013). Furthermore, the dis-
tribution of the phosphate-bearing rock is extremely localized,
potentially giving countries where such deposits occur an effective
monopoly over worldwide food production costs and thus food
prices. In addition, approximately 80% of agriculturally applied
P can also be rendered inaccessible in the same way as naturally
occurring P (López-Bucio et al., 2000b), making P fertilization an
extremely poor method for delivering P to plants and an inefficient
use of this dwindling resource. In order to maintain soil P concen-
trations in agricultural soils, sufficient P needs to be added back
to the soil to replace that removed during cropping. Based on a
typical yield of 3.5 t/ha for winter oilseed rape crops (Defra, 2010),
this equates to approximately 34,000 tons of P to be replaced in
the UK alone. The rendering of considerable proportions of fer-
tilizer P inaccessible to plants however, results in the addition of a
large excess of P above the actual plant requirement. Addition of
excess P where not required can lead to problems with eutrophica-
tion of watercourses, and the growth of algal blooms (White and
Hammond, 2009).

Many factors influence the ability of plants to take up P as
Pi from the soil, some of which are interrelated or interacting
(Figure 1). At the macroscopic scale, agricultural practice, soil
amendments (e.g., fertilizer applications) and soil moisture could
all impact on P uptake. At the scale of individual plants, the rate
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FIGURE 1 |The various influences on P acquisition of plant root systems and their potential interactions.

of photosynthesis (under the influence of available light and tem-
perature), root system architecture, and the physical properties of
the individual roots are able to influence P uptake. Physical root
characteristics such as reduced primary root length, thickening of
roots, and proliferation of lateral roots and root hairs have been
associated with P-deficient conditions (Hammond et al., 2009).
The root systems of plants also naturally release a range of com-
pounds from living roots into the surrounding soil in a process
called rhizodeposition (Jones et al., 2004). For Brassica species,
this can account for up to 5% of total photosynthetically fixed
carbon (C) under unstressed conditions, with nutrient stresses
including low P availability altering both the overall amount of
rhizodeposition and the relative proportions of particular com-
ponents (Shepherd and Davies, 1993). Organic acids are one of
the major components of root exudates (Neumann and Romheld,
1999) and these compounds have a significant role in P acquisition
in Brassica species. Rhizosphere deposits also include a number
of exogenous enzymes (Negishi et al., 2002). Key among these
for P acquisition, are phosphatases (Hurley et al., 2010), particu-
larly acid phosphatases, which are believed to be responsible for
mobilization of organic phosphorus (Po) in the rhizosphere. A
number of exudate components are also considered drivers of
rhizosphere colonization (Whipps, 2001), with the rhizosphere-
colonizing microorganisms subsequently influencing availability
of both Pi and Po.

Crops that can abstract P from the soil or utilize it more effi-
ciently, require less of it or obtain P from renewable sources,
such as Po reservoirs, need to be developed. In order to facil-
itate this development, it is imperative to properly understand

the mechanisms by which the plant root and its soil environ-
ment interact with respect to P acquisition. This review focuses
on the current state of understanding of physical and biochemi-
cal root traits and concomitant interactions with the rhizosphere
microbial community that are involved with the acquisition of P
in Brassica species and relates those observations to the general
paradigms of plant P interactions. While, rhizosphere microbial
function is not under direct plant genetic control, plant physical
and biochemical characteristics may have considerable influence
on the composition and activity of the rhizosphere microbial com-
munity. Consequently, plant genotype has an indirect influence
on rhizosphere microbial function in regard to P acquisition,
allowing for the potential of breeding approaches targeted to
both plant- and rhizosphere-based P acquisition pathways. The
practicalities and likely pitfalls of various potential strategies for
improving overall P efficiency in Brassica production are discussed.
Further consideration is given to the potential to manipulate
the plant rhizosphere composition or function in a controlled
manner, either by altering agricultural practices or by modifica-
tion of the plant exudation profile or by a combination of both
approaches.

ROOT CHARACTERISTICS
Root traits affecting the acquisition of mineral elements will often
determine yields in reduced-input agricultural systems (White
et al., 2013). Most crop species appear to possess root systems
with low tissue densities (Lynch, 2007) and highly branched archi-
tectures (White et al., 2005; Lynch, 2007), which are adapted to
maximizing nutrient uptake (White et al., 2013). For example,
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P use efficiency (PUE) is generally correlated with P acquisition
efficiency (PAE; White and Hammond, 2008) and with root archi-
tectural traits (Hammond et al., 2009), which also correlate with
each other (White et al., 2005). A negative correlation was iden-
tified between P concentrations and total root length in Brassica
species; however, within-species variation in B. napus indicated
that length of exposure to P deficiency is a factor since this rela-
tionship was not clearly expressed in younger plants but only in
plants that were exposed to low P concentrations up until flowering
(Marschner et al., 2007). Phosphorus availability also influences
root architectural complexity, i.e., the number, length, density,
and growth rate of lateral roots and root hairs in B. nigra (Car-
swell et al., 1996). In addition to total root length (Solaiman et al.,
2007), increases in root architectural complexity have been pos-
itively correlated with increased PUE (defined as the yield per
unit P concentration in plant tissue) in numerous Brassica species
(Akhtar et al., 2008; Hammond et al., 2009).

Root hairs in B. napus increase surface area of the root cylin-
der by a third (Jungk, 2001). These hairs are responsible for a P
uptake rate of approximately 3 fmol cm−1 s−1 (a relative high
rate among species surveyed: Jungk, 2001). Over 70 quantitative
trait loci (QTL) associated with PUE have been detected in Bras-
sica with homologs of P transporters from Arabidopsis thaliana
found to map to the confidence intervals of many of these QTL
(Yang et al., 2011). The differential abundance of proteins associ-
ated with protein degradation and proteasome activity, the DNA
replication cycle (Alexova and Millar, 2013), and actin synthesis
and cytoskeletal organization in P stress tolerant and susceptible
Brassica tissue (Yao et al., 2011), has led to speculation that such
changes may indicate a re-allocation of plant resources to root tis-
sues to facilitate the root growth observed in response to P stress
(Yao et al., 2011).

Evidence from both Arabidopsis (Chevalier et al., 2003) and
B. napus (Shi et al., 2013) suggests that primary root responsive-
ness of Brassicas to P concentrations may be under genetic control
as well as metabolic influence. QTL have been identified for pri-
mary root growth responses to low Pi availability (Yang et al.,
2010) in B. napus. These QTL co-localize with the functional
markers BnPHT3-A3 (a trans-membrane P transporter) and the
related transcription factor BnWRKY-A3 (Ding et al., 2011), as
well as shoot and root dry weight (Yang et al., 2011), root vol-
ume and surface area (Yang et al., 2010, 2011), and plant height
(Ding et al., 2012). In addition, the locations of these QTL corre-
spond to a region of the B. oleracea genome associated with shoot
biomass and PUE traits (Hammond et al., 2009). However, the
influence of low-P on root architecture may be dependent on the
type of root (e.g., lateral root or root hair) and growth stage (for-
mation or elongation; Niu et al., 2013). This may be associated
with the fact that expression of some root architecture modifying
genes that are induced in response to low P availability are sugar-
dependent (Hammond and White, 2011). Root architecture may
also be influenced by the release of phytohormones from the rhi-
zosphere microbial communities encountered by the roots (Pitts
et al., 1998).

Several plants species (such as Banksia or Protea) that are
naturally adapted to low P environments have developed spe-
cialized root structures known as “cluster” root morphology

(Grierson, 1992; Denton et al., 2007). These structures increase
the root surface area available both for P uptake and the exu-
dation of organic acids (Tomasi et al., 2009). Different plants
species have slightly differing root morphologies, but in general,
plant responses to P-deficient environments include reduction
of the length and thickening of the primary root, prolifer-
ation and increased length of lateral roots (Hammond et al.,
2004), and increased numbers of root hairs (Daram et al.,
1998; Grierson et al., 2001; Hammond et al., 2004). This has
a similar effect to the production of cluster roots; an overall
increase in root surface area. In addition, a negative correla-
tion between root diameter and rate of root turnover in soil
has been determined from a comparison of plant roots from a
range of naturally occurring plant communities (Gill and Jack-
son, 2000). The implication for a potential increase in lifespan
of thicker roots compared to finer ones may reflect the poten-
tial benefits in nutrient acquisition of such changes in root
morphology.

In addition to physical differences, P deficiency has a consid-
erable effect on gene expression, particularly in the roots. For
example in tomato plants, P deficiency results in the increased
transcription of particular Pi transporter genes that are differ-
entially expressed in root rather than leaf tissues (Daram et al.,
1998). Expression of similar genes has been particularly asso-
ciated with newly formed root hairs in Arabidopsis (Mudge
et al., 2002) that indicates potentially localized gene expression
responses within the root architecture. Many proteins with
potential regulatory functions, including post-transcriptional reg-
ulation, post-translational modification, and protein degradation,
are differentially expressed in Arabidopsis under P stress (Alexova
and Millar, 2013). While these proteins may represent overar-
ching regulatory functions, more specific differences associated
with phenotypes related to differential P acquisition and usage
efficiencies have been identified. The differences are potentially
related to lateral root growth and involved proteins that are
either typically involved in controlling C flow between shoot and
root (Chevalier and Rossignol, 2011), or in the mobilization of
Po within the plant (Hammond et al., 2004). Furthermore, cel-
lular concentrations of ATP are reduced under P stress (Ueki,
1978), while levels of pyrophosphate are concomitantly increased
(Plaxton, 1996), potentially making Po available for re-allocation.

RHIZODEPOSITION
Rhizodeposition is the release of C compounds from living plant
roots into the surrounding soil. This C loss occurs either through
passive diffusion, decomposition of roots or sloughed-off root
cells or via plant-controlled release, generally in response to nutri-
ent or other environmental stimuli (Jones et al., 2004). Numerous
compounds are released as rhizodeposits, including carbohydrates,
organic and amino acids, phenolics, fatty acids, sterols, enzymes,
vitamins, hormones, nucleosides, polysaccharides, proteins, and
phospholipids into the soil, some of which (particularly car-
boxylic acids) have been particularly associated with P acquisition
(Dakora and Phillips, 2002). Due to the nature of many of these
compounds (e.g., amino acids, peptides and proteins), rhizode-
position also produces a loss of plant nitrogen (N). However, the
secretion of hydrated mucilage (an amalgam of polysaccharides
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and lipoproteins) forms an interface between the root tip and
soil that allows uptake (and exudation) of solutes (reviewed in
Carminati and Vetterlein, 2013), which may mitigate some of these
losses.

Estimates of the amount of C loss associated with this phe-
nomenon vary and are significantly different in different plant
genera, but in general range from approximately 3 to 40% of
photosynthetically fixed C, under optimal growing conditions
(Gardner et al., 1983; Dinkelaker et al., 1989; Marschner, 2011;
Johnson et al., 1996; Grayston et al., 1997; Keerthisinghe et al.,
1998; Pinton et al., 2001; Morgan et al., 2005). In B. napus,
17–19% of fixed CO2 is transported to roots, with 30–34%
of this lost to the soil in the form of rhizodeposits, resulting
in a net loss of 5–6% of total fixed C (Shepherd and Davies,
1993). In B. juncea, the C loss corresponds to approximately
2.8 t C ha−1 y−1 (Morgan et al., 2005), which is no longer avail-
able for plant biomass and therefore crop yield production. Little
information on the specific factors that influence gross rhizode-
position traits in Brassica species is available; however, plant
age seems to be one such factor. Based on sterile liquid culture
experiments, proportions of alanine, glutamine, isoleucine and
gamma-aminobutyric acid (GABA) exuded by B. napus increased
as plants aged, with older plants producing more amino acids per
plant, but younger plants having higher concentrations of amino
acids per unit mass of root tissue, suggesting a greater overall rate
of exudation in younger plants (Shepherd and Davies, 1994).

Both the forms of C and N released from roots and the
amounts of rhizodeposition vary depending on plant species
(Neumann and Romheld, 1999), nutrient status (Pearse et al.,
2006), plant age, root architecture, and environment (reviewed
in Curl and Trueglove, 1986; Schilling et al., 1998; Jones et al.,
2009; Ryan et al., 2009). However, these factors do not act inde-
pendently of each other and the interactions may be complex.
As observed in Brassica, increasing plant age appears generally
to decrease levels of rhizodeposition (Nguyen, 2003). The age
at which this decrease becomes apparent differs between pot-
grown plants and field-grown plants, suggesting an interaction
with environmental factors (Meharg and Killham, 1990). Soil C
concentrations also increased under elevated CO2 in studies on
ryegrass (Allard et al., 2006), but no effect was observed when sim-
ilar CO2 concentrations were applied to a mixed grassland plant
community (Niklaus et al., 2001). This suggests that different plant
species may respond differently to variations in CO2 concentra-
tions in terms of rhizodeposition rates. However, in a separate
study, under N limited conditions, this type of mixed grass-
land community did show increased rhizodeposition in response
to elevated CO2 concentrations (Pendall et al., 2004). Further-
more, plant N status alone (irrespective of CO2 concentrations)
has also been found to alter root exudation patterns in barley
(Paterson et al., 2006) and Lolium (Kuzyakov et al., 2001; Henry
et al., 2005). Plant species-specific effects of N on rhizodeposi-
tion may be due to variation in the balance between increased
fine root growth under higher N concentrations (enhancing rhi-
zodeposition capacity) and a reduction in overall C allocation
belowground under N-sufficient conditions (Blagodatskaya et al.,
2010). In managed agricultural systems (e.g., Brassica produc-
tion), N deficiency is unlikely to be an issue due to almost

ubiquitous nitrogenous fertilizer application, however, as these
examples make clear, there is potential for a great deal of varia-
tion in overall amount of rhizodeposition. The secretion of these
compounds into the soil can also impact directly on the nutri-
tional status of neighboring plants (Schenk, 2006) adding further
layers of interaction. While this is unlikely to have a significant
impact in monoculture-based agricultural systems, it may be more
important in intercropping systems (Bellostas et al., 2003). This
cropping strategy has been gaining recognition in some areas of
canola production that have previously been under monoculture
(Dietz, 2011) as well as in organic farming systems (Bellostas et al.,
2003).

CARBOXYLIC ACIDS
Plant roots typically contain many short-chain organic acids, for
example, lactate, acetate, oxalate, succinate, fumarate, malate, cit-
rate, isocitrate, and aconitate. Many of these acids, but particularly
malic acid and citric acid (or anionic malate and citrate) have been
associated with P mobilization. Malic and citric acid are the most
prevalent and abundant organic acids detected in root exudates
(Neumann and Romheld, 1999). Furthermore, different cultivars
or lines within plant species (including Brassica species) that are
more or less efficient in P uptake, show differences in the concen-
trations of organic acids (particularly malate and citrate) in their
root exudates (Kirk et al., 1999; Shahbaz et al., 2006; Corrales et al.,
2007; Aziz et al., 2011). Additionally, these compounds increase in
proportion in the root exudates of many plant species under P
deficiency, with such increases often being significantly greater in
P uptake-efficient lines compared to inefficient ones (Dinkelaker
et al., 1989; Hoffland et al., 1989; Ae et al., 1990; López-Bucio et al.,
2000a; Dechassa and Schenk, 2004; Yan et al., 2004; Miller, 2005;
Shahbaz et al., 2006). Other organic acids have also been reported
to be associated with P-uptake efficiency, although less frequently
and often in specific plant species, for example oxalate in Banksia
sp. (Denton et al., 2007).

Carboxylic acid exudation
Basal rates of root exudation are controlled by passive diffusion
rates. Phosphorus deficiency can potentially result in increased
permeability of the plasma membrane of root cells due to reduc-
tion in phospholipid content of the plasma membrane and
concomitant increased rates of diffusion of solutes from roots to
the soil (Ratnayake et al., 1978). This would result in higher rates of
passive solute accumulation in the rhizosphere under P-deficient
conditions, without requiring an active plant response (Jones,
1998). However, there is evidence that C efflux can also be directly
up-regulated to help alleviate stress (Jones, 1998), e.g., under P
deficiency (Lambers et al., 2002). In B. napus, increased activities
of malate dehydrogenase and phospho-enoyl pyruvate carboxy-
lase/oxygenase (PEPC) were associated with increased rates of
citrate and malate release in response to constitutive expression
of a bacterial citrate synthase gene (Wang et al., 2013). In addi-
tion, P stress has been associated with differential expression of
sucrose phosphate synthetase, malate, pyruvate and succinate
dehydrogenases, and ATP synthase (Yao et al., 2011). Although
much of this increase in activity is believed to derive from de
novo protein synthesis (Hammond et al., 2004; Wang et al., 2013),
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increases in activity of pre-existing enzymes, via phosphoryla-
tion or other mechanisms, cannot be discounted (Hoffland et al.,
1989; Ryan et al., 1995; Johnson et al., 1996). Furthermore, dif-
ferent pathways may potentially control activity levels of some
enzymes in different plant species or under different environmen-
tal conditions. For example, transcription of PEPC in response to
P deficiency has been shown to be up-regulated in some studies on
B. napus (Duff et al., 1989; Hoffland et al., 1989), but not in oth-
ers (Wang et al., 2013), and down-regulated in the related plant
Arabidopsis (Wu et al., 2003). It is conceivable that the activity of
this enzyme may be non-transcriptionally regulated. Both malate
inhibition and phosphorylation activation of PEPC have been pro-
posed as potential mechanisms (Moraes and Plaxton, 2000), and
it seems probable that either or both of these mechanisms may
be involved in the regulation of PEPC activity in response to P
deficiency.

In some cases, P deficiency alone was unable to induce organic
acid exudation in B. napus, although reduced plant growth was
observed as a consequence of poor P nutrition. Exudation of
organic acids (particularly malate and citrate) and activity of a
number of enzymes involved in or peripheral to the tricarboxylic
acid (TCA) cycle and associated with organic acid exudation
(citrate synthase, malate dehydrogenase, and PEPC) were found
to be enhanced in response to increased Al concentrations and
that this corresponded with reduced cellular metabolism of cit-
rate and malate (Ligaba et al., 2004). Additional evidence for the
involvement of Al comes from over-expression of an Arabidop-
sis homolog of citrate synthase in B. napus, which resulted in
increases in enzyme activity, root-associated citrate levels and
tolerance to Al (Anoop et al., 2003). A gene (TaALMT1) from
wheat (Triticum aestivum) roots, which putatively codes for an
ion channel-forming protein has been shown to mediate Al-
induced malate efflux (Delhaize et al., 2007). Expression of two
root-specific TaALMT1 homologs from B. napus (BnALMT1 and
BnALMT2) in heterologous plant expression systems (including
Nicotiana tabacum) indicated Al-induced malate efflux enhance-
ment from roots. Enhanced efflux was also induced by the presence
of a number of other trivalent phytotoxic metal cations (La, Yt,
Er) but not by P deficiency. The effect of Al on organic acid
exudation was weaker and shorter-lived under P-deficient con-
ditions than under P-sufficient conditions (Ligaba et al., 2006),
suggesting that P in some form (potentially ATP as an energy
source/phosphorylation activator) is involved in increased exu-
dation of organic acids. It is worth noting that auxin-responsive
proteins are differently expressed in P stress-tolerant and stress-
susceptible B. napus (Yao et al., 2011). Although no direct link has
been demonstrated between auxin-responsive proteins and rhizo-
sphere acidification, such proteins may putatively affect activity of
plasma membrane proton pumps (McQueen-Mason et al., 1992;
Shen et al., 2006).

Although organic acids are exuded from roots, their pri-
mary role is as intermediaries in the TCA cycle upon which
all cells depend for oxidative energy production. PEPC, malate
dehydrogenase, and citrate synthase are involved in the up-
regulation of organic acid exudation in many species, with the
activities of the enzymes generally increasing in response to P defi-
ciency (Raghothama, 1999). Other enzymes, including RNases,

intracellular acid phosphatases, and enzymes potentially involved
with respiration and energy production (e.g., mitochondrial
aconitase, malic enzyme, alcohol dehydrogenase, and monode-
hydroascorbate reductase), are differentially expressed in response
to P deficiency in Arabidopsis and may also contribute to increases
in organic acid exudation (Chevalier and Rossignol, 2011). No
evidence of differential abundance of any of these enzymes has yet
been reported in Brassica (Alexova and Millar, 2013).

Modes of action of carboxylic acids
Exuded organic acids may potentially influence Pi availability in
various ways. Phosphorus is readily adsorbed to soil particulates,
particularly oxides or hydroxides of Fe and Al (in acid soils). In
this case, chelation appears to be the major mechanism for P solu-
bilization by organic acids under P-deficient conditions (Oburger
et al., 2011), and there is evidence from rice for increased P sol-
ubilization due to direct chelation of P by exuded citrate (Kirk
et al., 1999). Alternatively, organic acids could conceivably either
compete with P for the adsorption sites on the soil particles and so
reduce the availability of sites for P adsorption, or could actively
displace adsorbed P (Jones et al., 2004). Chelation by organic acids
also appears to play a major role in the detoxification of triva-
lent Al ions (by sequestration; Ryan et al., 2009). In addition to
Al, citrate has also been shown to chelate Mn, Zn, and Ca ions
(Dessureault-Rompré et al., 2008). The chelation of Ca may be
particularly important in alkaline soils, where P is often rendered
insoluble due to sorption to Ca. Therefore, organic acid solubi-
lization of P may occur irrespective of soil pH conditions, however
the organic acid profiles may be different under differing condi-
tions; for example, soil pH influences the ratio of malate to citrate
in root exudates from both lupin and ryegrass (Veneklaas et al.,
2003). In addition, acidic soil conditions promote acetic acid exu-
dation, while alkaline/calciferous soils promote oxalic and citric
acid exudation in many plant species, including B. napus (Ström
et al., 1994; Zhang et al., 1997). Studies have shown that citrate is
more efficient than malate, oxalate, or malonate, at solubilizing
P (Earl et al., 1979; Furrer and Stumm, 1986; Jones and Darrah,
1994; Lan et al., 1995; Jones et al., 1996a; Jones and Brassington,
1998; Oburger et al., 2011). This is most likely because the three
carboxyl groups in citrate allow for the formation of more sta-
ble complexes than the other (di-carboxylic) acids, allowing more
efficient complexing of Al in P-bearing rock (Furrer and Stumm,
1986; Jones et al., 1996a), release of adsorbed P from soil matrices
(Earl et al., 1979; Lan et al., 1995) or blocking of adsorption sites
within the soil matrix (Oburger et al., 2011). However, exudation
of organic acids may not always be sufficient to solubilize com-
plexed P: Pea (Pisum sativum) and Chickpea (Cicer arietinum)
are reportedly unable to access Al- or Fe-complexed P, despite
exuded organic acid profiles containing relatively high propor-
tions of citrate (Pearse et al., 2007). It should also be noted that
the relative efficiencies of the different organic acids in solubiliz-
ing P are heavily dependent on soil conditions (Oburger et al.,
2011). While increased organic acid exudation can be consid-
ered a generally conserved response to P deficiency stress, it is
not a ubiquitous response: for example, hedge mustard, a Brassi-
cacea of the genus Sisymbrium, is reported not to secrete organic
acids of any type in response to P deficiency (Hoffland et al.,
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1989) and it is not certain that a P-deficient environment is the
(only) trigger for increased amounts of organic acids in root exu-
dates. Citric and malic acid deposition may also be increased in
response to other stressors such as deficiency of other nutrients,
including K, Mn, and Fe (Jones et al., 2003b) and the presence
of toxic Al (Ligaba et al., 2006). In general however, a small
number of organic acid compounds tend to be conserved com-
ponents within exudate profiles, although considerable variation
in both absolute and relative abundances of these compounds
occurs in different species and under different environmental
stimuli.

The organic acid component of exudates need not directly
interact with P in order to influence plant P nutrition how-
ever. Organic acids, particularly citric and malic acids, have been
associated with decreases in soil pH in response to P-deficient
conditions in several plant species (Grierson, 1992; Zhang et al.,
1997), including Brassica (Raghothama, 1999), with some sug-
gestion that malate may be of more importance in P acquisition
than citrate in B. napus (Hoffland et al., 1989). This soil acidifi-
cation is believed to improve P dissociation from mineral sources
and promote mineralization of organic forms of P (Neumann and
Romheld, 1999). Since organic acids are believed to exist in plant
root cytoplasm predominantly in the anionic (dissociated) state
(Jones and Brassington, 1998), they would be unlikely to lower soil
pH directly, upon exudation. In order to maintain electrochemical
balance in root cells, the exudation of such anions would require
either influx of other anions, or the exudation of positively charged
counter ions. These are generally assumed to be protons (H+; Loss
et al., 1993; Marschner, 2011), which would result in direct acid-
ification of the rhizosphere soil, although there is some evidence
from Arabidopsis that potassium (K+) may be the counter ion
in some cases (Murphy et al., 1999). In Phaseolus beans, QTL for
both P uptake efficiency and total acid exudation co-localized with
QTL for proton exudation (Yan et al., 2004) and an apparent link
between citrate exudation and proton efflux from roots via plasma
membrane proton-ATPases has been reported in lupin (Tomasi
et al., 2009). There is also evidence for the involvement of anion-
channel proteins and multidrug and toxin extrusion (MATE)-type
proteins (proton anti-porters) in organic acid exudation (Vance
et al., 2003). There is little evidence to distinguish between the
biological importance of any of these potential mechanisms for
rhizosphere acidification and it is possible that the overall pH
effect may be a balance between some or all of these potential
activities.

Much of the evidence for these potential rhizosphere acidifi-
cation mechanisms and for the desorption/release of P described
above, involve organic acid concentrations 10- to 100-fold greater
than the 1–50 μM concentrations typically found in the soil
solution (Earl et al., 1979; Lopez-Hernandez et al., 1986; Jones
and Darrah, 1994; Baziramakenga et al., 1995; Lan et al., 1995;
Krzyszowska et al., 1996; Strobel, 2001). This may be a conse-
quence of the fact that carboxylic acids, particularly malate and
citrate, are strongly adsorbed to soil particulates (Jones and
Edwards, 1998) and rapidly metabolized by soil microbial pop-
ulations. Such populations can remove approximately 15 nmol
malate kg−1 soil s−1 (Jones and Darrah, 1994; Jones et al.,
1996b). However, at least one analysis comparing the organic acid

concentrations in root sap and soil, suggests that the majority of
the rhizosphere organic acid pool comes from a source other than
plant roots (e.g., microbial release or as secondary products from
the breakdown of more complex precursors; Jones et al., 2003a).
The combination of microbial degradation and/or production of
organic acids and the potential of organic acids for adsorption to
soil particles, mean that any exuded organic acid is unlikely to
migrate far from the site of release. This suggests that P solubi-
lization may occur at discrete sites in the rhizosphere, or may be
facilitated by different mechanisms at different sites, dependent
on the prevailing soil conditions and microbial community. In
addition, different regions of the root structure may be associated
with different aspects of P acquisition. For example, the exudation
of organic acids in Brassica species has been particularly associ-
ated with root tips, with approximately threefold greater increases
in exudation of malate and citrate from these regions than from
older root tissue on exposure to low P environments (Hoffland
et al., 1989). Phosphate uptake meanwhile has been particularly
associated with root hairs (Daram et al., 1998; Hammond et al.,
2004; Yan et al., 2004), which do not form at the root tip but in
slightly older tissue behind the advancing tip. This is likely to give
rise to differences in metabolic activity, including exudate com-
position and nutrient uptake rates along the length of the roots.
Furthermore, root material of the same class (e.g., root tips, lateral
roots, root hairs, etc.) from the same plant will inhabit different
portions of the soil and thus experience different microenviron-
ments and resulting stimuli. Taken together, these observations
suggest that there may be localized P mobilization occurring at
discrete sites in the rhizosphere, rather than a uniform level of
activity.

While organic acid chelation and rhizosphere acidification are
of particular importance in the solubilization and acquisition of
Pi by plants, other sources of P, such as soil organic matter (SOM),
are also available to plants. Organic phosphorus may comprise up
to 65% of the total P in soils (Harrison, 1987). The majority of
this soil Po is in the form of chemically stable inositol phosphates
(e.g., phytate) and phosphonates, with a smaller portion present
in the form of orthophosphate esters, and organic polyphosphates
(Turner et al., 2002).

PHOSPHATASES
Enzymes secreted by both plant roots and soil microorgan-
isms mediate Po mineralization processes. Among the key plant
enzymes involved in P acquisition are exogenous phosphatases,
particularly acid phosphatases and phytases (Duff et al., 1994;
Ryan et al., 2009). These enzymes are among the exudate com-
ponents actively secreted in response to P-deficient environments
(Negishi et al., 2002), and are thought to be responsible for mobi-
lization of Po in the rhizosphere by releasing P from organic
compounds (Ahokas and Manninen, 2001; Vance et al., 2003;
Hammond et al., 2004; Hurley et al., 2010).

Phosphatases are a class of enzymes that are excreted both
by plant roots and components of the microbial community. In
B. napus, acid phosphatase activity is significantly greater in P
deficiency tolerant lines than in susceptible lines irrespective of
P conditions (Zhang et al., 2009), although P deficiency induc-
tion of root-secreted acid phosphatase activity has also been
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demonstrated (Zhang et al., 2010). Orthologs of purple acid
phosphatase (an Fe-metalloprotein) from Arabidopsis have been
mapped to intervals spanned by QTL in B. napus that were asso-
ciated with P uptake and usage efficiency (Yang et al., 2011), and
transcription of these genes can be induced in response to P defi-
ciency (Lu et al., 2008). Certain acid phosphatases in B. napus
may also be indirectly regulated by PEPC, the enzyme poten-
tially associated with organic acid exudation in response to P
deficiency. In B. napus, PEPC activity is increased by glucose-
6-phosphate and reduced by malate, aspartate, glutamate, and
isocitrate (Moraes and Plaxton, 2000). Increases in the activity of
PEPC in response to medium-term (days) exposure of plants to a
P-deficient environment appear to be due to increased transcrip-
tion, rather than alteration in the specific activity of the enzyme
(Moraes and Plaxton, 2000).

Plant-derived phosphatase activity is known to be associated
with the root tips of many plants, including maize (Dinkelaker
and Marschner, 1992) and potato (Zimmermann et al., 2004). It
was also strongly expressed along the root axis of potato, although
not significantly in root hairs. Phosphatase activity has also been
associated with the specialized cluster root structures of plants
adapted to P-deficient environments (Denton et al., 2007). These
differences may indicate alternative mechanisms for P acquisition,
which allow the plant to utilize parts of the root system other
than root tips and root hairs, where the majority of the exudation
of organic acids associated with P uptake occurs. There is also
some evidence to suggest that exogenous phosphatase activity is
associated with the root mucilage (a combination of polysaccha-
rides, phospholipids and proteins), which is actively secreted from
growing root cap (Jones et al., 2009).

One of the major sources of soil Po is phytate, which reportedly
comprises between 40% and 80% of the soil Po (Steffens et al.,
2010; Mukhametzyanova et al., 2012), although it is thought to
only comprise a very small proportion of residual plant material
(e.g., <1% by mass of plant stem material returned to cropped
soils; Steffens et al., 2010; Mukhametzyanova et al., 2012; Noack
et al., 2012). This suggests either a very high content of returned
plant stem material in soil or an alternate source of phytate. Pro-
portions of phytate are at least 45 times higher in seeds than
stems (Noack et al., 2012), where it is used as a C and P reserve
for emerging seedlings. It is possible that the soil Po estimates
include phytate from soil seed banks. However, it is unlikely
that such reserves of phytate would be directly accessible, even
to plants that exude phytases. For example, transgenic plants
with increased secretion of microbial phytases showed compara-
ble growth and had similar P status to control plants in many soils
(George et al., 2004; George et al., 2005). Such seed-based reserves
would likely require breakdown of seeds or emerging seedlings
by microbial pathogens or necrotrophs before the phytate became
available for P mineralization. Phytate also forms the majority
of the Po component of manure and slurry (Hill et al., 2007),
along with phospholipids and nucleic acids (Turner and Leytem,
2004). This form of phytate is likely to be far more directly acces-
sible, however, there is little evidence for plant-derived phytase
activity in the rhizosphere. Very little root exuded phytase activ-
ity has been found in plants (Richardson et al., 2000; Ponstein
et al., 2002) and where present, activity is low. For example, in

wheat root exudates, phytase activity was at least 20 times lower
than that of exogenous phosphatase (Richardson et al., 2000).
This suggests that the majority of rhizosphere phytase activity
is likely to come from another source (e.g., the soil microbial
component). In addition, both phytate and phytase are tightly
adsorbed to many of the mineral components of soil. Phytate
is rendered unavailable for dephosphorylation by such adsorp-
tion, while soil phytase activity declines by up to 95% over a
24-h period. The exact rate of this decline and the retention of
adsorbed enzyme on soil particulates are dependent on the soil
mineral composition (Giaveno et al., 2010), although there is evi-
dence that the presence of total SOM, which may include phytate,
mitigates sorption-based inhibition of phytase activity. This sug-
gests that directly plant-available phytate may be considerably less
than the total phytate soil pool and indicates a significant role for
the soil microbial community in influencing P (particularly Po)
availability.

RHIZOSPHERE MICROBIAL COMMUNITY
In addition to nutrient deficiencies, root exudate profiles also
respond to other stimuli including salicylic and jasmonic acids,
and chitosans (Walker et al., 2003), which form part of the
signaling cascade in plant defense responses, including the sys-
temic acquired resistance (SAR) pathways. Responses include the
exudation of a range of secondary metabolites, for example phyto-
alexins (phenolic defense compounds produced in response to
pathogens; Brigham et al., 1999; Flores et al., 1999) and a number
of allelopathic compounds (released by one plant that affect the
growth or development of another; Hirsch et al., 2003). Some
general plant defense response pathways, such as SAR, can be
induced by the colonization of roots by non-pathogenic bacte-
ria (De Meyer et al., 1999). Inoculation of hydroponically grown
B. rapa with either zoonotic pathogens or with the human gut
commensal organism and common soil bacterium Bacillus sub-
tilis (none of which are plant pathogens) for example, produced
significant increases in amounts of phenolic compounds in the
leaves (Jahangir et al., 2008). The metabolic components induced
differed depending on the bacterial species inoculated, however in
general, Gram-positive bacteria induced increases in the amounts
of fumarate, the cellular signaling molecule gamma-aminobutyric
acid and coumaroyl-malate (a phenolic derivative of malate) in
leaves, while Gram-negative bacteria increased the amounts of two
other malate-based phenolic acids in the leaves (Jahangir et al.,
2008). Plant defense responses to microbial colonization of the
rhizosphere may be of particular importance in P metabolism as
it has been suggested that plant responses to P deficiency may be
regulated via general stress response pathways as well as through
P-specific responses (Hammond et al., 2004). More recent evi-
dence of the association of a number of elements involved in
general stress–response pathways, such as ethylene biosynthesis
(Thibaud et al., 2010), reactive oxygen species, and transcriptional
repressors (Niu et al., 2013), with P acquisition would seem to
support this suggestion. Furthermore, proteins such as chap-
eronins, receptor-like kinases, auxin-response proteins, protein
modification, and glycolytic enzymes, proteins involved in cell wall
lignification, oxidative stress responses and secondary metabo-
lite production (i.e., involved in general stress responses) were
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differentially expressed in P stress tolerant and P stress susceptible
lines of Brassica (Yao et al., 2011). In addition, certain phenolic
compounds can catalyze release of Po, making it available for both
the microbial and plant communities (Jones et al., 2009). The fact
that both plant-pathogenic and non-pathogenic micro-organisms
can potentially influence P availability via the plant root system
highlights the importance of the rhizosphere microbial commu-
nity in soil nutrient cycling and on plant growth and nutrient
acquisition.

RHIZOSPHERE MICROBIAL RECRUITMENT
Almost all plant-derived exudates can act as C and N sources
to some portion of the microbial community and consequently
may function as microbial attractants (Dakora and Phillips, 2002;
Matilla et al., 2007). Many soil-borne organisms follow gradi-
ents of plant exudate components, including sugars and amino
acids, toward the root (Whipps, 2001). This leads to a prolif-
eration of microorganisms within the different compartments
(endo-rhizosphere, rhizoplane, and ecto-rhizosphere) under the
umbrella term “rhizosphere” (Barber, 1995), which can be defined
as the soil environment that is influenced by the presence and
activities of roots (Vanpeer and Schippers, 1989). The rhizosphere
supports microbial populations up to 20-fold denser than detected
in the surrounding bulk soil (Lynch, 1987; Lynch and Whipps,
1990; Bending, 2003; Morgan et al., 2005) although it is less diverse
(Marilley et al., 1998; Marilley and Aragno, 1999). Organic acids,
which have been strongly implicated in P solubilization and acqui-
sition, are also considered key drivers in bacterial chemotaxis from
bulk soil to the rhizosphere (Jones et al., 2003a). For example,
variation in citric acid concentrations have been implicated in
differences in both bacterial and fungal community structure,
with the bacterial community also responding to variation in
the concentrations of cis-aconitic and malic acids (Marschner
et al., 2002). Root-associated microbial populations also tend to
concentrate near features of root architecture associated with rhi-
zodeposition, including the root tip and root hairs (Ramos et al.,
2000). Several studies have also demonstrated differences in rhi-
zosphere communities between root zones (Yang and Crowley,
2000; Duineveld et al., 2001; Marschner et al., 2002). In addition
to organic acids, glucose, which is the most common sugar in rhi-
zodeposits (Derrien et al., 2004), significantly increased both soil
microbial activity (measured as biomass increase) and microbial
phosphatase activity (Spohn et al., 2013). The amino acid alanine
had a similar effect but more pronounced than that of glucose,
although the lag phase between organic input and change in activ-
ity was longer than for glucose. The differences are likely because
alanine provides a source of both C and N, rather than simply C (as
in the case of glucose), but also requires prior metabolism before
it can be utilized, while glucose provides C in a directly accessi-
ble form (Spohn et al., 2013). Many soil microbes are also able
to utilize organic acid-complexed P or uncomplexed acids (Kucey
et al., 1989; Whitelaw, 2000; Richardson, 2001; Vessey et al., 2004).
This makes them potential competitors for the plant produced
resources and solubilized P. However, although P was incorpo-
rated in soil microbial biomass early on in response to organic
addendums to the soil, the increased amounts of P in microbial
biomass were not maintained (Spohn et al., 2013).

RHIZOSPHERE MICROBIAL ACTIVITY
Rhizosphere microorganisms are thought to stimulate the disso-
lution of insoluble minerals from soil in a way similar to that pro-
posed for plants exudates (Jahangir et al., 2008). Many rhizosphere
bacteria, particularly from the genera Pseudomonas, Burkholde-
ria, Enterobacter, Bacillus, and Citrobacter, some actinomycetes
and mycorrhizal fungi, are capable of general enhancement of P
solubilization and/or the release of P and other minerals from
rocks (reviewed in Vessey, 2003; Hoffland et al., 2004; Puente et al.,
2004; Barea et al., 2005; Poonguzhali et al., 2006). In addition to
potentially competing for Pi, many components of the rhizosphere
microbial population are able to access Po. Mycorrhizal fungi com-
prise one of the most intensively studied groups of rhizosphere
microorganisms. Over 2,000 fungal species are capable of form-
ing mycorrhizal communities (arbuscular and ecto-mycorrhizae),
with some ecto-mycorrhizal fungi able to produce a suite of extra-
cellular enzymes that mobilize organic forms of N and P (Read and
Perez-Moreno, 2003). Although Brassica species are considered to
be non-mycorrhizal, root exudates (particularly breakdown prod-
ucts of glucosinolates) of several Brassicaceae have been shown
to be able to stimulate spore germination of a number of ecto-
mycorrhizal fungi (Zeng et al., 2003). In addition, glucosinolates
are known to influence microbial community composition when
contained in Brassica seed meal soil amendments and have been
associated with increased abundance of organisms associated with
fungal disease suppression (Hollister et al., 2013).

Pseudomonads (β-proteobacteria) are common colonizers of
plant tissues in general, including roots (Espinosa-Urgel, 2004),
and have traditionally been considered to be major compo-
nents of many rhizosphere communities (Marilley and Aragno,
1999; Lugtenberg et al., 2001; Yang et al., 2001), including those
from Brassica roots, which were predominantly colonized by
proteobacteria (particularly Pseudomonads), actinobacteria, and
Bacteroidetes. Although Pseudomonas remain a major compo-
nent of the rhizosphere community in B. napus, other microbial
groups may dominate, for example Bacillus spp. (Macrae et al.,
2001; Poonguzhali et al., 2006). The precise microbial components
associated specifically with P release/solubilization are generally
not known and are likely to vary depending on environmen-
tal conditions and other influences. Factors known to influence
the composition of the rhizosphere community include soil type
(Marschner et al., 2001), which determines the bulk soil pool from
which the rhizosphere community can be recruited, and plant
age (Smalla et al., 2001). However, the composition of rhizo-
sphere communities are largely determined by the plant species
with which they are associated (Smalla et al., 2001), primarily by
selection for organisms capable of utilizing the C source profile
produced by the roots (Grayston et al., 1998; Grayston et al., 2001).
Rhizosphere microbial communities are also subject to succes-
sional change in response to changing plant and environmental
stimuli (Yang and Crowley, 2000). Furthermore, multiple mem-
bers of the community may carry out similar microbial functions
(functional redundancy) and the capacity to carry out such func-
tions may be mobilized between individual community members.
Horizontal plasmid transfer, for example, has long been shown to
occur at elevated levels in the rhizosphere (for a review see van
Elsas et al., 2003).
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One of the key groups of enzymes involved are the phytases.
Phytase production has been identified in isolates of numer-
ous bacterial and fungal genera associated with P solubilization
(Richardson and Hadobas, 1997; Kim et al., 2002; Hill et al., 2007;
Daynes et al., 2008; Ghorbani-Nasrabadi et al., 2012; Mukhamet-
zyanova et al., 2012; Miao et al., 2013). Identification of acid
and alkaline phosphatase activities has been limited to the com-
mon soil-borne genera Pseudomonas and Enterobacter (Krey et al.,
2011), Bacillus (Ramesh et al., 2011; Yadav and Tarafdar, 2012; Hu
et al., 2013) and Aspergillus (Tarafdar and Yadav, 2011), with iso-
lates of Rhizobium (Jonas et al., 2008), Bacillus and Pseudomonas
(Khushi et al., 1993) identified as producing phosphonate hydro-
lases. These latter enzymes, which may be controlled by both
P-inducible and P-independent regulatory mechanisms (Quinn
et al., 2007), are related to acid phosphatases but mineralize Po in
the form of phosphonates. Phosphonates are strongly adsorbed
to mineral particles (Nowack and Stone, 2006) and extremely sta-
ble due to the presence of a direct C–P bond, rather than the
more usual and easily hydrolyzed phospho-ester (P–O–C) bond
(Kim et al., 2011). This makes them a highly inaccessible source
of Po, the importance of which is only just beginning to be
understood.

In addition to the plant influence on the composition of the
microbial community, plants may influence community activ-
ity. Many soil micro-organisms are dormant in the absence of
organic input due to C limitations on growth (Joergensen et al.,
1990). There is evidence that the growth of plants in soil is asso-
ciated with an increased rate of turnover of SOM in the order
of two- to threefold (Cheng, 2009). The organic input associated
with growing plants comes predominantly from rhizodeposition,
although the degradation of dead roots with concomitant cycling
of nutrients may also contribute (Kuzyakov, 2010). Rhizodeposi-
tion produces a pulse of organic input that often generates hotspots
of microbial activity and associated SOM turnover around areas
of exudation. The nature of this distribution and the limitations
of current investigative techniques mean that there is a dilution
effect involved in the measurement of the SOM turnover. Based
on a notional 10% of the rhizosphere involved in producing
hotspots, this equates to an actual increase of SOM turnover in
the order of 20- to 30-fold in the hotspots themselves (Kuzyakov,
2010). Within the hotspots, microbial turnover is believed to
increase, in addition to SOM turnover. Bacterial r-strategists (fast
growing species that utilize simple substrates) rapidly metabolize
easily accessible organic material resulting in increased biomass.
These organisms are then replaced by species with the capac-
ity to degrade and utilize more complex substrates, but with
relatively slow growth (k-strategists; Andrews and Harris, 1986;
Brimecombe et al., 2001). These are likely to be fungi, partic-
ularly since they are able to grow though low nutrient zones
(i.e., between hotspots) by means of hyphal extension (Otten
et al., 2001), although Gram-negative bacteria have also been
implicated (Nottingham et al., 2009). It is possible that these
secondary colonizers can benefit from the turnover of the micro-
bial biomass of the r-specialists as the easily utilized C sources
are depleted (Fontaine et al., 2003). This turnover of the micro-
bial biomass also makes P indirectly available to the plant roots
(Oehl et al., 2001), in addition to any release of Po from the SOM

breakdown. These hotspots have a lifetime of a few days (Pausch
and Kuzyakov, 2011), suggesting that soil nutrient availability may
vary over relatively short temporal periods in localized regions of
the rhizosphere.

Rhizosphere microbial populations are not spectators; individ-
ual species and organisms interact both with other members of
the communities and with the plant roots. Plant–microbial inter-
actions can be broadly classified as pathogenic, neutral (where
no benefit or harm to either partner is involved), positive (where
either one partner derive benefits from the association without
harming the other), or symbiotic (where both partners benefit).
From a practical standpoint, neutral interactions are often difficult
to assess due to lack of suitable measures (Paterson, 2003) and are
unlikely to influence microbial population dynamics significantly.
However, pathogenicity, positive, and symbiotic interactions will
have significant influences on both plant and rhizosphere micro-
bial community. Furthermore, interactions between plant roots
and soil organisms can influence adjacent plants (Li et al., 2007).
For example, homoserine lactone, a degradation product of the
bacterial regulatory signaling molecule N-acyl-homoserine lac-
tone, increases stomatal conductance, and transpiration (Joseph
and Phillips, 2003), potentially influencing plant water and nutri-
ent status. Taken together this represents a highly complex and
evolving picture of the relationship between plants and rhizo-
sphere microbial communities with respect to P cycling. The
ubiquitous nature of the soil microbial component in plant pro-
duction systems, and the potential impacts of microbial activity on
many other factors such as root morphology and plant chemistry
that influence both Pi and Po availability and acquisition, make
rhizosphere microbiology one of the key areas in understanding P
dynamics in agricultural systems.

FUTURE PERSPECTIVES FOR IMPROVING P ACQUISITION IN
BRASSICA CROPS
The decreasing availability and increasing cost of P fertilizer is
likely to be an increasingly significant factor in much of global
agriculture in the next few decades, not just for Brassicas. In
order to continue to meet the food production demands of the
world’s population, the agriculture sector will need to find meth-
ods of crop production that either require less P or make better
use of the existing P reservoirs in soils. The fact that Brassica crops,
and oilseed rape in particular, are a major contributor to agricul-
tural economies, and the high levels of genetic synteny between
commercial Brassica crops and the model plant Arabidopsis, mean
that there is already a considerable knowledge base and available
research resources associated with this crop.

Changes in root growth patterns and redistribution of resources
to support increased root growth are associated with P deficiency.
The changes not only increase the root surface area available to
acquire Pi directly, but also increase the density and distribution
of root zones exuding rhizodeposits. In Brassica, these rhizode-
posits can account for considerable proportions of fixed C and the
exudation of certain organic acids (malate and citrate) are known
to increase under P deficiency (although increases in these com-
pounds may also be responding to Al3+, particularly associated
with mineral complexed Pi in acidic soils). In addition, differential
abundance of enzymes associated with the TCA cycle (i.e., sucrose

www.frontiersin.org February 2014 | Volume 5 | Article 27 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Nutrition/archive


Hunter et al. Root traits, microbial community, and phosphorus

phosphate synthetase, a number of TCA cycle-intermediate dehy-
drogenases and ATP synthase) have been associated with P stress
(Yao et al., 2011). Plant roots also release enzymes, particularly
acid phosphatases, with other enzymes that are considered impor-
tant in the mineralization of Po (phytases, alkaline phosphatases,
and phosphonases), appearing to be primarily microbial in origin
(Quinn et al., 2007; Richardson et al., 2009; Tarafdar and Yadav,
2011; Mukhametzyanova et al., 2012). Based on existing knowl-
edge, the potential routes toward reducing P input in Brassica
crop production can be described broadly as manipulation of root
architecture, organic acid release, Po cycling, rhizosphere micro-
bial interactions, and P utilization, although all are interrelated to
some extent and can be considered under the umbrella term of
rhizosphere engineering (Ryan et al., 2009).

PHOSPHATE ACQUISITION
Root architecture appears to be associated either directly or indi-
rectly with many aspects of P acquisition (Carswell et al., 1996;
Solaiman et al., 2007; Akhtar et al., 2008; Hammond et al., 2009)
making it an obvious target for the development of crop plants
with enhanced P acquisition ability. Furthermore, in B. napus,
numerous root architectural traits have been shown to be herita-
ble, indicating underlying genetic control mechanisms that have
the potential to be exploited in breeding programs (Shi et al.,
2013). A number of QTL associated with such traits appear to
be conserved within the Brassicaceae (White et al., 2013), allow-
ing for potential cross-species exploitation of genetic information
derived both from within this group of important crop plants and
Arabidopsis. In terms of altering root architecture, increasing the
spread of lateral roots [particularly in the topsoil region where the
majority of Pi is located in most soils (Lynch and Brown, 2001)],
and selecting for traits that increase root surface area, e.g., thicker
roots and/or increased number, length, and density of root hairs
are all potential plant breeding targets. Root hairs have one of the
greatest potentials for enhancing P acquisition relative to the cost
of production to the plant, making them key targets for breed-
ing programs (Brown et al., 2013), particularly with respect to
alterations to root hair length (Jungk, 2001) and longevity (Lynch
and Ho, 2005). However, despite clear phenotypic variations by
which to easily screen individuals, many of these traits appear
to be under complex genetic control with large environmental
interactions (Lynch, 2007).

Plant breeding or genetic manipulation approaches can also
be focused either on increasing organic acid biosynthesis or on
enhancing transport and export of the organic acid anions to
the rhizosphere. The organic acids most strongly associated with
P acquisition in B. napus, malate, and citrate, are key com-
ponents of the TCA cycle (Lowenstein, 1969). This is the key
regulatory process involved in cellular energy production. Conse-
quently, manipulating concentrations of either of these substrates
artificially has potential for unintended consequences that could
impinge on many other functions at cellular, organ, and whole
plant levels. Manipulation of transport and/or exudation func-
tions might be a more promising target, particularly as work
already carried out has identified two families of trans-membrane
transporter protein families (MATE and ALMT; Delhaize et al.,
2007), of which the ALMT type has already been targeted in B.

napus (Ligaba et al., 2006). Improving resistance to toxic triva-
lent metals, particularly Al (which is also associated with organic
acid exudation and ALMT transporters), may also be of indi-
rect benefit by allowing for better root growth (Ligaba et al.,
2006) and thus increasing the root area available for P uptake. In
addition to targeting organic ion export functions, proton trans-
porters, and mechanisms of indirect soil pH alteration might also
make suitable targets, as would P import mechanisms such as the
Pht1 family of Pi stress inducible Pi transporters (Mudge et al.,
2002).

TARGETING SOIL ORGANIC PHOSPHORUS
Organic forms of P constitute a significant component of the total
soil P pool, but are generally considered unavailable for direct
plant uptake. Organic P is mineralized to Pi by the action of
enzymes, in particular, phosphatases and phytases, which can be
of either plant or microbial origin (Adams and Pate, 1992), or
microbial phosphonate hydrolases. Increasing either rates of pro-
duction and release of plant forms of these enzymes or increasing
their activity (or both) provides additional targets for breeding or
genetic manipulation programs. In many crop species, the pres-
ence of mycorrhizal fungi associated with the roots also help to
improve P uptake compared to non-mycorrhizal plants. Bras-
sica species are not considered mycorrhizal (Smith and Read,
1997); consequently this avenue for microbial mediated P uptake
is unavailable, although there is some evidence that AM fungi may
be able to colonize canola roots in the absence of other micro-
organisms (Marschner and Timonen, 2004). More fundamental
work on the nature of the plant–mycorrhizal interaction may
identify key plant factors that influence mycorrhizal colonization,
opening up the potential for mycorrhizal Brassicas to be devel-
oped in the longer term. There is some tentative evidence from
Arabidopsis that suggest plants may be able to take up Po directly
from the soil environment: Arabidopsis can grow on nucleic acids
as the sole P source (Chen et al., 2000; Richardson et al., 2000)
and oligonucleotides of up to 25 nucleotides in length have been
identified, intact, within Arabidopsis roots (Paungfoo-Lonhienne
et al., 2010), suggesting direct uptake and allowing for at least the
potential for subsequent utilization of the incorporated Po. Fur-
ther investigation of the potential for direct Po uptake (including
investigation of the range and limitation of potential sources of
Po) is warranted and the high level of genetic synteny between
Arabidopsis and Brassica species means the results from the model
system may be directly relevant to agricultural crop development
programs.

Rhizosphere manipulation
In addition to mycorrhizal fungi, many other soil microorgan-
isms are also capable of mineralizing Po (Richardson et al., 2009;
Tarafdar and Yadav, 2011; Mukhametzyanova et al., 2012). To be
effective as an inoculant, a microbial strain must be able to estab-
lish and persist in a range of soil types and conditions, and among
the resident microbial communities present in those soils (Ryan
et al., 2009). While a general increase in Po mineralization in soils
may increase available Pi for plant uptake, plants are likely to
derive maximum benefit if the Pi is released in close proximity
to the roots; i.e., within the rhizosphere (Oburger et al., 2011).
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In this case the inoculated organism must additionally be capable
of recruitment to the rhizosphere and of establishing and persist-
ing in this more heavily colonized environment (Morgan et al.,
2005). The development of microorganisms as seed dressings in
a similar manner to that which can be used to deliver rhizobia
to legume crops (Deaker et al., 2003), would alleviate the need
for active rhizosphere recruitment, by delivering the inoculant
directly to the emerging radicle, however this would not eliminate
the need to establish and persist in a complex microbial envi-
ronment. Furthermore, the inoculant would still be required to
deliver the desired function efficiently in this new environment.
Given that specific inoculants are likely to respond differently to
different chemical and microbial environments present in the soil,
and may only be appropriate for specific plant species, the imprac-
ticalities of producing suitable microbial inoculants to improve
Pi availability becomes clear. One alternative may be to consider
using microbial consortia as inocula. This potentially increases
the range of environments in which the inoculum can function
and/or the range of plant species for which it is appropriate, but
introduces additional variables such as the requirement of the
components of the consortium to be able to co-exist with each
other.

Another approach would be to use the plants themselves to
manipulate and engineer the naturally occurring soil micro-
bial community. Modern, high throughput, metagenomic, and
transcriptomic platforms allow community level evaluation of
interactions between plants and their microbial environments to
a much greater depth than ever before. Plant transcriptomic stud-
ies have the potential to identify genes that are associated with
recruitment of specific microorganisms, including those known to
enhance P availability. Furthermore, meta-transcriptome analysis
of rhizosphere and soil communities has the potential to highlight
functional rather than compositional variations in microbial com-
munities Thus it may be possible to identify components of plant
genomes associated with recruitment of specific microbial func-
tions to the rhizosphere rather than specific microorganisms. If
identified, such genes could then be used as targets in breeding pro-
grams; potentially enhancing the range of environments the plant
can gain benefit from. Rhizosphere manipulation approaches (at
least in any controlled manner) remain speculative, but the tech-
nologies have now been developed to a point at which it is at least
feasible to consider examining the complex interactions involved
in appropriate detail.

The use of different agricultural practices could also be adopted
to manipulate rhizosphere composition or function. Changes in
soil pH, soil compaction, irrigation levels, crop rotation, and
land management strategies all have potential to impact on the
soil microbial community. While there have been some studies
considering P uptake and availability associated with these char-
acteristics (reviewed in Pierzynski and Logan, 1993; Ulen et al.,
2010; Li et al., 2011; Balemi and Negisho, 2012), high through-
put molecular platforms should allow for much more in-depth
investigations of the impact of land management strategies and
agricultural practices on soil ecosystems and functions. For exam-
ple, even relatively simple decisions, such as the form of N fertilizer
applied, has the potential to significantly affect P acquisition. The
supply of N to plant roots in the form of ammonium tends to

cause rhizosphere acidification, whereas nitrate application tends
to cause alkalization (Shen et al., 2011), with a concomitant effect
on the rhizosphere microbial community and soil pH; a major
factor influencing the availability and acquisition of Pi and the
mineralization of Po. Another example is subsoil compaction. This
usually occurs on agricultural land from the use of heavy agricul-
tural machinery and can limit plant root spread and hence access to
water and mineral elements (Whalley et al., 2006; Valentine et al.,
2012).

P use by plants
Finally, in addition to releasing more Pi from the existing soil
reservoirs, plants which utilize P more efficiently will ultimately
require less Pi fertilizer input and potentially allow the soil P
reservoirs to last longer. Many non-agricultural plants that are
adapted to low P soils have relatively low internal P concentra-
tions. This seems to be offset by relatively high specific rates of
photosynthesis (i.e., rates of photosynthesis per unit leaf area;
Lambers et al., 2010). While this mechanism appears beneficial on
the surface, from a crop plant perspective it would be unhelp-
ful, since it appears to be associated with a high leaf mass to
leaf area ratio and reduced overall plant growth rate (Lambers
and Poorter, 1992). Further detailed investigation of the biochem-
istry and genetics underlying these effects, however, may allow
for the undesirable associations to be broken. Another poten-
tial target for altering P use is the ability of plants to reduce
the phospholipid concentration in membranes to some degree
under P-limited conditions (Essigmann et al., 1998). Studies have
shown that plants naturally decrease phospholipid content in thy-
lakoid membranes and in root tissues under P stress (Peñaloza
et al., 2002; Raven, 2013). Two of the key phospholipases involved
in this process have been identified (Li et al., 2006) and could
represent potential targets for breeding programs. During this
process, plants replace the phospholipids with galactolipids and/or
sulpholipids (Raven, 2013) and potential targets for investigation
have been identified in the galactolipid production pathway of
the Brassica-related model plant Arabidopsis (Härtel and Benning,
2000). In grain crops, including cereals, legumes, and oilseed rape,
there is also theoretically the opportunity to reduce the P con-
tent of the grains. Phosphorus is stored in seeds largely in the
form of phytate. Phytate comprises a considerably higher propor-
tion of seed mass in oil-yielding plants (e.g., B. napus, linseed,
and sesame) than many other plant species, with proportions
in B. napus as much as 2.5% of seed mass and accounting for
approximately 1% of plant P (Lott et al., 2000). These amounts
are similar to those for seeds of other oil-yielding plants (linseed
and sesame) and are considerably higher than any other seeds (Lott
et al., 2000). Strategies to minimize this component of seeds may
reduce the requirement for P input. Production of grains with
reduced P content in crops used for human or animal consump-
tion could have significant implications for nutritional quality of
grains and may impact on plant vigor. Phytate is known to have
anti-nutritional characteristics, strongly binding important diva-
lent mineral cations such as Ca, Mg, Fe, Cu, and Zn (Cheryan and
Rackis, 1980). Reduction of this component of seeds would there-
fore have additional nutritional benefits. Studies in rice have also
indicated that grains of this crop produced with lower levels of P
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do not suffer adverse effects on seedling vigor (Rose et al., 2010,
2012).

AGRICULTURAL PRACTICE
In addition to reducing the amount of P abstracted from the soil,
increasing the amount of P returned to the soil pool following
cropping would be beneficial. This would involve increasing the
proportion of P in the uncropped plant organs. In the case of
B. napus, this would be the roots and stem and leaf material from
non-fodder crops. The practice of conservation tillage (leaving
plant debris from the previous crop on the soil surface during and
after tillage of the next crop) for example, would not only return
more P to the soil but has also been reported to increase soil P sol-
ubility (Zibilske and Bradford, 2003). This would be particularly
beneficial if combined with increased soil capacity to mineralize
organic Po.

ROUTES FORWARD
Routes to attaining many of these goals are likely to ultimately
converge on the generation of new crop cultivars and varieties.
Given the two timescales involved; depletion of worldwide P stocks
within decades at the current rate of usage and the length of time
it takes for plant breeding programs to deliver useable varieties (in
the order of 10–15 years from identification of candidate genes and
suitable markers), the immediacy of this work is obvious. Mod-
ern crop varieties have been systematically bred for better yield
(arrived at through many avenues, e.g., improved disease resis-
tance, better physical attributes, etc.). The introgression of even
a single characteristic into that highly tuned genetic background
is fraught with difficulties and many avenues may prove fruitless.
Since P plays such a significant role in plant metabolism, selec-
tion for better yield may have inadvertently optimized much of
the genotypic variation associated with P metabolism. The conse-
quences of this are that any improvements may well be incremental
rather than step-changes in P efficiency. As a result, it may be that
in order to achieve the overall aim of reducing P usage, many
approaches may have to be deployed simultaneously. This rep-
resents a huge program of research followed by an equally large
development program. Even with modern marker-assisted breed-
ing techniques, the development time of new varieties cannot be
shortened much further. The use of GM technologies offers a
potential way to shorten the time required to develop such new
varieties, particularly in light of the highly complex genetics that
may well be involved. Ultimately the decision on the use of GM
crops rests with public acceptance or otherwise. Despite uptake of
some GM technologies in China and North and South America
(Johnson et al., 2007), the EU moratorium on GM crops remains
in place – perhaps it is time to re-open the debate, although this
may require a shift in approach (Johnson et al., 2007).
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