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Delivery and final fusion of the secretory vesicles with the relevant target membrane
are hierarchically organized and reciprocally interconnected multi-step processes involving
not only specific protein–protein interactions, but also specific protein–phospholipid
interactions.The exocyst was discovered as a tethering complex mediating initial encounter
of arriving exocytic vesicles with the plasma membrane. The exocyst complex is regulated
by Rab and Rho small GTPases, resulting in docking of exocytic vesicles to the plasma
membrane (PM) and finally their fusion mediated by specific SNARE complexes. In model
Opisthokont cells, the exocyst was shown to directly interact with both microtubule
and microfilament cytoskeleton and related motor proteins as well as with the PM
via phosphatidylinositol 4,5-bisphosphate specific binding, which directly affects cortical
cytoskeleton and PM dynamics. Here we summarize the current knowledge on exocyst-
cytoskeleton-PM interactions in order to open a perspective for future research in this area
in plant cells.
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THE EXOCYST AS A REGULATORY HUB IN THE ACTIVE CELL
CORTEX
Polarized surface growth in eukaryotic cells involves interactions
between the cytoskeleton and membrane transport pathways. The
last steps of the secretory pathway taking place in the vicinity of
the plasma membrane (PM) are regulated by an array of small
GTPases, the exocyst tethering complex, and SNARE proteins.
The exocyst is a protein complex comprising eight subunits (Sec3,
Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84) engaged in
docking and tethering of secretory vesicles, providing a spatial
and temporal regulation of exocytosis (Hsu et al., 1996; TerBush
et al., 1996) and interacting directly or indirectly with membranes,
cytoskeletal proteins, as well as with small GTPases from the Rab,
Ral, and Rho subfamilies and many other proteins in the cell
cortex (Wu et al., 2008). As such, the exocyst seems to act as an
integrating hub in the cell cortex, mainly in the context of exo-
cytosis. In general, proper exocyst function is essential for polar
growth and cell morphogenesis, including invadopodia, lamel-
lipodia, and neuronal dendrites formation in animal cells, bud
growth in budding yeast, and cytokinesis in fission yeast (reviewed
in Heider and Munson, 2012; Vaškovičová et al., 2013; Figure 1).
A growing number of papers document functions of the plant
exocyst in similar processes with high demand for exocytosis,
including root hair growth, hypocotyl cell elongation, cytokinesis,
seed coat formation and papilla formation after a pathogen attack
in plants (Synek et al., 2006; Hála et al., 2008; Fendrych et al., 2010;
Kulich et al., 2010; Pecenkova et al., 2011; Vaškovičová et al., 2013).

THE EXOCYST AND ACTIN CYTOSKELETON
Deep insight into exocyst functions and their mechanisms came
from genetic studies on budding yeast, where the exocyst was

originally discovered as a protein complex (Novick et al., 1980;
TerBush et al., 1996). In budding yeast cells, secretory vesi-
cles are transported along formin- and Arp2/3-generated actin
cables. A common model of the exocyst action suggests that
most exocyst subunits arrive to the PM in association with
secretory vesicles and cannot localize properly after disrup-
tion of the actin cytoskeleton (Boyd et al., 2004; Bendezú et al.,
2012). However, Sec3p and part of the Exo70p population
can reach its destination, a newly forming bud, indepen-
dently of the actin cytoskeleton probably via direct association
with Rho GTPases (Boyd et al., 2004). Therefore, Sec3p and
Exo70p are supposed to act as landmarks of sites for the exo-
cyst localization and action (Finger et al., 1998; Boyd et al.,
2004).

Mutations in several exocytosis-related genes cause actin
cytoskeleton defects in budding yeast, leading subsequently
to impaired cell growth and morphogenesis and also to an
mRNA transport and polarization defect that is actin-dependent
(Aronov and Gerst, 2004). The identified genes included those
encoding SEC10 and SEC15 exocyst components and CDC42
and RHO3 GTPases regulating the exocyst polar targeting
(Wu et al., 2008).

An interesting reciprocal relationship was observed during
cell wounding response, where Sec3p and the Bni1p formin are
degraded in order to eliminate competition for secretory vesicles
required to repair the damaged membrane and cell wall, which
are arriving along the pre-polarized cytoskeleton directing cur-
rent polarized growth. The Bnr1p formin and the Exo70p exocyst
subunit relocalize to the damage site followed by redistribution
of the Myo2p myosin and delivery of new material (Kono et al.,
2012).
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FIGURE 1 | Interactions of the exocyst complex with the cytoskeleton,

plasma membrane, and associated proteins. Scheme of exocyst
interactions described in the text, including the key players Ral and Rho
GTPases, SNARE proteins, formins, and the Arp2/3 actin-nucleating complex,

microtule-organizing center (MTOC) and phosphatidylinositol 4,5-bisphosphate
(PIP2) at the plasma membrane. Dm, Drosophila melanogaster ; Mm, Mus
musculus; Hs, Homo sapiens Rn, Ratus norwegicus; Sc, Saccharomyces
cerevisiae; Sp, Schizosaccharomyces pombe.

In budding yeast, cell polarity and polarized exocytosis is coor-
dinated also by the Rho3p GTPase (Adamo et al., 1999), which
can regulate both actin polarity and transport of exocytic vesicles
from mother cell to the bud, as well as vesicle docking to the PM.
While the Rho3p vesicle delivery function is mediated by Myo2p,
the docking requires Exo70p (Adamo et al., 1999).

In the fission yeast Schizosaccharomyces pombe, the actin
cytoskeleton is dispensable for proper exocyst localization and
polarized growth (Bendezú and Martin, 2011; Snaith et al., 2011).
While actin-independent polar transport in budding yeasts might
be constrained by the narrow bud neck, and bud growth requires
motor-driven transport along actin cables, the open cylindrical
shape of fission yeast cells may allow actin-independent vesicle
transport (Bendezú and Martin, 2011). However, the exocyst and
actin cytoskeleton share at least two common upstream regulators
– Cdc42 (Estravís et al., 2011) and Pob1 (Nakano et al., 2011).

The polar exocyst localization and formation of actin cables are
dependent on and mutually coupled by Pob1 via its interaction
with the For3 formin and the Sec8 exocyst subunit, respectively.
Simultaneous deletion of For3 and Sec8 results in isotropic growth,
indicating a functional redundancy between microfilaments and
the exocyst in cell polarization (Bendezú and Martin, 2011). In
contrast, although unable to divide properly, sec8 exo70 and sec6
sec8 double mutants are still capable of polarized growth (Bendezú
and Martin, 2011).

Although all fission yeast exocyst subunits can localize to cell
poles largely independently of the actin cytoskeleton, at least Sec3,

Sec5, and Exo70 (most probably as a part of the complete exo-
cyst complex) are more efficiently transported to the cell apex by
the Myo52 myosin V along microfilaments (Snaith et al., 2011;
Bendezú et al., 2012). Either functional Sec3 or Exo70 is essen-
tial for viability and proper localization of other exocyst subunits,
suggesting that, as in budding yeast, these two components act as
exocyst tethers at the PM (Bendezú et al., 2012). A polarization
pathway involving the exocyst relocalization and actin repolariza-
tion downstream of Cdc42 also participates in fission yeast mating
(Bendezú and Martin, 2013).

Unexpectedly, the fission yeast Sec3 not only acts in exo-
cytosis but also marks sites for actin recruitment and controls
overall actin organization via direct binding of For3 (Jourdain
et al., 2012). Mutants in Sec3 exhibit lack of microfilaments,
depolarized actin patches, and disassembly of the cytokinetic acto-
myosin ring probably due to a failure in polarization of the For3
formin.

The Exo70 exocyst subunit also interacts both in vitro and in
vivo with the yeast and rat Arpc1/Arc40 subunit of the Arp2/3
complex, a key regulator of actin polymerization. Inhibition
of the Exo70 function in rat kidney cells blocks formation of
actin-based membrane protrusions and affects cell migration
(Zuo et al., 2006), pointing to yet unknown capacity of Exo70
to regulate the actin organization and coordinating thus actin
cytoskeleton with membrane trafficking during cell migration.
Exo70 was recently shown to promote Arp2/3-driven microfila-
ment nucleation and branching (Liu et al., 2012). Because both the
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exocyst and Arp2/3 complexes are well conserved across eukary-
otes, including plants, their interaction is likely to be conserved as
well.

In mammalian cells, actin organization, as well as membrane
trafficking, cell growth and differentiation, is regulated by RalA
and RalB, ubiquitous small GTPases from the Ras superfamily
(Feig et al., 1996). Activated (GTP-bound) RalA forms a stable
complex with the exocyst via binding to Sec5 (Brymora et al., 2001;
Sugihara et al., 2002; Fukai et al., 2003) and Exo84 (Moskalenko
et al., 2003; Jin et al., 2005) exocyst subunits in human and rat
cells. Specific inhibition of the Sec5 activity blocks filopodia for-
mation in 3T3 cells, a dynamic process that is highly dependent on
actin reorganization and that can be normally induced by RalA or
cytokines via Cdc42 (Sugihara et al., 2002). This inhibitory effect
could not be attributed to disrupted secretion, since inhibition of
secretion by brefeldin A did not affect filopodia formation (Sug-
ihara et al., 2002), indicating that the exocyst-RalA complex may
regulate actin reorganization independently of vesicle transport.
Both RalA-Sec5 and RalA-Exo84 interactions are necessary for
proper regulation of the actin cytoskeleton dynamics, as docu-
mented by different morphological consequences of uncoupling
these interactions in PC-3 cells, such as defects in lamellipodia
formation, rounder cells or extended spindles (Hazelett and Yea-
man, 2012). RalA also interacts with the actin cytoskeleton via
Myo1c, suggesting its function as a cargo receptor for the Myo1c
motor (Chen et al., 2007). Taken together, the exocyst complex as
an immediate effector of RalA obviously integrates the secretory
pathway and actin cytoskeleton near the PM in mammalian cells
(Figure 1).

Cells of mouse oocytes can use secretory (Rab11-positive) vesi-
cles associated with the exocyst components via the Rab11–Sec15
interaction (Wu et al., 2005) as adaptable, motorized network
nodes regulating the dynamics and density of microfilaments in a
myosin Vb-dependent manner (Holubcová et al., 2013). Such an
actin modulation is essential for asymmetric positioning of the
meiotic spindle and thus for the development of a fertilizable egg
in mammals.

Although we can find no dynamic membrane protrusions anal-
ogous to filopodia in plant cells, fine F-actin meshwork is essential
for polar growth of root hairs, pollen tubes, or stigmatic papillae
and this type of growth demanding precise regulation of exocy-
tosis is also strongly dependent on the exocyst function (Yalovsky
et al., 2008; Vaškovičová et al., 2013).

Ral GTPases are specific to animals – in plant cells, as in
yeast, only homologs to Rho GTPases (called also Rac in ani-
mals) are present and due to some plant specific features they
are called Rop (Rho of plant). Rop GTPases were clearly implied
in the cortical cytoskeleton regulation mostly possibly via plant
specific Rop-interacting adaptors (RICs; Fu et al., 2001; Yalovsky
et al., 2008). Very significant for the speculations on plant exocyst-
cytoskeleton links is a dominant land-plant specific way of Rop
activation mediated by specific PRONE-GEF (plant-specific ROP
nucleotide exchanger – GDP/GTP exchange factor) regulated by
interacting receptor-like kinases (RLKs) that allow for very effi-
cient cortical activation of Rop GTPases in response to plethora of
different stimuli including changes in cell wall mechanics (Mucha
et al., 2011). Moreover, the first Rop-exocyst interaction observed

in plants is not direct – several GTP-bound Rops interact with the
Sec3 exocyst subunit in Arabidopsis via a plant specific adaptor
protein ICR1 which is implied in the regulation of auxin polar
transport (Lavy et al., 2007; Hazak et al., 2010; see further). These
features along with plant specific transmembrane anchorage of
plant F-actin nucleating formins (Cvrčková, 2013; in this issue)
indicate that the cortical wiring between actin cytoskeleton and
exocytosis in plants will be quite specific.

THE EXOCYST AND TUBULIN CYTOSKELETON
Microtubules are not essential for exocytosis in budding yeast and
no functional link with the exocyst complex has been documented
so far (Hammer and Sellers, 2012). In rat kidney cells, however,
Exo70 co-localizes with microtubules and the mitotic spindle, and
in vitro, the exocyst complex reconstituted from recombinant sub-
units inhibits tubulin polymerization. However, deletions of any
of Sec5, Sec6, Sec15, or Exo70 exocyst subunits diminished the
inhibition activity. Surprisingly, Exo70 itself could inhibit tubu-
lin polymerization, albeit the exocyst complex lacking the Exo70
subunit did not lose its activity completely. On the other hand,
when Exo70 was overexpressed, the microtubule network became
disrupted and filopodia-like PM protrusions were formed (Wang
et al., 2004).

The protrusion formation is consistent with an observation
in Xenopus neurons, where a local disassembly of microtubules
by focal application of nocodazole induced an addition of a new
membrane material at the affected site (Zakharenko and Popov,
1998).

In undifferentiated PC12 neuronal cells, the exocyst complex
is associated with microtubules as well as microtubule organiz-
ing centers and can be co-immunoprecipitated with microtubules
from the total rat brain lysate (Vega and Hsu, 2001). However,
upon activation of neuronal differentiation, the exocyst redis-
tributes from perinuclear localization to the growing neurite
characterized by high exocytic activity at the PM. The subcellular
exocyst localization was affected by treatment with microtubule-
disrupting drugs, but not actin-disrupting drugs. These results
support a possibility that the exocyst complex acts as a modulator
of microtubules to mediate vesicle targeting in animal cells.

It is expected that also in respect to microtubular cytoskeleton-
secretory pathway relationship the plant cells will have specific
features due to the obvious dependence of the final steps of exocy-
tosis and membrane recycling in plants on the actin cytoskeleton
and very possibly exocytosis permissive feature of even dense cor-
tical microtubuli (see below). However, both cytoskeletal systems
in plant cells strongly interact (e.g., via specific actin nucleating
formins) so that in the real biological context it will be challenging
to separate their functions.

INTERPLAY BETWEEN THE EXOCYST AND BOTH TYPES OF
CYTOSKELETON
In contrast to budding yeast, typical vertebral cells use micro-
tubules for long-range cargo transport and microfilaments for
short-range transport in cell cortex during later steps of vesicles
traffic (Hammer and Sellers, 2012). Several studies pinpoint the
potential importance of the exocyst in transition of cargo from
microtubules to microfilaments.
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Mammalian cell migration involves cooperative reorganization
of the actin and microtubule cytoskeletons under the control of
Rho GTPases (de Curtis and Meldolesi, 2012). Proper localiza-
tion and activity of the exocyst is promoted by microtubule-
associated GEF-H1, a GTP exchange factor for the RhoA actin
activator, in HeLa cells (Pathak et al., 2012). Microtubule depoly-
merization results in the activation of GEF-H1, which further
activates RhoA (Krendel et al., 2002). Importance of this regu-
lation was documented experimentally on the cleavage furrow
formation during cytokinesis (Birkenfeld et al., 2007) and on
actin dynamics during cell migration (Nalbant et al., 2009). The
depletion of GEF-H1 led to accumulation of Rab11-positive secre-
tory vesicles within the cells and to mislocalization of Exo70
and Sec8 exocyst subunits (Pathak et al., 2012). GEF-H1 also
directly binds the Sec5 exocyst subunit in a RalA GTPase-
dependent manner; the interaction is stronger with free GEF-
H1 than with its microtubule associated form (Pathak et al.,
2012). The Sec5-GEF-H1 interaction promotes RhoA activa-
tion, which then regulates exocyst localization and possibly its
assembly, as well as actin polymerization. Exocyst thus first
helps to activate RhoA, which subsequently assists functioning
of the exocyst, resulting in a positive feedback (Pathak et al.,
2012).

Interestingly, despite the different mechanisms of cytokine-
sis between plants and animals/fission yeast (contraction versus
building of a cell plate), the exocyst is involved in both types of
cytokinesis (Fendrych et al., 2010).

IQGAP1 is another important regulator of both actin and
microtubular cytoskeleton associated with the exocyst. The active
RhoA and Cdc42 trigger association of Sec3 and Sec8 exocyst
subunits with IQGAP1. This interaction is essential for MT1-
MMP protease localization at invadopodia and thus for proper
invadopodia functioning (Sakurai-Yageta et al., 2008). IQGAP1
stimulates actin bundling (White et al., 2012) and directly interacts
with microtubule plus end binding protein CLIP-170 in neurons
(Swiech et al., 2011).

EXOCYST INTERACTION WITH CELLULAR MEMBRANES
As mentioned earlier, in budding yeast, Sec3p and part of Exo70p
population can reach newly forming bud also independently of
microfilaments (Boyd et al., 2004). They bind the PM directly via
phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) and
indirectly by association with Rho GTPases (He et al., 2007; Zhang
et al., 2008; Wu et al., 2010; Figure 1). Sec15p binds to the mem-
brane of secretory vesicles via the Sec4p Rab GTPase (Guo et al.,
1999) and Sec6p binds Snc2p, a vesicle-associated SNARE pro-
tein (Shen et al., 2013). Sec6p also contributes to anchor the
exocyst complex at sites of secretion – possibly via interaction
with PM-associated proteins (Songer and Munson, 2009). Besides
facilitating exocytosis by interactions with Sec9p, a Qbc exocytic
t-SNARE protein (Sivaram et al., 2005), and with Sec1, a pro-
tein from the Sec1/Munc18 family regulating SNARE functions
(Morgera et al., 2012), the exocyst also interacts with the vesicles
transporting myosin Myo2p (also a known Sec4p interactor) via
the Sec15p subunit that directly binds the motor and allows for
its release after vesicle tethering (Jin et al., 2011; Donovan and
Bretscher, 2012).

In fission yeast, Sec6 and Sec8 exocyst subunits localize to cell
tips largely independent of the actin cytoskeleton, but in a Cdc42
and PIP2-dependent manner. Thus, the fission yeast long-range
cytoskeletal transport and PIP2-dependent exocyst represent par-
allel morphogenetic modules downstream of Cdc42, raising the
possibility of similar mechanisms in other organisms (Bendezú
and Martin, 2013). Bendezú et al. (2012) showed that Sec3 and
Exo70 tether the exocyst complex arriving with secretory vesicles
by direct binding to PIP2 and Rho GTPases at the cell poles. In
absence of the Myo52 motor protein, vesicles with the entire exo-
cyst can still reach the cell pole by random movement, but less
efficiently. In absence of both Sec3 and Exo70, vesicles and the rest
of the exocyst fail in delivery and tethering and form aggregates.
Also in plants Sec3 subunit of exocyst interacts with membrane
lipids (Bloch et al., in preparation).

Very recently Zhao et al. (2013) discovered that Exo70 alone,
through an oligomerization-based manner, can generate mem-
brane curvatures in vitro independent of the exocyst function.
This represents a mechanism creating protrusions even in the
absence of actin, albeit it is not clear to what extent stimulated actin
polymerization, membrane delivery, and membrane deformation
contribute to cell shape changes in vivo including formation of
membrane protrusions. Thus, Exo70 as a membrane-bending
protein may couple the actin dynamics and PM remodeling in
morphogenesis.

The exocyst is also essential for large-particle phagocytosis
(Mohammadi and Isberg, 2013), Salmonella invasion into host
cells (Nichols and Casanova, 2010) and formation of tunneling
nanotubes – recently discovered structures connecting cytoplasm
of animal cells (Ohno et al., 2010; Mukerji et al., 2012; Schiller
et al., 2013). Each of these events could combine all three mech-
anisms mentioned above. Membrane-deforming ability of Exo70
could function well beyond the cell cortex-associated events, since
the exocyst participates in many cellular processes (reviewed in
Heider and Munson, 2012; Liu and Guo, 2012).

PERSPECTIVES ON THE EXOCYST–CYTOSKELETON
INTERFACE IN ENDOMEMBRANE BIOGENESIS IN PLANTS
Regulation of the cytoskeleton structure and dynamics in plant
cells is very much affected by the cell wall, implying close
proximity between secretory pathway, cell wall biogenesis and cor-
tical cytoskeleton. These cellular systems are regulated by small
GTPases, especially from the ARF, RAB, and ROP families, major
regulators of the cell polarity and morphogenesis closely related
to their fungal or animal counterparts (Vaškovičová et al., 2013).
Work in the laboratory of Shaul Yalovsky (Lavy et al., 2007; Hazak
et al., 2010) showed that the SEC3 exocyst subunit interacts with
an activated (GTP-bound) ROP at the PM via ICR1, a founding
member of the ICR/RIP protein family (Li et al., 2008; Mucha et al.,
2010). RIP3 (also known as MIDD1) interacts in a GTP-bound
manner with ROPs and also with the Kinesin-13A to regulate
the microtubular dynamics (Mucha et al., 2010). RIP3 is a crucial
negative regulator of cortical microtubules in the patterning of sec-
ondary cell wall thickening directed by the ROP11 GTPase module
(Oda and Fukuda, 2012). At PM sites, where cortical micro-
tubules are locally destabilized, the localized exocytosis-dependent
secondary cell wall thickening is blocked (Oda and Fukuda, 2012).
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While local destabilization of cortical microtubules seems to
stimulate exocytosis in animal cells (see above Zakharenko and
Popov, 1998), dense microtubule cortical domains of somatic
plant cells are often the cortical domains of highest secretory
activity, as in xylem thickening or seed coat epidermal cells with
a volcano-like cell wall thickening, where highly polarized deliv-
ery of pectins is targeted to extremely dense cortical microtubule
domains (McFarlane et al., 2008; Oda and Fukuda, 2012). The
exocytosis of pectins into pectin-accumulating pockets depends
on exocyst function, implying a possibility that microtubule-rich
domains might be a general cortical target recognized by EXO70s
or other exocyst subunits, functioning as putative PM landmarks
for exocytosis targeting (Žárský et al., 2009; Kulich et al., 2010).
Extensive proliferation of the EXO70 gene in land plants (e.g., Ara-
bidopsis in endowed with 23 EXO70 paralogs) possibly provides a
potential for fine targeting into specific cortical areas (Synek et al.,
2006; Cvrčková et al., 2012).

On the contrary, dense cortical microfilament meshwork
might block exocytosis in both animal and plant cells (Valentijn
et al., 1999; Žárský et al., 2009). For instance, a dense subapi-
cal F-actin fringe separating actively growing tip from the rest
of the tobacco pollen tube might also be a mechanical obsta-
cle for exocytosis (Lovy-Wheeler et al., 2005). The exocyst is
also accumulated at the tip of growing pollen tubes and is
obviously involved in exocytosis (Hála et al., 2008). The trans-
port and delivery of secretory vesicles in plant cells is likely to
depend on both microfilaments and an interaction of some exo-
cyst subunits with the PM phosphoinositides, like in the case
of yeast and animal cells (see above). Phosphoinositide bind-
ing was indeed predicted for several Arabidopsis EXO70 paralogs
based on yeast and animal models (Žárský et al., 2009) and
currently proved both biochemically and cytologically in our lab-
oratory for the Arabidopsis SEC3 exocyst subunit (Bloch et al., in
preparation).

The dynamics of several exocyst subunits at the PM, as mon-
itored by TIRF microscopy in Arabidopsis epidermal cells, was
unaffected by actin or microtubule cytoskeleton disruption after
short (10 min) treatment with inhibitors, however, prolonged
actin cytoskeleton disruption (1 h) resulted in exocyst redistribu-
tion and aggregation at the PM and impaired dynamics (Fendrych
et al., 2013). This is consistent with microfilament involvement
not only in the delivery but also in spatial distribution of secretory
vesicles and endomembrane compartments (Staehelin and Moore,
1995).

Interestingly, exocyst complexes show almost no lateral move-
ment within the PM in both plant and animal cells, as analyzed
by the TIRF microscopy, and very similar time of persistence
at the PM of about 10 s was recorded (Fendrych et al., 2013;
Rivera-Molina and Toomre, 2013). Similarly, the KAT1 channel is
localized inside the PM within positionally stable microdomains,
which last, however, for 10s of minutes, in contrast to dynamics
of the exocyst (Sutter et al., 2006). It is possible that some trans-
membrane proteins, e.g., plant-specific transmembrane formins
(Martiniere et al., 2011; Cvrčková, 2013; in this issue) create,
together with specific membrane lipids, functional clusters sta-
bilized against the lateral movement in the PM. These transmem-
brane proteins might be immobilized by the binding extracellular

domains in the cell wall matrix and provide landmarks for the
delivery of secretory vesicles (Martinière et al., 2012).

CONCLUSION
Direct as well as a circumstantial evidence accumulated over the
years concerning interactions and cooperation between the exo-
cyst and cytoskeleton indicates that the exocyst, cytoskeleton, and
membrane traffic meet at the active cellular cortex. The exocyst
serves an important role in co-ordination of the vesicle trafficking
with the cytoskeleton in eukaryotes, in addition to its canonical
role in exocytosis. In plant cells, however, we have currently only
limited and indirect evidence for this regulatory interplay, urging
further research in this direction.
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