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During vegetative and embryonic developmental transitions, plant cells are massively reor-
ganized to support the activities that will take place during the subsequent developmental
phase. Studying cellular and subcellular changes that occur during these short transitional
periods can sometimes present challenges, especially when dealing with Arabidopsis
thaliana embryo and seed tissues. As a complementary approach, cellular reprogramming
can be used as a tool to study these cellular changes in another, more easily accessible,
tissue type. To reprogram cells, genetic manipulation of particular regulatory factors that
play critical roles in establishing or repressing the seed developmental program can be
used to bring about a change of cell fate. During different developmental phases, vacuoles
assume different functions and morphologies to respond to the changing needs of the cell.
Lytic vacuoles (LVs) and protein storage vacuoles (PSVs) are the two main vacuole types
found in flowering plants such as Arabidopsis. Although both are morphologically distinct
and carry out unique functions, they also share some similar activities. As the co-existence
of the two vacuole types is short-lived in plant cells, how they replace each other has
been a long-standing curiosity. To study the LV to PSV transition, LEAFY COTYLEDON2,
a key transcriptional regulator of seed development, was overexpressed in vegetative
cells to activate the seed developmental program. At the cellular level, Arabidopsis leaf
LVs were observed to convert to PSV-like organelles. This presents the opportunity for
further research to elucidate the mechanism of LV to PSV transitions. Overall, this example
demonstrates the potential usefulness of cellular reprogramming as a method to study
cellular processes that occur during developmental transitions.
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INTRODUCTION
One of the most dramatic cellular changes that occur over
the lifetime of a flowering plant happens during the transi-
tion between vegetative and embryonic developmental phases.
Vegetative cells are massively reorganized to support embry-
onic development and vice versa (Mansfield and Briarty, 1991,
1992, 1996). The array of organelles present within the cells
remains more or less constant, however, vegetative and embry-
onic cells are morphologically distinct (Figures 1A,B). At the
subcellular level, what happens to the organelles during these
transitions?

Studying the cellular and subcellular changes that occur dur-
ing these developmental transitions is challenging. Arabidopsis
thaliana is the model organism of the plant community and has
been adopted for genetic, physiology, molecular, and developmen-
tal biology research (Meyerowitz, 2001; Somerville and Koornneef,
2002). Thus, it is beneficial and practical to relate these areas of
study to the cell biology of this plant. In Arabidopsis, however, it
is difficult to study the cellular changes that occur during vege-
tative and embryonic developmental programs on account of the
small seed size and technical challenges in isolating embryos from
maternal tissues at early stages of embryogenesis (Girke et al., 2000;
Xiang et al., 2011; Ibl and Stoger, 2012).

During different developmental stages of the plant life cycle,
vacuoles assume diverse functions in response to the changing
needs of the cell, and their morphology will be significantly dif-
ferent (Marty, 1999; Zouhar and Rojo, 2009). Due to its sheer
size, the lytic vacuole (LV) is the most prominent organelle in the
vegetative plant cell. Its counterpart, present in Arabidopsis seeds,
is the protein storage vacuole (PSV) which looks nothing like the
LV (Figures 1A,B). It is remarkable how such a large organelle
(LV) can transform (Zheng and Staehelin, 2011) or be replaced
(Hoh et al., 1995) by much smaller and more numerous PSVs
and vice versa. Another intriguing issue is how the two vacuoles
can have such drastically different functions; the LV is essential
for water (Beebo et al., 2009) and ionic homeostasis (Isayenkov
et al., 2010), plays a role in shaping vegetative cells (Rojo et al.,
2001), and also acts as a cellular waste bin (Li and Vierstra, 2012).
In contrast, the PSV stores protein (Scarafoni et al., 2001) and
mineral reserves (Otegui et al., 2002) and therefore acts as a
cellular pantry. PSVs are present as storage organelles in three
of the world’s major food crops (Varshney et al., 2012); rice
(Kawakatsu et al., 2010), wheat (Regvar et al., 2011), and maize
(Reyes et al., 2011) and are prevalent in other important food
sources such as nuts, legumes, and other cereals (Bethke et al.,
1998; Hara-Nishimura et al., 1998; Robinson et al., 2005). Indeed,
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FIGURE 1 |Transmission electron microscope images of Arabidopsis

leaf (A) and seed (B) cells. Asterisk shows the LV and arrows point to
PSVs. Bars = 2 μm.

PSVs play an important role in supplying essential nutrients
for our dietary needs. Here we discuss how cellular reprogram-
ming can be used to learn more about LV to PSV transitions in
Arabidopsis.

LYTIC VACUOLE STRUCTURE AND FUNCTION
The central LV is the largest and most instantly recognizable
organelle in a vegetative plant cell. It can account for up to 90% of
the total cell volume (Jolliffe et al., 2005). As such, the LV squeezes
the cytoplasm and other organelles between the tonoplast and

plasma membrane (Figure 1A). LVs are present in the cells of
young seedlings shortly after germination and generally exist in
all cells throughout vegetative growth (Gattolin et al., 2009; Zheng
and Staehelin, 2011).

The LV lumen contains water, numerous hydrolytic enzymes,
and is maintained at a pH of 5.5–6 (Martinière et al., 2013). The
tonoplast plays a major role in maintaining this luminal environ-
ment. The tonoplast is a selective membrane that contains a large
number of channel and transport proteins that mediate the move-
ment of organic and ionic substances between the cytoplasm and
vacuole (Carter et al., 2004; Jaquinod et al., 2007; Müntz, 2007).
To maintain an acidic luminal pH, vacuolar ATPase (V-ATPase)
and pyrophosphatase (V-PPase) catalyze ATP-dependent proton
transfer across the tonoplast. Their activity creates a proton gra-
dient and membrane potential which energizes secondary active
transport across the tonoplast (Yang et al., 2007; Krebs et al., 2010).
The movement of inorganic metabolites is mediated by specific
ion channels (Voelker et al., 2006) or transporters (Brini et al.,
2007), while organic substances are moved by ATP-binding cas-
sette (ABC) transporters (Shi et al., 2007; Song et al., 2010). The
movement of water across the tonoplast is facilitated by water
channels called aquaporins (Maurel et al., 2008). Within the vac-
uole lumen, numerous hydrolytic enzymes are present such as
proteases, glycosidases, lipases, nucleases, and peroxidases (Carter
et al., 2004).

The LV participates in diverse physical and metabolic functions
that are critical for the survival of a plant. A significant role of the
LV is to allow the cell to increase its size without expending too
much energy. This allows lower cost cellular growth as vacuoles
largely consist of water and have a low density of organic com-
pounds to synthesize (Zouhar and Rojo, 2009). One universally
important function of the LV is its role in maintaining turgor
pressure which determines the rigidity of the cell and is important
for growth and mechanical stability of the plant (Müntz, 2007). In
addition to physical functions, LVs play important metabolic roles
by storing a large variety of compounds such as toxins (Riechers
et al., 2010), salts (Krebs et al., 2010), heavy metals (Song et al.,
2010), pigments (Reuveni et al., 2001; Zhang et al., 2006), and
defense compounds (Zhao and Dixon, 2010). The low pH and
numerous hydrolytic enzymes present in the LV lumen allow it to
play a fundamental role in the degradation of cytoplasmic mate-
rials from small molecules to organelles. This process involves
autophagy, a conserved mechanism in eukaryotes whereby cell
contents are transferred to the vacuole to be digested and recy-
cled, typically in a non-selective manner (Bassham, 2007; Li and
Vierstra, 2012). Generally, a basal level of autophagy functions
constitutively for the turnover of cellular components (Wang et al.,
2013). However, it can be induced to higher levels during par-
ticular developmental stages (Bassham et al., 2006) or in times
of cell stress (Liu et al., 2012). Endocytic trafficking of proteins
from the plasma membrane is an essential cellular transport sys-
tem required for cell communication, cellular differentiation, and
physiological responses to the environment (Otegui and Spitzer,
2008; Irani and Russinova, 2009; Richter et al., 2009). The LV
plays a key role as the cellular endpoint where selected endo-
cytosed proteins are sent for degradation (Otegui and Spitzer,
2008).
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PROTEIN STORAGE VACUOLE STRUCTURE AND FUNCTION
The PSV is a specialized organelle that is unique to flowering plants
(Wang et al., 2012). It is found predominantly in seeds and young
meristematic plant cells (Olbrich et al., 2007; Gattolin et al., 2011).
In shoot and root meristem cells, the existence of PSVs is thought
to be due to the persistence of seed-specific signals in the meristem
(Olbrich et al., 2007). Whereas LVs typically occupy most of the
cell space, PSVs are much smaller in size and range from 1.5 to
8 μm in diameter (Gillespie et al., 2005). PSVs are numerous and
are usually positioned close to the center of the cell (Shimada et al.,
2008; Figure 1B).

The PSV is a compartmentalized organelle (Jiang et al., 2001;
Bolte et al., 2011; Regvar et al., 2011). Comparatively less is known
about the PSV tonoplast than the LV tonoplast (Isayenkov et al.,
2010) but they are known to share some similarity in their com-
position of proteins (Hoh et al., 1995; Jiang et al., 2001; Isayenkov
et al., 2011). The pH of the PSV lumen varies between 4.9 and
5.5 (Otegui et al., 2006). The defining feature of PSVs is their
ability to accumulate seed storage proteins (SSPs). In fact, the
appearance of PSVs in embryonic cells coincides with storage
reserve accumulation during the maturation phase of embryogen-
esis (Mansfield and Briarty, 1992). Lesser recognized roles of PSVs
are the storage of phosphorus and minerals (Otegui et al., 2002),
protective compounds such as lectins (De Hoff et al., 2009) and
chitinases (Neuhaus et al., 1991), and proteolytic enzymes (Gruis
et al., 2004). Like their LV counterparts, PSVs are also involved in
autophagy. PSVs of wheat and maize sequester SSPs from endo-
plasmic reticulum (ER)-derived protein bodies (Levanony et al.,
1992) or prevacuolar-like compartments (Reyes et al., 2011) by
autophagic mechanisms, respectively.

VACUOLE CONVERSION DURING EMBRYONIC AND
VEGETATIVE GROWTH AND DEVELOPMENT
MULTIPLE VACUOLES IN PLANT CELLS
As discussed, seed plants have two principal, functionally distinct
vacuole types, LVs and PSVs (Becker, 2007; Ibl and Stoger, 2012).
This has raised questions about whether the two vacuoles co-exist
in cells. To address this question, the two vacuole types must be
distinguished. LVs and PSVs can be differentiated by the presence
of tonoplast intrinsic protein (TIP) isoforms (Jauh et al., 1999;
Gattolin et al., 2010). TIPs are aquaporins that are specifically
localized to tonoplasts (Maurel et al., 2009). Arabidopsis has 10
TIP isoforms and two of these are used to discriminate between
LVs and PSVs, TIP1;1 and TIP3;1, respectively (Johanson et al.,
2001; Gattolin et al., 2010). In addition, a small number of sol-
uble proteins have been shown to reside exclusively within the
lumen of each vacuole type and thus also serve as markers to
discriminate between both vacuole types. For example, the cys-
teine protease aleurain is targeted to the LV (Ahmed et al., 2000),
and phaseolin and 2S albumin, the major SSPs of common bean
and Arabidopsis, respectively, are targeted to PSVs (Frigerio et al.,
1998; Miao et al., 2008). LVs and PSVs were originally proposed to
co-exist in plant cells based on TIP and soluble protein localiza-
tion studies undertaken in the 1990s (Paris et al., 1996; Park et al.,
2004). This idea was attractive because it provided a convenient
explanation for the diverse sorting signals and routes that proteins
follow to arrive at the two vacuole types (Vitale and Raikhel, 1999;

Vitale and Hinz, 2005; Frigerio et al., 2008; Rojo and Denecke,
2008). This theory was subsequently challenged as more insight
was gained by studying TIP expression patterns. TIP3;1 and TIP1;1
expression were discovered to be tissue- and development-specific
rather than organelle-specific (Hunter et al., 2007; Olbrich et al.,
2007). Recently, a detailed map of TIP expression patterns in
Arabidopsis has been produced to better understand the distribu-
tion pattern of these vacuolar markers (Gattolin et al., 2009, 2010,
2011). However, some differences in TIP expression patterns have
been reported (Bolte et al., 2011). The current general view is that
most cells contain one vacuolar type. However, both vacuoles have
been shown to co-exist in some cells but their co-existence is usu-
ally short-lived (Hoh et al., 1995; Frigerio et al., 2008; Zheng and
Staehelin, 2011).

BIOGENESIS OF VACUOLES DURING DEVELOPMENTAL TRANSITIONS
LV to PSV transition
During Arabidopsis embryogenesis, a large LV forms in the fertil-
ized zygote. The zygote then divides to produce a vacuolated basal
cell (which will form the suspensor) and a non-vacuolated apical
cell (which will give rise to the embryo; De Smet et al., 2010). As
the embryo continues to divide, LVs develop in all cells (Zouhar
and Rojo, 2009). During the maturation phase of embryogenesis,
LVs are replaced by PSVs which will accumulate SSPs and mineral
reserves (Mansfield and Briarty, 1991).

PSV to LV transition
During germination, storage reserves are mobilized to provide
nutrients and energy for the growing embryo (Pritchard et al.,
2002; Tan-Wilson and Wilson, 2012). As protein and mineral
reserves are released, PSVs are replaced by LVs. The LV sub-
sequently increases in volume to create turgor and support cell
growth and expansion (Mansfield and Briarty, 1996). In Arabidop-
sis, it takes approximately 3.5 d for the PSV to LV transition to occur
(Hunter et al., 2007). PSV to LV transitions are also observed in
root cells. PSVs are present in the radicle as it emerges from the
seed coat. As the root elongates, meristematic regions of the root
tip retain PSVs while PSVs transition to LVs in the distal regions of
elongating roots (Olbrich et al., 2007; Gattolin et al., 2011; Zheng
and Staehelin, 2011).

How do such morphologically distinct vacuoles replace each
other in the cell during vegetative and embryonic transitions? We
envisage two possible scenarios: either a new vacuolar type arises
by remodeling of the pre-existing vacuole, or a new vacuole is
formed de novo and very rapidly supersedes the existing one.

Vacuole remodeling
One means by which different vacuole types may replace each
other is by remodeling or reprogramming the vacuole that is
already present in the cell. Several studies support this hypoth-
esis. During Arabidopsis germination and seedling development,
Mansfield and Briarty (1996) observed multiple PSVs fusing to
form a LV after the mobilization of most protein reserves. Olbrich
et al. (2007) observed the formation of a single vacuole in barley
and pea root tip cells. Close to the root tip, cells contain PSVs with
TIP3;1 in their tonoplast. As root cells differentiate, the enlarging
vacuole becomes a PSV–LV hybrid as indicated by the presence
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of both TIP3;1 and TIP1;1 and storage proteins in the lumen.
The hybrid vacuole then gradually differentiates into a LV with
increasing amounts of TIP1;1 and decreasing amounts of TIP3;1
in the tonoplast. Similarly, Zheng and Staehelin (2011) observed
that PSVs in tobacco root tips were transformed into LVs. This
PSV to LV transition involves unique, highly tissue-specific spa-
tial and temporal changes in vacuole architecture. In addition,
within some cell types, the transformation was shown to involve
autophagosome formation and engulfment by the developing LV
(Zheng and Staehelin, 2011).

De novo vacuole formation
An alternative hypothesis to explain how different vacuole types
arise involves the independent generation of a vacuole within a
cell that already has a pre-existing vacuole. A key study to support
this theory was conducted by Hoh et al. (1995) who investigated
the formation of PSVs in pea cotyledons during seed develop-
ment. The authors observed the development of a tubular PSV
structure which overtook the pre-existing LV. A second example
backing this hypothesis is the demonstration that vacuoles can
be regenerated from evacuolated protoplasts (Hörtensteiner et al.,
1992; Di Sansebastiano et al., 2001). Using autophagy inhibitors,
an autophagy-like mechanism was demonstrated to be involved
in vacuole biogenesis of evacuolated tobacco protoplasts (Yano
et al., 2007). However, the mechanism is distinct from conserved
autophagy pathways (Bassham, 2007). Most recently, Viotti et al.
(2013) also demonstrated the formation of autophagosome-like
structures which give rise to LVs in Arabidopsis root tip cells
but showed that these structures were not formed by the core
autophagy machinery.

If the de novo theory holds true, then where does the
membrane for a new vacuole originate? If an autophagy-like
mechanism is involved in biogenesis, perhaps the tonoplast is
generated by a process similar to autophagosome formation (Li
and Vierstra, 2012). In autophagosome formation, the first step
is the formation of an isolation membrane which occurs in
the cytoplasm close to the vacuole. This process involves the
recruitment of several autophagy-related (ATG) proteins which
assemble in a coordinated manner to form a cup-shaped mem-
brane structure that elongates and eventually engulfs material to
be transported to the vacuole (Mizushima, 2007; Nakatogawa
et al., 2009). Mutants defective in vacuole formation have been
identified (Zouhar and Rojo, 2009). Most mutations affect factors
involved in membrane fusion. An essential gene involved in vac-
uole biogenesis has been identified as VACUOLELESS1 (VCL1)
through a mutant screen (Rojo et al., 2001). Loss-of-function
vcl1 embryos were unable to form vacuoles. Mutants accumu-
lated large numbers of autophagosomes which were unable to
fuse to form the vacuole but instead would fuse with the plasma
membrane and deliver their vacuolar contents to the apoplasm.
Thus, VCL1 is proposed to be involved in regulating the fusion of
autophagosomes to form a LV (Zouhar and Rojo, 2009). Tono-
plasts have also been proposed to originate from the ER or
the Golgi apparatus (Marty, 1978; Robinson and Hinz, 1997;
Staehelin, 1997; Neuhaus and Rogers, 1998). Using mutants and
pharmacological inhibitors which affect the biosynthetic secre-
tory pathway, Viotti et al. (2013) demonstrated that tonoplast

proteins and lipids were derived from the ER and were deliv-
ered directly, via a Golgi-independent route, to form the LV
tonoplast.

REPROGRAMMING CELLS TO STUDY ORGANELLE
DYNAMICS: VACUOLES
As an alternative to studying PSV formation in developing seeds,
we asked if it was possible to induce the formation of PSVs in
vegetative cells. Cues prompting vegetative cells to switch to PSV
formation are not well understood. Despite the fact that SSPs
are the major storage reserves that accumulate in PSVs, their
forced synthesis in vegetative tissues has not been demonstrated to
promote PSV formation. Constitutive expression of phaseolin in
alfalfa vegetative tissues did not result in a significant accumula-
tion of the protein in cells of non-seed organs (Bagga et al., 1992).
Further, phaseolin was shown to accumulate and be degraded
in the LV and, in part, secreted upon overexpression in tobacco
(Frigerio et al., 1998). In transgenic Arabidopsis plants overexpress-
ing a chimeric 2S albumin gene, novel precursor-accumulating
(PAC)-like vesicles were induced to form in leaves (Hayashi et al.,
1999). Within a plant, PSVs are abundant in seed tissues and are
also observed in meristematic cells in vegetative tissues (Olbrich
et al., 2007). Thus it seems that for PSVs to exist, cells must be
programmed to be in an embryonic state.

Genetic research has uncovered a number of genes that
play critical roles in establishing or repressing embryonic cell
fate (Braybrook and Harada, 2008; Zhang and Ogas, 2009;
Jia et al., 2013b). Several transcription factors such as LEAFY
COTYLEDON1 (LEC1; Lotan et al., 1998), LEC2 (Stone et al.,
2001), FUSCA3 (FUS3; Gazzarrini et al., 2004), BABYBOOM
(BBM ; Boutilier et al., 2002), WUSCHEL (WUS; Zuo et al.,
2002), EMBRYOMAKER (EMK ; Tsuwamoto et al., 2010), and
MYB118 (Wang et al., 2009) act during embryogenesis to pro-
mote seed developmental programs. In contrast, negative seed
regulators such as PICKLE (PKL; Ogas et al., 1999), POLYCOMB
REPRESSIVE COMPLEX 2 (PRC2; Bouyer et al., 2011), SET
DOMAIN GROUP 8 (SDG8; Tang et al., 2012b), BRAHMA (BRM ;
Tang et al., 2008), VP1/ABSCISIC ACID INSENSITIVE 3-LIKE
(VAL) genes (Suzuki et al., 2007) and microRNA166 (miR166;
Tang et al.,2012a) are responsible for suppressing the seed program
in vegetative tissues. Thus, overexpression or downregulation of
these positive and negative seed regulators, respectively, will induce
a seed-specific developmental program causing vegetative tissues
to exhibit embryonic characteristics. This scenario presents an
opportunity to study the cellular and subcellular changes that take
place during this developmental transition.

The maturation phase of embryogenesis represents an exciting
window of time to study organelle dynamics. One of the most dis-
tinctive activities that take place is a high level of storage reserve
accumulation (Mansfield and Briarty, 1992). In Arabidopsis seeds,
lipids and proteins usually accumulate up to 30–40% each of the
seed dry weight. Lipids are stored in oil bodies which originate
from the ER membrane (Hsieh and Huang, 2004) and PSVs arise
to accumulate SSPs as discussed (Mansfield and Briarty, 1992).
The events that take place during the maturation phase are con-
trolled by the complex seed regulatory network introduced above
(Santos-Mendoza et al., 2008). A key part of this control is achieved
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through the activities of a small number of transcriptional regu-
lators; LEC1, LEC2, FUS3, and ABSCISIC ACID INSENSITIVE3
(ABI3; Zhang and Ogas,2009). Genetic studies showed that vegeta-
tive tissues overexpressing these transcription factors would begin
to exhibit seed traits (Gazzarrini et al., 2004; Kagaya et al., 2005;
Stone et al., 2008; Junker et al., 2012).

A wealth of genetic knowledge has been gathered on
LEC2 activities (Stone et al., 2001, 2008; Kroj et al., 2003;
Santos Mendoza et al., 2005; Braybrook et al., 2006; To et al., 2006;
Baud et al., 2007). To learn more about the cellular changes that
occur during the vegetative to embryonic transition, a dexametha-
sone (DEX)-inducible LEC2-GR expression system was exploited
in Arabidopsis (Feeney et al., 2013). The overexpression of LEC2
triggers massive cellular reorganization in leaves and causes these
vegetative organs to exhibit embryonic characteristics. Among the
many cellular and subcellular changes, the replacement of LVs with
PSV-like organelles was most notable. In these leaf cells, the large
LV is replaced by smaller and more numerous vacuoles that contain
SSP aggregates. Upon further investigation using immunogold
labeling with tonoplast and luminal markers, it was established
that the small vacuoles had the features of developing PSVs (Feeney
et al., 2013). Indeed, the presence of the PSV-specific TIP3;1 pro-
tein on the tonoplast (Gattolin et al., 2011) and accumulation of
SSPs within the lumen of the small vacuoles indicates that the leaf
vacuoles assumed a storage role (Jauh et al., 1999; Hunter et al.,

2007; Olbrich et al., 2007). Furthermore, confocal analysis revealed
a unique embryo-like vacuolar morphology (Figures 2B,E). To
visualize the tonoplast of these developing leaf PSVs, 35S:LEC2-
GR plants co-expressing TIP3;1-YFP under its native promoter was
generated. The native TIP3;1 promoter is developmentally regu-
lated and thus the TIP3;1-YFP fusion is specifically expressed in
seed tissues and accumulated on PSV tonoplasts (Hunter et al.,
2007). As DEX-induced plants overexpressing LEC2 began to
acquire embryogenic characteristics (Feeney et al., 2013), TIP3;1-
YFP became detectable on the tonoplast of leaf cells, indicating that
vacuoles were PSVs (Figures 2B,E). Highly fluorescent TIP3;1-
YFP-labeled tonoplast folds and bulbs appeared (Saito et al., 2002,
2011). These are characteristic vacuolar morphologies of young
cells (Figure 2A). However, the tonoplast also retained the charac-
teristic configuration of a large LV lining the periphery of the cell.
To highlight the vacuole lumen, tissues were stained with neutral
red and revealed that the lumen appears to occupy the entire leaf
cell (Figure 2B) unlike seed PSVs (Figure 2C). In addition, vacuo-
lar lumina began to exhibit autofluorescence (Figure 2E), which
was not observed in uninduced leaves (Figure 2D). Autofluores-
cent vacuole lumina are usually observed in seed PSVs (Figure 2F;
Fuji et al., 2007; Hunter et al., 2007; Bolte et al., 2011). There-
fore, leaf vacuole tonoplasts were extensively remodeled but their
lumina remained large and filled the entire cell (Figures 2B,E).
These results suggest that in response to DEX-inducible LEC2

FIGURE 2 | Formation of PSV-like organelles in leaves overexpressing

LEC2. Leaf epidermal cells from 35S:LEC2-GR plants co-expressing
TIP3;1:TIP3;1-YFP and TIP1;1:TIP1;1-RFP (LEC2/TIP3-YFP/TIP1-RFP ;
Feeney et al., 2013) incubated on DEX to induce LEC2 expression (B,E)

are compared to LEC2/TIP3-YFP/TIP1-RFP plants grown without DEX
(D) or leaves of seedlings constitutively expressing 35S:TIP3;1-YFP (A).
Leaf cell morphology is compared with cotyledonary cells of

LEC2/TIP3-YFP/TIP1-RFP embryos (C,F). Note that TIP1;1:TIP1;1-RFP is
not expressed in seeds and is not detected on LV tonoplasts in older
vegetative tissues (D; Feeney et al., 2013). Green color: TIP3;1-YFP.
Vacuolar lumina are highlighted with neutral red (B,C). In bottom images
(D–F) red color is FM4-64 to label the plasma membrane and blue
color is autofluorescence. Arrowheads in (C) indicate the plasma
membrane. Bars = 10 μm.
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overexpression, leaf LVs are replaced by PSV-like organelles that
bear a resemblance to both LVs and PSVs. Therefore, it appears
that as the Arabidopsis leaf LV is replaced by a PSV, the LV tonoplast
remodels before being replaced by smaller-sized PSVs (Feeney
et al., 2013). While these observations seem to point toward a
remodeling of existing LVs into PSVs, they do not rule out the
possibility of de novo biogenesis of PSVs, which may overlap with
LV remodeling. The next question that will need to be addressed is
therefore how exactly PSVs replace LVs during LEC2-induced leaf
cell reprogramming.

A CHALLENGE OF CELLULAR REPROGRAMMING: KNOW
YOUR GENETIC REGULATOR
A number of genetic factors have been revealed to promote cellular
reprogramming and some are highlighted above. To bring about
cellular changes, many of these factors are involved in complex
genetic, biochemical, and physiological interactions (Gazzarrini
et al., 2004; Gutierrez et al., 2007; Le et al., 2010; Xiang et al., 2011).
These factors may act in a hierarchical order (Kagaya et al., 2005;
To et al., 2006) and may become active at slightly different develop-
mental times (Le et al., 2010; Willmann et al., 2011). Thus, while
many of the factors display a redundancy in promoting cellular
reprogramming, they may also display unique activities that affect
distinct cellular processes (Baud et al., 2007; Jia et al., 2013a). These
aspects should be taken into consideration when choosing a repro-
gramming system to study a particular cellular process. In the case
of vacuoles, several factors may cause vacuolar transitions in veg-
etative tissues. We have demonstrated that LEC2 overexpression
causes LVs to transition to PSVs and results from overexpression
studies with LEC1 (Junker et al., 2012) and FUS3 (Gazzarrini et al.,
2004) are suggestive that these transcription factors can also bring
about a change in vacuole type.

CONCLUSION
Cellular reprogramming may be a useful means of allowing the
study of cellular processes that take place during the short transi-
tional period between two developmental programs. Several genes
have been discovered that control embryonic cell identity by estab-
lishing or repressing the seed developmental program (Braybrook
and Harada, 2008; Zhang and Ogas, 2009; Jia et al., 2013b). In
the example presented in this review, overexpression of LEC2 was
used to activate the seed developmental program in Arabidop-
sis leaves (Santos Mendoza et al., 2005; Stone et al., 2008). This
system could then be used to study the cellular and subcellular
changes that ensue during the vegetative to embryonic transition
(Feeney et al., 2013). The observation that LVs were replaced by
PSV-like organelles in leaves presents an opportunity to elucidate
the mechanism of LV to PSV transitions in Arabidopsis. Overall,
we foresee that the major advantage of cellular reprogramming in
vegetative tissues is to provide a convenient and complementary
system in which to study cellular processes that normally occur
during developmental transitions in developing seeds–tissues that
are technically challenging to work with.
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