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The level of reactive oxygen species (ROS) increases under different stresses and, by
destroying cellular components, may cause cell death. In addition, ROS are part of the
complex network of transduction signals that induce defense reactions against stress or,
alternatively, trigger programmed cell death, and key questions are the levels of each ROS
that, respectively determine defense and death responses of the cell. The answer to those
questions is difficult because there are several patterns of cell death that frequently appear
mixed and are hardly distinguishable. Moreover, although considerable progresses have
been achieved in the determination of the levels of specific ROS, critical questions remain
on the ROS level in specific cell compartments. By considering chloroplasts as the main
source of ROS in photosynthetic tissues at light, a comparison of the levels in stress and
senescence of the chloroplastic activities involved in the generation and scavenging of
ROS suggests plausible differences in the levels of specific ROS between stress defense
and death. In effect, the three activities of the chlororespiratory chain increase similarly
in stress defense response. However, in senescence, superoxide dismutase (SOD), that
converts superoxide anion radical (O•−

2 ) to hydrogen peroxide (H2O2,) decreases, while the
thylakoid Ndh complex, that favors the generation of singlet oxygen (1O2) and O•−

2 , and
peroxidase (PX), that consumes H2O2, increase.The obvious inference is that, in respect to
defense response, the ratio (1O2 plus O•−

2 )/H2O2 is increased in the senescence previous
to cell death. We hypothesize that the different ROS ratios, probably through changes in
the jasmonic acid/H2O2 ratio, could determine the activation of the defense network or the
death network response of the cell.
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INTRODUCTION
Reactive oxygen species (ROS) were formerly known for their
damage effects on cellular components. Later, evidences, mainly
accumulated along the last decade of twentieth century, showed
at the turn of the millennium (Potikha et al., 1999; Quirino et al.,
2000; Van Breusegem et al., 2001; Apel and Hirt, 2004; Zimmer-
mann and Zentgraf, 2005; Gechev et al., 2006; Zentgraf, 2007;
Khanna-Chopra et al., 2013) additional roles of ROS as transduc-
tion signals within the complex network of molecules controlling
developmental processes (mainly those leading to cell death) and
responses to environmental stresses. In addition to the formidable
problem to understand the functional integration of the complex
networks regulating the different developmental processes with
moderately stable node molecules as proteins and hormones, ROS
signals posed entirely new challenges due to uncertainties on their
generation and scavenging, on their mobility among cell compart-
ments and on the molecular mechanisms of their interactions with
other components (nodes) of the transduction network.

The involvement of ROS in the senescence of photosynthetic
tissues provides a good system to size the magnitude of the chal-
lenges and to follow progresses to understand the integration
of ROS signals within the networks controlling cell cycle and

responses to stress. To distinguish between the ROS mediated
effects in stress and in cell death, we address two fundamental
aspects related to the roles of ROS in the programmed senes-
cence of photosynthetic tissues under field conditions at light:
(1) sources and sinks of ROS, and (2) signals that immediately
follow ROS in the transduction networks. Programed senescence
and death of photosynthetic leaves probably represents the high-
est amount of biomass and number of cells in the Earth suffering
programmed cell death (PCD). Senescence of photosynthetic fruit
tissues is a case of programmed senescence, not immediately fol-
lowed of death, which is part of the maturation of most fleshy
fruits and, as such, of high economic relevance. Similitude and
differences between the senescence of leaf and the ripening of
fruits were recognized since long time and we will refer the last
exclusively for recent advances related to the involvement of com-
ponents of the ROS generation machinery in fruit maturation.
In a lesser extension, we will refer to a few processes where ROS
signals are also involved and provide insights to understand leaf
senescence under field conditions. Among them, the senescence
and death of animal cell provides a lot of research advances that
may be relevant. Senescence of non-photosynthetic plant cell, cell
death associated to hypersensible response (HR), leaf senescence
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associated to diverse abiotic stresses (dark, drought, low, and high
temperatures, nutrient deficiency,) and stress responses in general
are fields where recent investigations provide insight relevant to
the involvement of ROS as node signals in networks controlling
cell processes.

There are different types of cell senescence and death, which
frequently make difficult the comparison of the research results
in different organisms, in different tissues of an organism and
of different types of senescence and death of a specific tissue.
For a comparison with the best characterized types of cell senes-
cence and death in animals (Bialik et al., 2010), and in relation to
the involvement of ROS, programmed leaf senescence and death
shows similarities with the apoptotic/necrotic “intrinsic death
pathways,” as far as the mitochondrial ROS source in animal is
substituted by the chloroplast ROS source (Zapata et al., 2005;
Doyle et al., 2010; Sabater and Martín, 2013).

ROS IN PHOTOSYNTHESIZING LEAVES
Sources and transformation of the main ROS has been intensely
investigated in leaves and details may be consulted elsewhere
(Karpinski et al., 2001; Sabater and Martín, 2013). Figure 1
summarized the best-known ROS, their transformation and dele-
terious effects on cell components. In addition to the main
ROS found in non-photosynthetic cells: superoxide anion radical
(O•−

2 ), hydrogen peroxide (H2O2), and hydroxyl radical (HO•);
another ROS, the singlet oxygen (1O2), is produced in chloroplast
by transfer of excitation from triplet excited chlorophyll (3Chl*) to
O2. Hydroperoxyl radical (HO•−

2 ) is also formed although prob-
ably in a lesser amount (Grace, 2005). The main four ROS are
currently (and majorly) formed by chloroplasts at light and, to
minimize their deleterious effects, scavenged by non-enzymatic
and enzymatic reactions as superoxide dismutase (SOD), convert-
ing O•−

2 to H2O2, and peroxidase (PX) consuming H2O2.O•−
2 ,

and then H2O2 and HO•, are also generated in other cell compart-
ments, especially in mitochondria and peroxisomes where H2O2

is destroyed by catalase. To prevent the generation of excess 1O2,
heat dissipation of 3Chl* excitation is enhanced through zeaxan-
thin formed by the xanthophyll cycle (Eskling et al., 2001). At high
light intensity, the NADPH generated in the photosynthetic elec-
tron transport (PET) exceeds the capacity of the Benson–Calvin
cycle to consume it (for example at low temperature or low CO2

supply by partially closed stomata). Then, transporters of the
PET become over-reduced, the production of ROS increases and,
depending on the environmental severity and the rapidity of the
correction responses, it can destroy cell components producing
the syndrome of photo-oxidative stress and eventually causing cell
death (Levine, 1999).

It must be emphasized that over-reduction of components of
PET causes increases of ROS whose destructive action is associ-
ated to their strong oxidant power and frequently is difficult to
distinguish effects regulated by ROS from those regulated by the
redox state of the chloroplast (Kruk and Szymánska, 2012). The
paradox is not the unique problem to take into account when ROS
are investigated as signal within the regulatory network of the cell.
As pointed above, high level of ROS, per se, can produce cell death
under stress conditions without involving specific signal trans-
duction. To make more complex the situation, many evidences

FIGURE 1 | Main ROS found in leaves. Triplet excited chlorophyll (3Chl*)
can transfer excitation to oxygen to produce singlet oxygen (1O2).
Successive steps convert 1O2 to O•−

2 , H2O2 and HO•. In addition, and
probably mainly, O•−

2 is produced in the chloroplast by the transfer of one
electron from reduced iron-sulfur proteins to O2 (Mehler reaction). Two
O•−

2 and two H+, in reaction catalyzed by superoxide dismutase (SOD),
produce one molecule of H2O2 and another of H2O. Decomposition of
H2O2 to HO• is catalyzed by different divalent cations, especially Fe2+
(Fenton reaction). Alternatively, H2O2 may be consumed by catalase and
peroxidase catalyzed reactions. Several cell components are destroyed by
ROS. 1O2, directly, and HO• with oxygen transform 1,4-unsatured fatty
acids to hydroperoxy-derivatives (−O2H) which further undergo different
transformations, including fragmentations that disassemble membranes.
Again, mainly 1O2 and HO• modify bases in DNA, RNA, and free bases,
especially guanine (G) which is transformed to 8-oxo-7,8-dihydro guanine
(odG), which can be paired with C or A, producing erroneous proteins and
mRNA and DNA mutations. Most of the amino acids, free or in polypeptide
chains, can be modified by ROS; cysteine is especially sensitive to O•−

2 and
H2O2; cysteine, methionine, tryptophan, and histidine are especially
sensitive to 1O2.

indicate that ROS signals are involved in the response to alleviate
photo-oxidative stress that is mainly based on the repression of
some genes and induction of some another, mainly those encod-
ing the enzyme systems, as chloroplastic SODs, that scavenge ROS.
Under this perspective, the key question is the level of each ROS
required for such opposite cell responses as PCD and alleviation
of stress to avoid death (Sabater and Martín, 2013). There is not
yet a satisfactory response to that question, but there are some
aspects, as the nature of the ROS acting as signal and the organelle
location of sources and sinks of the different ROS, that provide
valuable information on the signaling by ROS in leaf senescence.

ARE ALL ROS TRANSDUCTION SIGNALS?
Damage effects of ROS (Figure 1) are mainly unspecific and could
hardly be envisaged as related to their mechanism of interaction
with other signal molecules of the regulatory network of the cell.
However, effects other than damage are conceivable for H2O2.
On the other hand, being 1O2, O•−

2 and HO• short-lived, the
more stable (and permeable through membranes) H2O2 seems
the plausible ROS signal candidate that interacts with other com-
ponents of the regulatory cellular network and generates genetic
and other responses of the cell to stress and PCD. Moreover,
as H2O2 is substrate of catalase and diverse PXs, it could con-
ceivably interact (enzymatic or not enzymatically) with proteins
downstream in a signal cascade of a cellular network. H2O2 is
also the product of the sequence of transformations of 1O2 and
O•−

2 (Figure 1), which, in a first approximation, suggests that
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the increase of these ROS was finally senses by an increase of
H2O2 and that, in the simplest imaginable mechanism, H2O2

would be the unique ROS signal of the cellular networks. From
a broad perspective, the transformations 1O2 to O•−

2 and then
to H2O2 should be no other than stages of signal transduction
until the last ROS before non-ROS nodes. As we will see, facts
are not so simple. Certainly, there many evidences that H2O2 is
a signal, at least in the transduction cascades of the responses to
stress, but there are strong evidences suggesting that O•−

2 and,
specially, 1O2 could also be signals that, independently of their
transformation to H2O2, originate cascade signals involved in leaf
senescence.

ROS GENERATION AND SCAVENGING IN STRESS AND
SENESCENCE
In effect, the dynamic of ROS generation and scavenging in the
healthy and mild-stressed leaves seems to change in senescence. As
pointed above, in health photosynthesizing leaf, 1O2 and O•−

2 are
formed in chloroplasts by excitation and electron transfer, respec-
tively, to oxygen, processes that are enhanced when there is excess
of light in respect to the capacity to consume NADPH (mainly in
the Benson–Calvin cycle). Enzymatic and non-enzymatic mech-
anisms maintain low steady-state levels of ROS by lowering the
formation of 1O2 through heath dissipation of excited chloro-
phyll and, in the reaction catalyzed by SOD, transforming O•−

2 to
H2O2, which is consumed by PXs and transformed by the Fenton
reaction (Fe2+ + H2O2−→Fe3+ + HO• + OH−) to (Jakob and
Heber, 1996). HO• is rapidly consumed in diverse reactions. In an
unknown extension, 1O2 seems to be able to oxidize reduced plas-
toquinone contributing to draining electrons from over-reduced
PET (Kruk and Szymánska, 2012). Among chloroplast PXs, plas-
toquinol PX (Zapata et al., 1998), in addition to scavenge H2O2,
directly drains electrons from PET, contributing to alleviate the
excess of reducing power that enhances the production of ROS
but, at the same time, decreasing the efficiency of the use of light
energy in photosynthesis. Similarly, the Mehler reaction gener-
ates O•−

2 by draining electron from PET (mainly from reduced
non-heme iron-sulfur protein, FeSPred) and, thus, it decreases
the efficiency of photosynthesis. At the photo-physical stage, the
heath dissipation of excited chlorophyll to reduce the formation
of 1O2 also impairs the use of light energy in photosynthesis.
Therefore, plants have evolved mechanisms to regulate the pro-
cesses of generation and scavenging of ROS by adjusting them
to different environmental conditions in order to minimize ROS
damage and maximize photosynthesis yield. The adjusting is got
through appropriate level of zeaxanthin, SOD, and PX (Bowler
et al., 1992; Casano et al., 1999; Eskling et al., 2001; Karpinski et al.,
2001) for any combination of light intensity, temperature, and
CO2 availability (which depends on several factors as stomatal
opening).

However, the light intensity that receives the leaf strongly
and rapidly fluctuates under natural conditions (Pearcy, 1994;
Külheim et al., 2002), which make necessary continuous adjust-
ments of enzyme activities and inevitable transitory burst of ROS
and losses of photosynthesis efficiency. The adjustment is not
easily reached because many processes are functionally intercon-
nected in photosynthesis. Hence, like photophosphorylation, the

dissipation of heat by zeaxanthin requires an appropriate gradi-
ent of proton (�pH) across the thylakoid membrane (Eskling
et al., 2001). However, as pointed out by Heber and Walker (1992),
when the components of PET are over-reduced the rate of cyclic
PET is too low to supply the necessary extra transport of protons
to thylakoid lumen; the functioning of cyclic PET requires bal-
anced (poised) levels of both reduced and oxidized forms of the
electron transporters. From this perspective, the draining of elec-
trons from PET by Mehler reaction and plastoquinol PX allows to
poise the redox level of the cyclic electron transporters (Casano
et al., 2000) and, then, to maintain the appropriate �pH for the
dissipation as heath of the excess of absorbed light. Thus, the
generation of O•−

2 and H2O2 would be a less harmful alterna-
tive than the formation of 1O2 under transitory high light. The
photo-inhibition of photosystem II (PSII; Osmond, 1994) is other
important response of the photosynthetic machinery to transitory
high light. When light comes back to moderate or low intensity, the
recovery to full activity of photo-inhibited PSII could last several
seconds and, frequently, minutes; too much time when compared
with the rapid light intensity changes (fraction of second) that
a section of a trembling leaf confronts frequently in windy fields.
Quickly, after transition to low light, the �pH would collapse, now
because the electron transporters of the cyclic PET become over-
oxidized by the transitory low supply of electrons from PSII. The
collapse is prevented because the redox poising of transporters is
maintained through the feeding of electrons from NADH by the
thylakoid Ndh complex (EC 1.6.5.3; Casano et al., 2000; Sabater
and Martín, 2013) a product of the 11 plastid and a few nuclear
ndh genes.

Therefore, operating alternatively, the supply of electrons (by
the Ndh complex) and the drain of electrons (by concerted actions
of the Mehler reaction, SOD and plastoquinol PX) ensure the
fine-tuning of the redox level of the transporters of electrons in
the cyclic PET. The complete sequence of reactions is:

2 NADH + 2 H+ + 2 PQ
Ndh complex

−−−−−−−−→ 2 NAD+ + 2 PQH2

2 FeSPoxid + PQH2

PET
−−−−−−−−→ 2 FeSPred + PQ + 2 H+

2 FeSPred + 2 O2

Mehler reaction
−−−−−−−−→ 2 FeSPoxid + 2 O•−

2

H2O2 + PQH2

PX
−−−−−−−−→ 2 H2O + PQ

2 O•−
2 + 2 H+ SOD

−−−−−−−−→ O2 + H2O2

and results in a global respiratory process named chlororespiration
(Casano et al., 2000; Joët et al., 2002; Nixon and Rich, 2007):

2NADH + 2H+ + O2 −−−−−−−−→ 2NAD+ + 2H2O

that is schematized in Figure 2.
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FIGURE 2 | Redox poising of electron transporters of the cyclic PET by

chlororespiratory reactions. Closed gray line with arrows corresponds to
cyclic PET where only plastoquinone (PQ) and photosystem I (PSI) are
shown. i1 and i2 are the influxes of electrons from, respectively,
photosystem II (PSII) and from NADH (through the thylakoid Ndh complex).
o1, o2, and o3 are the outfluxes of electrons to, respectively, NADP+,
Mehler reaction, and plastoquinol peroxidase.

In the field, rapid increases and fluctuations of the intensity
of light, high and low temperatures, hydric stress, and aggres-
sive chemicals rapidly change the rates of electron supply (from
PSII) and consumption (by the Benson–Calvin cycle). In this
scenario, to maintain functional the cyclic PET and minimize
damages by ROS, the activities of the chlororespiratory chain
(Ndh complex, SOD, and PX) must be high in comparison with
more stable or mild environments. Accordingly, the levels of
the Ndh complex increase under different stresses (Serrot et al.,
2008; Paredes and Quiles, 2013) and Ndh deficient tobaccos are
especially sensible to damages under stress (Martín et al., 1996,
2004; Endo et al., 1999; Prochazkova et al., 2001; Rumeau et al.,
2007). There is also a large and classic literature reporting the
increase of SOD and/or PX under different stress conditions (see
a revision in Bowler et al., 1992). In addition to other factors,
the relative activities of the thylakoid Ndh complex, SOD, and
PX must determine the relative levels the different ROS in the
steady state. Therefore, when the activities were measured in
parallel assays, levels of the thylakoid Ndh complex and of the
chloroplast SODs (FeSOD and Cu/ZnSOD) and plastoquinol PX
increase similarly in young photosynthesizing leaves of tobacco
or barley plants subjected to diverse stressing agents (Casano
et al., 1994, 1999; Martín et al., 1996, 2004). Always, increases of
the Ndh, SOD, and PX are precisely mediated by ROS (Casano
et al., 2001) at gene expression and, probably, enzyme activation
(Lascano et al., 2003).

When adult-senescent leaves are subjected to different stresses,
Ndh complex level and activity as well as those of plastid PX
increase in a similar way than in young fully photosynthesis
active leaves. In contrast, the induction of SOD in response to
stress becomes progressively impaired when leaves enter senes-
cence (Casano et al., 1994, 1999; Kurepa et al., 1997; Abarca et al.,
2001a,b; Prochazkova et al., 2001; Ohe et al., 2005). The results
provide clues for the frequently reported interactions between
stress response and senescence (Behera et al., 2003) and suggest
that the fail to induce chloroplastic SOD plays a key role in leaf
senescence. This should strongly remember the animal systems

where, transgenic over-expressing SOD and catalase show a sig-
nificant life-span extension (Orr and Sohal, 1994). In the last,
catalase must also be over-expressed to avoid the increase of H2O2

formed by over-expressed SOD. Chloroplast lacks catalase but con-
tains several PXs (among them plastoquinol PX) whose increase
in senescence must efficiently consume the low amount of H2O2

produced by chloroplast lacking SOD in senescing leaves. In this
line, in adult-senescent leaves, over-expression of the Ndh com-
plex and chloroplastic PX and under-expression of chloroplastic
SOD must increase the level of O•−

2 and decrease the level of H2O2

in respect to the response of young leaves. As the Ndh complex
provides electrons, per se, it must increase the redox level of the
transporters and, consequently, the formation of 1O2 and O•−

2 . In
contrast to young leaves where increased formations of 1O2 and
O•−

2 are neutralized, respectively, by increased heat dissipation
and increased O•−

2 scavenging by higher SOD, in adult senescent
leaves, 1O2 and O•−

2 produced after a mild stress increased contin-
uously out of control because Ndh complex and PX are induced
by ROS.

To the large number of classic publications reporting the
decrease of chloroplastic SOD and the increase of PX during leaf
senescence, many latter references report the increase of the Ndh
complex during leaf senescence and fruit ripening (Martín et al.,
1996; Casano et al., 1999, 2000; Lascano et al., 2003; Nashilevitz
et al., 2010; Nilo et al., 2012; Serrot et al., 2012). In addition, the
involvement of the Ndh complex in senescence seems clear from
the delay of leaf senescence (some 30 days in respect to wild type)
in transgenic tobacco defective in the ndhF gene and Ndh com-
plex (Zapata et al., 2005). Significantly also, long-lived conifers, as
Pinus longaeva whose needles remain functional for 35 years, lack
ndh genes in their sequenced plastid DNA (Wu et al., 2011).

HYPOTHESIS: A HIGH RATIO (1O2 + O•−
2 )/H2O2 CHANGES

STRESS DEFENSE RESPONSE TO PROGRAMMED LEAF
SENESCENCE
Summarizing the evidences discussed above, the decrease of SOD
and the increase of the Ndh complex play crucial roles in senes-
cence by determining an increase of O•−

2 , yet reported by McRae
and Thompson (1983), and a decrease of H2O2 in chloroplasts
which contrasts with the increase of these two ROS in stress
responses. It seems that, within the network of transduction sig-
nals that regulate the response to stress, the nodes involved in the
control of the levels of the Ndh complex remain intact in adult-
senescent leaves but those controlling the levels of chloroplastic
SOD (FeSOD and Cu/ZnSOD) fail to respond. Then, fine-tuning
of the redox level of the electron transporters of cyclic PET is bro-
ken early in leaf senescence and gives way to their over-reduction
and to a growing spiral of ROS production and death.

Externally supplied H2O2 increases the expression of the plas-
tid ndh genes, the levels of the Ndh complex and the NADH
dehydrogenase activity of the Ndh complex by phosphorylation
of the NDH-F subunit (Casano et al., 2001; Lascano et al., 2003;
Martín et al., 2009). In general, H2O2 is involved in the defense
response against different biotic and abiotic stresses (Casano et al.,
1999, 2001; Levine, 1999). Although H2O2 probably mediates
the increase of the Ndh complex in the defense of young leaves
against stress, the increase of the Ndh complex during senescence
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does not seem due to the increase of H2O2 production in chloro-
plasts. Bieker et al. (2012) reported that H2O2 level transitorily
doubled in brassicaceae leaf during bolting and flowering time,
probably related to decreases of catalase and ascorbate PX and not
to a high production of H2O2 in chloroplasts. In fact, although
H2O2 could increase in peroxisomes (Del Rio et al., 1998), there
is no evidence of the increase of H2O2 production in chloroplasts
during natural leaf senescence under field light and, accordingly,
no accumulation of H2O2 was found during the PCD of bun-
dle sheaths in the maize camouflage1 (cf1)mutant (Huang and
Braun, 2010). As pointed above, chloroplasts are probably the
main cellular source of H2O2 in the leaf at light, and that source is
considerably reduced in adult-senescent leaves. Reduced enough
to abolish the main H2O2-dependent transduction signaling in the
protection responses against stress. The hypothesis of a low level of
H2O2 (in respect to 1O2 and O•−

2 ) during senescence is essentially
based on the low levels of the activity that forms it (SOD) and
the high level of the activity that consume it (PX). Rapid turnover
and damage effects make difficult a precise definition of the level
of 1O2 or O•−

2 , of the (1O2 + O•−
2 )/H2O2 ratio, and of a thresh-

old ratio that changes defense response to PCD. At present, the
concept of (1O2 + O•−

2 )/H2O2 ratio urges researches on signaling
downstream of 1O2 and O•−

2 and on methods for accurate mea-
surements of ROS in plants. The determination of the levels of
each 1O2, O•−

2 , and H2O2 in cytosol and in each organelle is dif-
ficult but would be particularly relevant with data on the cellular
location of the network nodes directly influenced by them.

In contrast to the other ROS produced in chloroplast (1O2, O•−
2 ,

and HO•), H2O2 is sufficiently stable and presumably permeable
through chloroplast membranes to connect with the cytosolic net-
work of signals that control specific gene expression in the nucleus.
Immediate targets of H2O2 are not yet known and plausible can-
didates in cytosol, or also into the chloroplast, are 2-cysteine
peroxiredoxins (PRDX). These could also act as redox signals
(Dietz, 2003; Muthuramalingam et al., 2009; Puerto-Galán et al.,
2013) and as regulators of the level of H2O2. Many evidences
connect the H2O2 signaling with cascades of mitogen-activated
protein (MAP) kinases that are involved in the H2O2 production
and in the regulation of death, mainly in the response to biotic
and abiotic stresses (Overmyer et al., 2003). Moreover, the H2O2-
mediated increase of the ndh gene expression seems to depend on
protein kinases (Casano et al., 2001; Lascano et al., 2003). However,
no protein has yet identified that directly interacts with H2O2 in
network signaling.

SIGNALING DOWNSTREAM OF 1O2 AND O•−
2

If 1O2 and (or) O•−
2 , in the place of H2O2 and its derivative

HO•, are the chloroplast ROS signals involved in programmed
leaf senescence, the obvious question refers to its (their) imme-
diate target. As mentioned above, 1O2 or O•−

2 can barely be exit
from the chloroplast. Therefore, the immediate target must be
into the chloroplast. The modification of amino acids is the main
known damage produced by O•−

2 (Figure 1) and, essentially, the
same amino acids are modified by O•−

2 and H2O2. Therefore, the
oxidation of cysteine residues of proteins by O•−

2 could initiate in
chloroplast a signal similar to those supposed for H2O2 in chloro-
plast and cytosol. However, no precise or specific protein target

is yet known that initiates a signal after oxidation by O•−
2 . Other

possibility is that the general damage effects of O•−
2 in chloroplasts

and the lack of H2O2 for draining the excess of electrons, should
impair the rate of cyclic PET collapsing the thylakoid membrane
potential and, thus, shooting the production of more 1O2 that
would become the key initial signal that compels the cell to death
at light. As pointed above, to maintain the leaf functional and
healthy, the chloroplast forms other ROS than 1O2. Therefore, the
low level of 1O2 must be an objective for enduring cell. For senes-
cence and death, 1O2 probably initiates a signal chain linked to the
damage of polyunsaturated fatty acids.

As Figure 1 shows, 1O2 attacks polyunsaturated fatty acids.
The first products of the attack of polyunsaturated fatty acids
of membrane lipids by 1O2 are 13-hydroperoxy derivate fatty
acids. Among them, 13-hydroperoxy linoleic acid is transformed
in chloroplasts to the oxylipin (9S, 13S)-12-oxo-phytodienoic acid,
which is transformed into jasmonic acid (JA) in peroxisomes and
further, in cytosol, to related compounds as methyl jasmonate
(Creelman and Mulpuri, 2002; Wasternack, 2007). In this way, JA
and several related compounds mediate the rapid response to the
stress generated by the production of 1O2 (Wagner et al., 2004)
inhibiting the synthesis of protein for the photosynthetic machin-
ery (Reinbothe et al., 1993) and stimulating the expression of genes
for the defense against stress and of the senescence associated genes
(SAG; Creelman and Mulpuri, 2002). Among other effects, JA and
related oxylipin derivatives stimulate the expression of chloroplast
lipoxygenase (LOX; Bachmann et al., 2002) and increase the level
of the thylakoid Ndh complex (Cuello et al., 1995). Precisely, LOX
catalyzes the reaction of free linoleic acid with O2 to form further
13-hydroperoxy linoleic, which, as described, generates more JA
and derivatives (Schaller et al., 2004), now dependent on O2, but
not of the 1O2 formed by light excess. Therefore, under appropri-
ate conditions, which are plausibly related to the levels of other
signals, JA seems a key signal able to generate an autocatalytic cell
path to death (Figure 3). In this regard, it is significant that treat-
ments with JA increase the production of 1O2 (Guo et al., 2010)
and accelerates senescence (Wasternack, 2007). If not the start
gunfire of senescence, the coincidence of high PX, Ndh complex,
LOX, and 1O2 with low SOD seems to open the irreversible path to
cell death. The spiral increase of ROS (and more precisely of 1O2

or O•−
2 ) is under genetic control, firstly determining the expres-

sion of PX and Ndh complex, and later of LOX. The last initiates
a light independent increase of JA and, as a consequence, of fur-
ther light-dependent increase of 1O2. Key nodes of the death path
would be JA, which increase and thus induces SAG, and H2O2,
which decreases and thus prevent the induction of stress defense
genes. Independently of the damage effect of ROS, through the
further induction of SAG by JA, the overall process appears a PCD.

It would be concluded that the initiation of the program for
leaf death is the fail to properly stimulate the expression chloro-
plastic SODs under mild stress, but the meaning of starting
point is fading in an autocatalytic spiral of events as that pro-
posed. Hence, among SAGs, MYB transcription factors have been
described (Chen et al., 2002; Buchanan-Wollaston et al., 2005) that
bind to the AACTAA motif inhibiting the progression of the tran-
scription machinery to downstream genes. Precisely, the AACTAA
motif is close to AGATAA and TATA motifs for the initiation of
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FIGURE 3 | Oxylipins facilitate the vicious cycle that increases the

levels of 1O2 and O•−
2

(ROS). JA and related compounds are formed in
peroxisomes and cytosol from oxylipins generated in chloroplasts by the
action of 1O2 on linoleic acid. Within nucleus, JA and related compounds
inhibit genes for chloroplastic SOD and induce genes for chloroplastic LOX
and for the Ndh complex subunits encoded in the nucleus that further
increase the levels of 1O2 and O•−

2 ROS and, then, of JA.

transcription in upstream region of the Csd2 gene (encoding the
chloroplast Cu/ZnSOD) in Arabidopsis. In this way, the induction
of the SAG for MYB must obstruct the expression of the chloro-
plastic SOD, hence contributing, in addition to the mechanisms
described above, to the growing spiral of the 1O2 and O•−

2 ROS in
leaf senescence (Sabater and Martín, 2013).

The regulatory upstream region of the Arabidopsis Csd2 gene
also includes two W-boxes (TGAC(T)) recognized by WRKY tran-
scription factors (Eulgem et al., 2000), some of them induced
during leaf senescence (Singh et al., 2002). The gene encoding
one of them, WRKY53, also has a high relevance as the crossing
point where different signals, and more specifically JA and H2O2

(Zentgraf et al., 2010) should determine defense response or PCD.
In effect, although other signals as salicylic acid and nitric oxide
(Wang et al., 2013) may be involved, the model described above
indicates that the high 1O2 plus O•−

2 /H2O2 ratio in senescence,
in respect to non-lethal stress response, is transduced into a high
comparative JA/H2O2 ratio. JA and H2O2 would influence (by
activation or inhibition, depending on concentration and other
factors) at the different steps of complex transduction networks
that control stress response and PCD by WRKY53. To add more
complexity, several proteins control the expression of the WRKY53
gene and the binding of the WRKY53 protein to DNA upstream
of genes expressed in senescence. Therefore, through variable
responses to JA and H2O2, the complex network of WRKY proteins
could be crucial determining the transition of the defense response
to PCD as a consequence of increased 1O2 plus O•−

2 /H2O2 ratio.
The model described for leaf senescence requires, at least in

its first stages, light acting on the photosynthesis machinery. But
the syndrome of leaf senescence would be more complex in field
where alternating light and dark periods during the day could

overlap light dependent senescence with dark dependent senes-
cence. Under this condition, the involvement of a high production
of H2O2 in cytosol or non-chloroplast organelles could be relevant.
In addition, hormonal factors related to developmental processes,
as seed filling and shadowing by upper leaves, and nutritional fac-
tors can produce a mixture senescence mechanisms, one of which
could be dominant in some plants and environments.

CONCLUDING REMARKS AND FUTURE PROSPECTS
In contrast to animals, the development of plants is strongly
affected by environmental factors and, not surprisingly, ROS are
involved as signals in developmental processes leading to cell death
and in the defense response against environmental stress. Difficul-
ties to determine the levels of some specific ROS in the different
cell compartments open key questions as the levels and mecha-
nisms through which ROS control different issues such as death
and defense. In addition, and similarly to other signals of the net-
works controlling developmental processes, the level of ROS are
subjected to multiple cross, feed-forward, and feed-back effects
and poorly known factors, as iRNA and epigenetic modifications,
that make difficult to identify a precise cause to effect chain of
events explaining the final response of the plant.

However, in contrast to most other signals, the successive steps
for enzymatic, and non-enzymatic generation and scavenging of
the main ROS (1O2, O•−

2 , H2O2, and HO•) are well known.
In addition, the levels of the enzymes involved in the genera-
tion and scavenging of most ROS can be accurately determined
in different cell compartments and in different stress and senes-
cence conditions. From enzyme data, qualitative level differences
between stress and senescence for each ROS can reasonably be
proposed for different cell compartments which progresses in
ROS determination (Woolley et al., 2013) could test in the future.
With this approach, the hypothesis presented here of a high ratio
(1O2 + O•−

2 )/H2O2 for the initiation of senescence at light, could
be extended or modified after comparison of enzymatic activities
in stress responses with those in other types of senescence, includ-
ing the senescence of non-photosynthetic tissues. The results
must facilitate the identification of proteins that directly inter-
act with specific ROS in the regulatory cellular networks. In a
first approach, the complex of WRKY proteins deserves full atten-
tion. In addition, the results would provide a wide perspective to
investigate more precisely the control of genes for generation and
scavenging of ROS in stress and PCD.
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