AUTHOR=Serrato Antonio J., Fernández-Trijueque Juan , Barajas-López Juan-de-Dios , Chueca Ana , Sahrawy Mariam TITLE=Plastid thioredoxins: a “one-for-all” redox-signaling system in plants JOURNAL=Frontiers in Plant Science VOLUME=4 YEAR=2013 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2013.00463 DOI=10.3389/fpls.2013.00463 ISSN=1664-462X ABSTRACT=
The sessile nature of plants forces them to face an ever-changing environment instead of escape from hostile conditions as animals do. In order to overcome this survival challenge, a fine monitoring and controlling of the status of the photosynthetic electron transport chain and the general metabolism is vital for these organisms. Frequently, evolutionary plant adaptation has consisted in the appearance of multigenic families, comprising an array of enzymes, structural components, or sensing, and signaling elements, in numerous occasions with highly conserved primary sequences that sometimes make it difficult to discern between redundancy and specificity among the members of a same family. However, all this gene diversity is aimed to sort environment-derived plant signals to efficiently channel the external incoming information inducing a right physiological answer. Oxygenic photosynthesis is a powerful source of reactive oxygen species (ROS), molecules with a dual oxidative/signaling nature. In response to ROS, one of the most frequent post-translational modifications occurring in redox signaling proteins is the formation of disulfide bridges (from Cys oxidation). This review is focused on the role of plastid thioredoxins (pTRXs), proteins containing two Cys in their active site and largely known as part of the plant redox-signaling network. Several pTRXs types have been described so far, namely, TRX