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The plant cell wall (CW) compartment, or apoplast, is host to a highly dynamic proteome,
comprising large numbers of both enzymatic and structural proteins. This reflects its
importance as the interface between adjacent cells and the external environment, the
presence of numerous extracellular metabolic and signaling pathways, and the complex
nature of wall structural assembly and remodeling during cell growth and differentiation.
Tomato fruit ontogeny, with its distinct phases of rapid growth and ripening, provides
a valuable experimental model system for CW proteomic studies, in that it involves
substantial wall assembly, remodeling, and coordinated disassembly. Moreover, diverse
populations of secreted proteins must be deployed to resist microbial infection and protect
against abiotic stresses. Tomato fruits also provide substantial amounts of biological
material, which is a significant advantage for many types of biochemical analyses, and
facilitates the detection of lower abundance proteins. In this review, we describe a
variety of orthogonal techniques that have been applied to identify CW localized proteins
from tomato fruit, including approaches that: target the proteome of the CW and the
overlying cuticle; functional “secretome” screens; lectin affinity chromatography; and
computational analyses to predict proteins that enter the secretory pathway. Each has
its merits and limitations, but collectively they are providing important insights into CW
proteome composition and dynamics, as well as some potentially controversial issues,
such as the prevalence of non-canonical protein secretion.
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INTRODUCTION
Tomato (Solanum lycopersicum), one of the world’s most impor-
tant horticultural crops, is recognized as the pre-eminent experi-
mental model to study fleshy fruit development, physiology, and
pathology (Klee and Giovannoni, 2011; Tomato Genome Con-
sortium, 2012; Seymour et al., 2013). Particular attention has
been paid to attributes of tomato fruit that are associated with
consumer desirability, such as color, flavor, aroma, and texture,
and considerable progress has been made in understanding the
molecular processes that underlie these traits. In some cases these
are directly and clearly associated with specific biochemical or
regulatory pathways that are now well understood, such as the
synthesis of pigments, or the gaseous hormone ethylene. How-
ever, in other instances they relate broadly to subcellular features
whose role in fruit development is highly complex and less well
defined. An example of the latter is the intimate, but still poorly
understood relationship between fruit texture and the metabolism
of the cell wall (CW). This is reflected in an extensive literature,
spanning many decades, describing the putative roles of numer-
ous, functionally diverse families of CW resident (i.e., apoplastic,
or secreted) proteins and their cognate genes in ripening-related
textural changes (Brummell, 2006; Prasanna et al., 2007; Vicente
et al., 2007; Payasi et al., 2009; Palma et al., 2011). Progress to date

Abbreviations: CW, cell wall; GH, glycosyl hydrolase; GT, glycosyltransferase;
IG, immature green; MG, mature green; PG, polygalacturonase; PMEI, pectin
methylesterase inhibitor; PR, pathogenesis related; PTM, post-translational modi-
fications; rin, ripening inhibitor; RR, red ripe; SP, signal peptide.

in experimentally addressing the enzymatic basis of CW mod-
ification and the relationship with softening has typically been
piecemeal, targeting specific activities or individual genes and
related proteins. Perhaps the best studied example of such is the
pectin degrading enzyme polygalacturonase (PG), whose expres-
sion was suppressed in the first commercially available genetically
engineered whole food, the Flavr Savr tomato (Smith et al., 1988;
Kramer and Redenbaugh, 1994). Since then, other genes encod-
ing CW modifying proteins have been targeted in transgenic
tomato fruits in an effort to prevent over-softening and textu-
ral deterioration, although mostly without success (Brummell,
2006; Vicente et al., 2007). Such experiments have provided many
insights into CW metabolism, but an important outcome has
also been the realization that CW disassembly is the consequence
of the synergistic actions of many proteins, and that a signif-
icant understanding of the dynamics of wall architecture and
the mechanistic basis of softening will require a more complete
compendium of the CW proteome. This has spurred efforts to
study the CW proteome, or “secretome,” of tomato fruit during
ripening, as well as during cuticle and CW biosynthesis (Fau-
robert et al., 2007; Yeats et al., 2010, 2012a,b; Catalá et al., 2011;
Palma et al., 2011).

As with any species, genomic and transcriptomic studies
of tomato provide an invaluable, if not essential platform for
equivalent proteomics analysis and the recent publication of the
tomato genome sequence includes more than 700 gene models
annotated with CW-related functions (Tomato Genome Consor-
tium, 2012). Transcript analysis of tomato fruit development and
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ripening showed the differential expression of more than 50 genes
associated with CW modification (Tomato Genome Consortium,
2012), while a more detailed analysis of the cell/tissue type-specific
transcriptomes of tomato fruit at the maximal stage of growth
revealed 253 glycosyltransferases (GTs) and 293 glycosyl hydro-
lases (GHs) related to CW biogenesis and disassembly, respectively
(Matas et al., 2011). Such information, together with a wealth of
analytical tools and bioinformatic resources, has laid the foun-
dation for cataloging the tomato fruit CW proteome in a more
comprehensive fashion. This will include as assessment of alter-
nate splicing of transcripts to reveal the multiple proteins variants
that can result from single genes, as well as the broad range of
post-translational modifications (PTMs).

THE CHALLENGES OF IDENTIFYING FRUIT
CW PROTEINS
The pioneering study of the plant CW proteome involved an anal-
ysis of cell suspension cultures derived from several plant species,
including tomato, that were washed sequentially with buffers of
different ionic strengths in order to isolate proteins that were desig-
nated as soluble, weakly or strongly bound to the CW (Robertson
et al., 1997). Since then, different approaches have been used to
characterize the CW proteomes of different tissues from a broad
range of plants (Blee et al., 2001; Chivasa et al., 2002; Borderies
et al., 2003; Watson et al., 2004; Bayer et al., 2006; Jamet et al.,
2006, 2008; Zhu et al., 2006, 2007; Negri et al., 2008; Albenne et al.,
2009; Chen et al., 2009; Cho et al., 2009; Millar et al., 2009; Zhang
et al., 2010). However, as previously described (Lee et al., 2004;
Rose and Lee, 2010), characterization of the plant CW proteome
is technically challenging compared to that of other subcellular
fractions. Firstly, the “cell wall,” in the context discussed here, is
not bound by a distinct membrane that can facilitate isolation, but
rather corresponds to the apoplastic continuum and associated
extracellular matrix that extends throughout the plant. Attempts
to isolate a comprehensive set of wall localized proteins must there-
fore contend with the conflicting needs to isolate proteins that can
be extremely tightly linked to the wall matrix, and thus require
harsh treatments to liberate them, as well as proteins that are
mobile in the apoplast and are readily lost upon tissue disruption.
Any cellular breakage will also immediately result in severe con-
tamination of the protein fraction with cytoplasmic proteins and
possibly also those from intracellular organelles (Lee et al., 2004;
Feiz et al., 2006). Isolation strategies can therefore be designated
as “disruptive,” where researchers must address the challenges of
identifying proteins resulting from the inevitable contamination;
or “non-disruptive,” where techniques such as vacuum infiltration
typically yield a very small fraction of the total CW proteome,
and only those protein species that are weakly affiliated with the
CW. We also note that even non-disruptive approaches will almost
certainly cause some cellular lysis.

In one sense, fleshy fruits provide a “worst case scenario,” as not
only are their walls often particularly rich in highly charged anionic
pectin polymers that form gels and confound protein isolation,
but also the degree of charge and physicochemical properties of
the wall matrix change during ripening. This means that the ease
of extraction of a particular protein may change substantially at
different developmental stages. Thus, a protein may be present

and detected in a soluble fraction derived from one developmen-
tal stage, but “vanish” from a similar extract from a subsequent
developmental stage as it is more tightly bound to the CW and
thus less easily extracted. The reverse may also be true and we have
observed that this can be a chronic problem for some proteins. In
addition, most CW proteins are glycosylated, sometimes to a large
degree, which also affects ease of isolation and downstream anal-
ysis. This makes accurate quantitative analysis extremely difficult,
if not impossible in some cases. We contend that CW proteome
studies should be considered as analyses of the“extractome,” rather
than the true proteome.

It is important to bear in mind that there is no one per-
fect approach and that an extensive catalog of the CW proteome
requires multiple orthogonal strategies, including techniques that
enrich for wall proteins and bioinformatic analyses (Lee et al.,
2004; Feiz et al., 2006; Rose and Lee, 2010; Ruiz-May et al., 2012b).
Assessment of protein localization in silico, based on the predicted
presence or absence of subcellular targeting sequences, can pro-
vide a valuable tool for biologists. Indeed, current algorithms are
generally highly effective; however, they are not perfect predictors
(Rose and Lee, 2010) and for a high confidence determination of
true wall localization, confirmatory analysis, such as fluorescence
protein fusion localization or immunolocalization is essential. It
is notable that, to our knowledge, no CW proteome profiling
study to date has followed up the identification of a potentially
“non-classically secreted CW protein” with such a confirmatory
analysis. Until this is done such reports should be treated with great
caution.

INSIGHTS INTO THE TOMATO FRUIT PROTEOME
To date, there have been few systematic studies of the tomato fruit
CW proteome compared to those that have targeted Arabidopsis
thaliana (Nikolovski et al., 2012; Parsons et al., 2012; Zielinska
et al., 2012). However, several reports have focused on specific
aspects of tomato fruit biology, as summarized below.

Perhaps the most important question in arena of tomato fruit
CW proteomics is the relationship between CW resident proteins
and the complex textural changes that occur during ripening,
which are loosely referred to as “softening” (Vicente et al., 2007;
Seymour et al., 2013). One obvious approach is to identify the
suites of wall localized proteins that are expressed during ripen-
ing, while another is take advantage of the diversity of texture
associated phenotypes that are collectively exhibited by different
cultivars, and to correlate those differences with patterns of CW
protein expression. To this end, Konozy et al. (2013) used a pro-
teomic approach to qualitatively compare the CW proteomes of
fruits from three tomato cultivars with distinctly different fruit
textural traits. Both non-disruptive and disruptive approaches
were used to isolate soluble apoplastic proteins and those that
were weakly bound to the CW, respectively. The former used
vacuum infiltration-centrifugation of tomato pericarp samples,
while the disruptive assay involved pericarp tissue homogeniza-
tion and consecutive washing of the CW enriched pellet in order
to reduce contamination with cytosolic proteins, followed by elu-
tion of a CW protein fraction with a buffer containing a moderate
salt concentration. A total of 75 proteins were identified, many
with a predicted or known CW localization, although no major
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differences were observed between cultivars. Further experiments
will be needed to determine whether any of these CW proteins
is responsible for the textural characteristics associated with each
cultivar. However, this study represents one of the first efforts to
profile the CW proteome of tomato fruit pericarp using sequen-
tial extraction approaches that have previously been applied to
other plant organs and complex tissues (Watson et al., 2004; Zhu
et al., 2006).

In addition to those involved in CW metabolism, substantial
numbers of apoplastic proteins and peptides function in plant
defense against microbial pathogens, including many of the clas-
sical pathogenesis-related (PR) proteins (van Loon et al., 2006;
Ferreira et al., 2007; Lagaert et al., 2009; Benko-Iseppon et al., 2010;
De-la-Peña and Vivanco, 2010). The susceptibility of ripening fruit
to infection can also be influenced by endogenous CW disassem-
bly (Cantu et al., 2008) and so characterization of extracellular
proteins in the microenvironment of the infection site may pro-
vide insights into the complex factors that affect the nature and
timing of the interaction between fruits and pathogens. Shah et al.
(2012) used a non-disruptive shotgun proteomics approach to
isolate and identify extracellular proteins associated with the infec-
tion of tomato fruit by the necrotrophic fungus Botrytis cinerea.
A total of 558 tomato proteins were identified from the mature
green (MG) and red ripe (RR) stage of wild type fruits and
those from the non-ripening ripening inhibitor (rin) mutant, all
of which had been inoculated with the fungus. These included
proteins belonging to many of the classical PR families, as well
as members of diverse protein families such as proteases, protease
inhibitors, and peroxidases, revealing a complicated CW proteome
cocktail. Interestingly, substantially fewer defense-related proteins
were identified in the MG fruit compared with the non-ripening
rin or RR wild type fruits, although the authors point out that
this may reflect differences in tissue homogenization, and thus
presumably extractability, in addition to possible difference in the
host response to the pathogen. Regardless, this study provided a
useful simultaneous qualitative snapshot of the fruit and pathogen
CW-related proteomes.

Another important factor that provides a critical barrier against
microbial pathogens, as well as protection against pests and abi-
otic stresses such as desiccation and UV radiation, is the plant
cuticle, a specialized lipid rich plant CW that covers the aerial
epidermis of land plants (Isaacson et al., 2009; Reina-Pinto and
Yephremov, 2009; Yeats et al., 2012b). Tomato fruit are an excel-
lent system in which to identify the proteins involved in cuticle
formation and restructuring since, like many fruits, their cuticle is
typically much thicker than that of vegetative organs. Yeats et al.
(2010) took advantage of this in a study aimed at identifying pro-
teins associated with tomato fruit cuticle biosynthesis. The authors
employed a non-disruptive protocol by briefly dipping fruits in an
organic solvent, followed by several protein fractionation strategies
and two mass spectrometry techniques [LC-ESI-MS/MS (liquid
chromatography–electrospray ionization tandem mass spectrom-
etry) and MALDI-TOF/TOF (matrix-assisted laser desorption
ionization–time-of-flight tandem mass spectrometer)]. A total
of 202 proteins were identified, of which approximately 40%
had a predicted N-terminal signal peptide (SP) suggesting tar-
geting to the CW, although the tomato genome sequence was not

available at the time of the analysis and so missing N-terminal
sequences would likely have resulted in an underestimation. A
number of lipid metabolism-related proteins were identified, one
of which was a GDSL (Gly-Asp-Ser-Leu)-motif lipase/hydrolase
that was recently shown to be cutin synthase, the enzyme that
catalyzes the polymerization of cutin monomers at the polysac-
charide CW–cuticle interface (Yeats et al., 2012b). This exemplifies
the value of CW proteomics for targeting specific biological
questions.

Beyond identifying CW protein sequences, a crucial level of
information that is slowly starting to emerge relates to PTMs,
and while the presence of glycoproteins and phosphoproteins in
the CW is now well established (Chivasa et al., 2005; Jamet et al.,
2006; Kaida et al., 2010; Melo-Braga et al., 2012; Ruiz-May et al.,
2012a) this represents a relatively unexplored area of plant wall
biology. Almost nothing is known about the functional signifi-
cance of such decorations in CW proteins, but suppressing the
expression of key enzymes associated with modification of the
N-glycans (α-mannosidase and β-N-acetyl hexosaminidase) in
either tomato or pepper (Capsicum annuum) has been reported
to have profound effects on the ripening (Meli et al., 2010; Ghosh
et al., 2011). This therefore represents a potentially exciting area
of future research, which will be aided by new analytical pipelines
for identifying PTMs and structurally characterizing complex N-
glycan modifications (Ruiz-May et al., 2012b). An example of
such an approach, and the first reported study of the tomato
fruit N-glycoproteome, was described by Catalá et al. (2011),
who used the N-glycan binding lectin Concanavalin A, coupled
with two-dimensional liquid chromatography, to identify 133 CW
proteins from RR stage tomato fruit pericarp. Of these, 89%
had a predicted N-terminal secretory SP, suggesting that such
as lectin affinity approach both allows a substantial enrichment
in CW proteins and provides an opportunity to characterize
the sites of N-glycosylation and structures of the associated
N-glycans.

A COMPARISON OF TOMATO FRUIT CW PROTEIN
STUDIES
Robust bioinformatic tools, such as SignalP 4.1 (Petersen et al.,
2011), have been developed to predict the presence of an
N-terminal SP and such computational approaches provide a
reasonably reliable, although certainly not perfect, indicator of
targeting to the secretory pathway. A portion of these secretory
proteins eventually traffic to the apoplast, while other subsets
localize within various compartment of the endomembrane sys-
tem, or even other organelles (Rose and Lee, 2010). While a
few CW proteins may travel through a non-canonical secretion
pathway proteins (Cheng et al., 2009; Rose and Lee, 2010; Zhang
et al., 2011), there is little evidence to suggest that these are any-
thing other than rare exceptions. Thus, SP prediction represents
a useful “first pass” means to predict the secretome and to esti-
mate the degree of contamination of CW protein extracts with
intracellular proteins. We examined the data derived from sev-
eral of the tomato fruit proteome studies described above using
SignalP 4.1, and determined that a relatively high proportion
of predicted non-secreted proteins was identified in most cases,
including well-known cytosolic proteins, which underscores the
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extent of the problem of contamination (Figure 1). The lectin
affinity chromatography (Catalá et al., 2011) yielded the highest
percentage of predicted secreted proteins (75%) and thus, by
inference, the lowest degree of contamination (Figure 1). We
note that our analysis used a newer version of the software than
was used in the original studies and so the values differ slightly
from those that were originally reported. The lowest percent-
ages of predicted CW proteins were evident in studies of the RR
stage fruit, where the deterioration in tomato fruit integrity or
pathogen mediated tissue damage likely resulted in cell rupture
and consequent contamination. Analysis of the functional cate-
gories of the tomato fruit CW proteins identified in the various
studies suggests that most are associated with CW modifications
and they can be assigned to a range of GH families (Figure 2). The
pectin esterase, pectin methylesterase inhibitor (PMEI) and per-
oxidase families are particularly well represented, as are members
of the GH17 and GH19 families. These correspond to endo-1,3-
β-glucanases and chitinases, respectively, which are well-known
families of defense-related proteins and accordingly they were
particularly prevalent in RR stage tomato fruit challenged with
B. cinerea (Figure 2A; Shah et al., 2012). These defenses-related
proteins did not show the same level of representation in tomato
cultivars without infection (Figure 2B), suggesting that fungal
infection triggered the expression of defense-related proteins.
Interesting, during the infection with B. cinerea, β-galactosidase
(GH35 family) was absent in the MG stage but was well represented
in RR fruit (Figure 2A; Shah et al., 2012). This is in agree-
ment with previous studies where β-galactosidase expression has
been observed in the later stages of tomato fruit ripening (Smith
et al., 2002; Sozzi et al., 1998). Furthermore, high β-galactosidase
activity has been associated with fruit ripening, during which a
substantial amount of galactose is lost from the wall (Seymour
et al., 1990; Sozzi et al., 1998). In contrast, PMEI was one of
the most abundant functional categories in the MG stage but
was present at very low levels in both infected (Figure 2A) and
non-infected (Figure 2B) RR stage tomatoes from different cul-
tivars. Moreover, the representation of the PMEI was low in RR
fruit even after lectin enrichment of these putative glycoproteins
(Figure 2C). PMEI proteins were more frequently identified in
fruits of the non-ripening rin mutant compared with wild type
(Figure 2A), which further supports the notion that expres-
sion declines during ripening. PMEI regulates the expression of
pectin methylesterase (PME) enzymes, which catalyze the de-
esterification of pectins in the CW during ripening (Prasanna
et al., 2007; Reca et al., 2012). This can make pectin polymers
more susceptible to hydrolytic depolymerization by PG (Brum-
mell and Harpster, 2001; Wakabayashi et al., 2003; Prasanna et al.,
2007). Our analysis suggests that PMEI proteins may suppress the
activity of PMEs in MG fruit during B. cinerea infection, thereby
limiting pectin depolymerization, which in turn may strengthen
the CW and deter microbial invasion. Indeed, the infection of MG
tomato fruit by B. cinerea was limited even though the proportions
of defense-related proteins were lower than in RR fruit (Shah et al.,
2012).

It is noteworthy that when looking at the various studies as
a whole, many known fruit CW proteins were not detected, and
those that were identified were generally abundantly expressed.

FIGURE 1 | Analysis of the proportions of proteins identified as

entering the secretory pathway, as reported in the cited publications,

from immature green (IG), mature green (MG), and red ripe (RR) stage

wild type fruit and those of the rin mutant, using SignalP 4.1 Server

(www.cbs.dtu.dk/services/SignalP). S, soluble;WB, wall-bound.

This suggests that additional enrichment and fractionation
steps, together with higher sensitivity MS platforms will be
necessary to provide more holistic coverage of the fruit CW
proteome.

SUMMARY
Of the various plant subcellular proteomes that have been studied,
arguably the most technically challenging is that of the CW, for
the reasons described above. Moreover, the CW proteomes of
fleshy fruit, such as tomato, represent extreme examples of such
challenges, due largely to the composition and properties of the
extracellular matrix that often limits effective and representative
protein extraction. This raises the question of whether a compre-
hensive and quantitatively significant assessment of the whole fruit
CW proteome is achievable. Remarkably, there are still no reports
of large scale proteomic profiling initiatives of the tomato fruit
CW spanning the various stage of fruit development and ripen-
ing in a single study and this likely reflects the major technical
hurdles. The absence of equivalent data sets therefore currently
limits biologically informative comparisons between studies (e.g.,
Figure 2). However, “proteomics” comes in many shapes and fla-
vors and recent reports have shown that a great deal of useful
information can be learnt from well-established and emerging
analytical approaches (Nikolovski et al., 2012; Parsons et al., 2012;
Zielinska et al., 2012). A promising emerging area is in the field
of PTMs and, in particular, studies of the CW glycoproteome
and phosphoproteome will doubtless shed new light on many
aspects of fruit biology. This is further suggested by a recent
study describing changes in N-glycosylation, phosphorylation,
and Lys-acetylation during grape berry infection by the pathogen
Lobesia botrana (Melo-Braga et al., 2012). A similar analysis of
such changes during tomato fruit development and responses to
environmental changes will doubtless give equivalent information
and take analysis of this dynamic subcellular proteome to the next
level.
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FIGURE 2 | Classification of tomato fruit proteins with a SP described in

the cited publications, generated using the Pfam database (http://pfam.

sanger.ac.uk). (A) Classification of proteins identified in MG stage, RR stage,
and rin mutant and of tomato fruit infected with B. cinerea. (B) Classification

of proteins identified in RR stage in different cultivars of tomato. (C)

Classification of proteins in enriched proteome studies targeting the cuticle
[immature green (IG) stage] or after using lectin affinity chromatography
(RR stage).

ACKNOWLEDGMENTS
Funding to Jocelyn K. C. Rose for research in this area is pro-
vided by the NSF Plant Genome Research Program (DBI-0606595
and EAGER award IOS1313887), by the Agriculture and Food

Research Initiative competitive grant #2011-04197 of the USDA
National Institute of Food and Agriculture, and the New York
State Office of Science, Technology and Academic Research
(NYSTAR).

REFERENCES
Albenne, C., Canut, H., Boudart, G.,

Zhang, Y., San Clemente, H., Pont-
Lezica, R., et al. (2009). Plant cell
wall proteomics: mass spectrometry
data, a trove for research on pro-
tein structure/function relationships.
Mol. Plant 2, 977–989.

Bayer, E. M., Bottrill, A. R.,
Walshaw, J., Vigouroux, M., Nal-
drett, M. J., Thomas, C. L.,
et al. (2006). Arabidopsis cell
wall proteome defined using
multidimensional protein identi-
fication technology. Proteomics 6,
301–311.

Benko-Iseppon, A. M., Galdino, S.
L., Calsa, T., Kido, E. A., Tossi,
A., Belarmino, L. C., et al. (2010).
Overview on plant antimicrobial
peptides. Curr. Protein Pept. Sci. 11,
181–188.

Blee, K. A., Wheatley, E. R., Bon-
ham, V. A., Mitchell, G. P.,

Robertson, D., Slabas, A. R., et al.
(2001). Proteomic analysis reveals
a novel set of cell wall proteins in
a transformed tobacco cell culture
that synthesises secondary walls as
determined by biochemical and mor-
phological parameters. Planta 212,
404–415.

www.frontiersin.org May 2013 | Volume 4 | Article 159 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Proteomics/archive


“fpls-04-00159” — 2013/5/28 — 10:10 — page 6 — #6

Ruiz-May and Rose Proteomic studies of tomato fruit

Borderies, G., Jamet, E., Lafitte, C.,
Rossignol, M., Jauneau, A., Boudart,
G., et al. (2003). Proteomics of
loosely bound cell wall proteins of
Arabidopsis thaliana cell suspension
cultures: a critical analysis. Elec-
trophoresis 24, 3421–3432.

Brummell, D. A. (2006). Cell wall disas-
sembly in ripening fruit. Funct. Plant
Biol. 33, 103–119.

Brummell, D. A., and Harpster, M. H.
(2001). Cell wall metabolism in fruit
softening and quality and its manipu-
lation in transgenic plants. Plant Mol.
Biol. 47, 311–340.

Cantu, D., Vicente, A. R., Greve, L. C.,
Dewey, F. M., Bennett, A. B., Labav-
itch, J. M., et al. (2008). The inter-
section between cell wall disassembly,
ripening, and fruit susceptibility to
Botrytis cinerea. Proc. Natl. Acad. Sci.
U.S.A. 105, 859–864.

Catalá, C., Howe, K. J., Hucko, S.,
Rose, J. K., and Thannhauser, T.
W. (2011). Towards characteriza-
tion of the glycoproteome of tomato
(Solanum lycopersicum) fruit using
concanavalin A lectin affinity chro-
matography and LC-MALDI-MS/MS
analysis. Proteomics 11, 1530–
1544.

Chen, X. Y., Kim, S. T., Cho, W. K., Rim,
Y., Kim, S., Kim, S. W., et al. (2009).
Proteomics of weakly bound cell wall
proteins in rice calli. J. Plant Physiol.
166, 675–685.

Cheng, F. Y., Zamski, E., Guo, W. W.,
Pharr, D. M., and Williamson, J.
D. (2009). Salicylic acid stimulates
secretion of the normally symplas-
tic enzyme mannitol dehydrogenase:
a possible defense against mannitol-
secreting fungal pathogens. Planta
230, 1093–1103.

Chivasa, S., Ndimba, B. K., Simon, W.
J., Robertson, D., Yu, X. L., Knox, J.
P., et al. (2002). Proteomic analysis
of the Arabidopsis thaliana cell wall.
Electrophoresis 23, 1754–1765.

Chivasa, S., Simon, W. J., Yu, X. L., Yal-
pani, N., and Slabas, A. R. (2005).
Pathogen elicitor-induced changes in
the maize extracellular matrix pro-
teome. Proteomics 5, 4894–4904.

Cho, W. K., Chen, X. Y., Chu, H.,
Rim, Y., Kim, S., Kim, S. T., et al.
(2009). Proteomic analysis of the
secretome of rice calli. Physiol. Plant.
135, 331–341.

De-la-Peña, C., and Vivanco, J. M.
(2010). Root–microbe interactions:
the importance of protein secretion.
Curr. Proteomics 7, 265–274.

Faurobert, M., Mihr, C., Bertin, N.,
Pawlowski, T., Negroni, L., Som-
merer, N., et al. (2007). Major
proteome variations associated with
cherry tomato pericarp development

and ripening. Plant Physiol. 143,
1327–1346.

Feiz, L., Irshad, M., Pont-Lezica, R.
F., Canut, H., and Jamet, E. (2006).
Evaluation of cell wall preparations
for proteomics: a new procedure for
purifying cell walls from Arabidopsis
hypocotyls. Plant Methods 2, 10.

Ferreira, R. B., Monteiro, S., Freitas, R.,
Santos, C. N., Chen, Z., Batista, L. M.,
et al. (2007). The role of plant defence
proteins in fungal pathogenesis. Mol.
Plant Pathol. 8, 677–700.

Ghosh, S., Meli, V. S., Kumar, A.,
Thakur, A., Chakraborty, N.,
Chakraborty, S., et al. (2011).
The N-glycan processing enzymes
α-mannosidase and β-D-N-
acetylhexosaminidase are involved in
ripening-associated softening in the
non-climacteric fruits of capsicum.
J. Exp. Bot. 62, 571–582.

Isaacson, T., Kosma, D. K., Matas, A. J.,
Buda, G. J., He, Y., Yu, B., et al. (2009).
Cutin deficiency in the tomato fruit
cuticle consistently affects resistance
to microbial infection and biome-
chanical properties, but not tran-
spirational water loss. Plant J. 60,
363–377.

Jamet, E., Albenne, C., Boudart, G.,
Irshad, M., Canut, H., and Pont-
Lezica, R. (2008). Recent advances in
plant cell wall proteomics. Proteomics
8, 893–908.

Jamet, E., Canut, H., Boudart, G., and
Pont-Lezica, R. F. (2006). Cell wall
proteins: a new insight through pro-
teomics. Trends Plant Sci. 11, 33–39.

Kaida, R., Serada, S., Norioka, N.,
Norioka, S., Neumetzler, L., Pauly,
M., et al. (2010). Potential role
for purple acid phosphatase in the
dephosphorylation of wall proteins
in tobacco cells. Plant Physiol. 153,
603–610.

Klee, H. J., and Giovannoni, J. J. (2011).
Genetics and control of tomato fruit
ripening and quality attributes. Annu.
Rev. Genet. 45, 41–59.

Konozy, E. H., Rogniaux, H., Causse,
M., and Faurobert, M. (2013). Pro-
teomic analysis of tomato (Solanum
lycopersicum) secretome. J. Plant Res.
126, 251–266.

Kramer, M. G., and Redenbaugh,
K. (1994). Commercialization of a
tomato with an antisense polygalac-
turonase gene: the FLAVR SAVR
tomato story. Euphytica 79, 293–297.

Lagaert, S., Belien, T., and Volckaert, G.
(2009). Plant cell walls: protecting the
barrier from degradation by micro-
bial enzymes. Semin. Cell Dev. Biol.
20, 1064–1073.

Lee, S.-J., Saravanan, R. S., Damasceno,
C. M. B., Yamane, H., Kim, B.-D.,
and Rose, J. K. C. (2004). Digging

deeper into the plant cell wall pro-
teome. Plant Physiol. Biochem. 42,
979–988.

Matas, A. J., Yeats, T. H., Buda, G.
J., Zheng, Y., Chatterjee, S., Tohge,
T., et al. (2011). Tissue and cell
type specific transcriptome profiling
of expanding tomato fruit provides
insights into metabolic and regula-
tory specialization and cuticle forma-
tion. Plant Cell 23, 3893–3910.

Meli, V. S., Ghosh, S., Prabha, T.
N., Chakraborty, N., Chakraborty,
S., and Datta, A. (2010). Enhance-
ment of fruit shelf life by suppressing
N-glycan processing enzymes. Proc.
Natl. Acad. Sci. U.S.A. 107, 2413–
2418.

Melo-Braga, M. N., Verano-Braga, T.,
Leon, I. R., Antonacci, D., Nogueira,
F. C., Thelen, J. J., et al. (2012). Mod-
ulation of protein phosphorylation,
N-glycosylation and Lys-acetylation
in grape (Vitis vinifera) mesocarp
and exocarp owing to Lobesia botrana
infection. Mol. Cell. Proteomics 11,
945–956.

Millar, D. J., Whitelegge, J. P., Bind-
schedler, L. V., Rayon, C., Boudet,
A. M., Rossignol, M., et al. (2009).
The cell wall and secretory proteome
of a tobacco cell line synthesising
secondary wall. Proteomics 9, 2355–
2372.

Negri, A. S., Prinsi, B., Scienza, A.,
Morgutti, S., Cocucci, M., and Espen,
L. (2008). Analysis of grape berry cell
wall proteome: a comparative evalu-
ation of extraction methods. J. Plant
Physiol. 165, 1379–1389.

Nikolovski, N., Rubtsov, D., Segura,
M. P., Miles, G. P., Stevens, T. J.,
Dunkley, T. P., et al. (2012). Putative
glycosyltransferases and other plant
Golgi apparatus proteins are revealed
by LOPIT proteomics. Plant Physiol.
160, 1037–1051.

Palma, J. M., Corpas, F. J., and Del
Rio, L. A. (2011). Proteomics as an
approach to the understanding of the
molecular physiology of fruit devel-
opment and ripening. J. Proteomics
74, 1230–1243.

Parsons, H. T., Christiansen, K.,
Knierim, B., Carroll, A., Ito, J., Batth,
T. S., et al. (2012). Isolation and pro-
teomic characterization of the Ara-
bidopsis Golgi defines functional and
novel components involved in plant
cell wall biosynthesis. Plant Physiol.
159, 12–26.

Payasi, A., Mishra, N. N., Chaves, A. L.
S., and Singh, R. (2009). Biochem-
istry of fruit softening: an overview.
Physiol. Mol. Biol. Plants 15, 103–113.

Petersen, T. N., Brunak, S., Von Heijne,
G., and Nielsen, H. (2011). SignalP
4.0: discriminating signal peptides

from transmembrane regions. Nat.
Methods 8, 785–786.

Prasanna, V., Prabha, T. N., and Tha-
ranathan, R. N. (2007). Fruit ripening
phenomena – an overview. Crit. Rev.
Food Sci. Nutr. 47, 1–19.

Reca, I. B., Lionetti, V., Camardella,
L., D’Avino, R., Giardina, T., Cer-
vone, F., et al. (2012). A functional
pectin methylesterase inhibitor pro-
tein (SolyPMEI) is expressed during
tomato fruit ripening and interacts
with PME-1. Plant Mol. Biol. 79,
429–442.

Reina-Pinto, J. J., and Yephremov,
A. (2009). Surface lipids and plant
defenses. Plant Physiol. Biochem. 47,
540–549.

Robertson, D., Mitchell, G. P., Gilroy,
J. S., Gerrish, C., Bolwell, G. P.,
and Slabas, A. R. (1997). Differential
extraction and protein sequencing
reveals major differences in patterns
of primary cell wall proteins from
plants. J. Biol. Chem. 272, 15841–
15848.

Rose, J. K. C., and Lee, S. J. (2010). Stray-
ing off the highway: trafficking of
secreted plant proteins and complex-
ity in the plant cell wall proteome.
Plant Physiol. 153, 433–436.

Ruiz-May, E., Kim, S. J., Bran-
dizzi, F., and Rose, J. K. C.
(2012a). The secreted plant N-
glycoproteome and associated secre-
tory pathways. Front. Plant Sci. 3:117.
doi: 10.3389/fpls.2012.00117

Ruiz-May, E., Thannhauser, T. W.,
Zhang, S., and Rose, J. K. C. (2012b).
Analytical technologies for identifica-
tion and characterization of the plant
N-glycoproteome. Front. Plant Sci.
3:150. doi: 10.3389/fpls.2012.00150

Seymour, G. B., Chapman, N., Chew, B.
L., and Rose, J. K. C. (2013). Regu-
lation of ripening and opportunities
for control in tomato and other fruits.
Plant Biotechnol. 11, 269–278.

Seymour, G. B., Colquhoun, I. J.,
Dupont, M. S., Parsley, K. R., and Sev-
endran, R. R. (1990). Composition
and structural features of cell wall
polysaccharides from tomato fruits.
Phytochemistry 29, 725–731.

Shah, P., Powell, A. L., Orlando,
R., Bergmann, C., and Gutierrez-
Sanchez, G. (2012). Proteomic anal-
ysis of ripening tomato fruit infected
by Botrytis cinerea. J. Proteome Res.
11, 2178–2192.

Smith, C. J. S., Watson, C. F., Ray, J.,
Bird, C. R., Morris, P. C., Schuch,
W., et al. (1988). Antisense RNA
inhibition of polygalacturonase gene-
expression in transgenic tomatoes.
Nature 334, 724–726.

Smith, D. L., Abbott, J. A., and Gross,
K. C. (2002). Down-regulation of

Frontiers in Plant Science | Plant Proteomics May 2013 | Volume 4 | Article 159 | 6

http://www.frontiersin.org/Plant_Proteomics/
http://www.frontiersin.org/Plant_Proteomics/archive


“fpls-04-00159” — 2013/5/28 — 10:10 — page 7 — #7

Ruiz-May and Rose Proteomic studies of tomato fruit

tomato beta-galactosidase 4 results
in decreased fruit softening. Plant
Physiol. 129, 1755–1762.

Sozzi, G. O., Camperi, S. A., Cascone, O.,
and Fraschina, A. A. (1998). Galac-
tosidases in tomato fruit ontogeny:
decreased galactosidase activities in
antisense ACC synthase fruit during
ripening and reversal with exogenous
ethylene. Aust. J. Plant Physiol. 25,
237–244.

Tomato Genome Consortium. (2012).
The tomato genome sequence pro-
vides insights into fleshy fruit evolu-
tion. Nature 485, 635–641.

van Loon, L. C., Rep, M., and
Pietersen, C. M. (2006). Significance
of inducible defense-related proteins
in infected plants. Annu. Rev. Phy-
topathol. 44, 135–162.

Vicente, A. R., Saladié, M., Rose, J. K.
C., and Labavitch, J. M. (2007). The
linkage between cell wall metabolism
and fruit softening: looking to the
future. J. Sci. Food Agric. 87, 1435–
1448.

Wakabayashi, K., Hoson, T., and Huber,
D. J. (2003). Methyl de-esterification
as a major factor regulating the extent
of pectin depolymerization during
fruit ripening: a comparison of the

action of avocado (Persea ameri-
cana) and tomato (Lycopersicon escu-
lentum) polygalacturonases. J. Plant
Physiol. 160, 667–673.

Watson, B. S., Lei, Z. T., Dixon, R.
A., and Sumner, L. W. (2004). Pro-
teomics of Medicago sativa cell walls.
Phytochemistry 65, 1709–1720.

Yeats, T. H., Buda, G. J., Wang, Z.,
Chehanovsky, N., Moyle, L. C., Jetter,
R., et al. (2012a). The fruit cuti-
cles of wild tomato species exhibit
architectural and chemical diversity,
providing a new model for study-
ing the evolution of cuticle function.
Plant J. 69, 655–666.

Yeats, T. H., Martin, L. B., Viart, H.
M., Isaacson, T., He, Y., Zhao, L.,
et al. (2012b). The identification of
cutin synthase: formation of the plant
polyester cutin. Nat. Chem. Biol. 8,
609–611.

Yeats, T. H., Howe, K. J., Matas, A. J.,
Buda, G. J., Thannhauser, T. W., and
Rose, J. K. C. (2010). Mining the sur-
face proteome of tomato (Solanum
lycopersicum) fruit for proteins asso-
ciated with cuticle biogenesis. J. Exp.
Bot. 61, 3759–3771.

Zhang, H., Zhang, L., Gao, B., Fan, H.,
Jin, J., Botella, M. A., et al. (2011).

Golgi apparatus-localized synapto-
tagmin 2 is required for unconven-
tional secretion in Arabidopsis. PLoS
ONE 6:e26477. doi: 10.1371/jour-
nal.pone.0026477

Zhang, Y., Giboulot, A., Zivy, M.,
Valot, B., Jamet, E., and Albenne, C.
(2010). Combining various strategies
to increase the coverage of the plant
cell wall glycoproteome. Phytochem-
istry 72, 1109–1123.

Zhu, J., Alvarez, S., Marsh, E. L., Leno-
ble, M. E., Cho, I. J., Sivaguru, M.,
et al. (2007). Cell wall proteome in
the maize primary root elongation
zone. II. Region-specific changes in
water soluble and lightly ionically
bound proteins under water deficit.
Plant Physiol. 145, 1533–1548.

Zhu, J., Chen, S., Alvarez, S., Asir-
vatham, V. S., Schachtman, D. P., Wu,
Y., et al. (2006). Cell wall proteome
in the maize primary root elongation
zone. I. Extraction and identification
of water-soluble and lightly ionically
bound proteins. Plant Physiol. 140,
311–325.

Zielinska, D. F., Gnad, F., Schropp,
K., Wisniewski, J. R., and Mann,
M. (2012). Mapping N-glycosylation
sites across seven evolutionarily

distant species reveals a divergent
substrate proteome despite a com-
mon core machinery. Mol. Cell 46,
542–548.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 08 January 2013; accepted: 09
May 2013; published online: 29 May
2013.
Citation: Ruiz-May E and Rose JKC
(2013) Progress toward the tomato fruit
cell wall proteome. Front. Plant Sci.
4:159. doi: 10.3389/fpls.2013.00159
This article was submitted to Frontiers in
Plant Proteomics, a specialty of Frontiers
in Plant Science.
Copyright © 2013 Ruiz-May and Rose.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in other
forums, provided the original authors and
source are credited and subject to any
copyright notices concerning any third-
party graphics etc.

www.frontiersin.org May 2013 | Volume 4 | Article 159 | 7

http://dx.doi.org/10.3389/fpls.2013.00159
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Proteomics/archive

	Progress toward the tomato fruit cell wall proteome
	Introduction
	The challenges of identifying fruit CW proteins
	Insights into the tomato fruit proteome
	A comparison of tomato fruit CW protein studies
	Summary
	Acknowledgments
	References


