AUTHOR=Pantoja Omar TITLE=High Affinity Ammonium Transporters: Molecular Mechanism of Action JOURNAL=Frontiers in Plant Science VOLUME=3 YEAR=2012 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2012.00034 DOI=10.3389/fpls.2012.00034 ISSN=1664-462X ABSTRACT=
The importance of the family of high affinity ammonium transporters is demonstrated by the presence of these proteins in all domains of life, including bacteria, archaea, fungi, plants, and humans. The majority of the proteins that have been studied from this family show high affinity and selectivity for ammonium, are impermeable to alkaline cations, saturate rapidly at low millimolar concentrations and most of them, are also permeable to methylammonium. Crystallization of homologue proteins from bacteria and archaea has demonstrated that the functional entity corresponds to a trimer, with each monomer maintaining a conductive pore. Through molecular modeling, it has been demonstrated that even though the identity of the proteins between bacteria/archaea with those from plants is below 25%, the latter seem to maintain similar tertiary and quaternary structures, an observation that has helped to address the functionality of conserved residues by means of mutational analysis. Results have shown that changes in the extracellular binding site of some plant transporters may result in their inhibition or reduction in transport activity, while in