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Cell adhesion maintenance and
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Cell-cell adhesion is a fundamental aspect of maintaining multicellular integrity

while ensuring controlled cell and organ shedding, intercellular space formation

and intrusive growth. Understanding of the precise mechanisms governing

regulated cell separation, such as abscission, considerably progressed in recent

decades. However, our comprehension of how plants maintain adhesion within

tissues in which it is essential remains limited. Here we review some of the well-

established knowledge along with latest discoveries that lead us to rethink the

way developmentally controlled cell separation and adhesion maintenance may

work. We also specifically explore the relationship between growth and adhesion,

highlighting their similarities and coupling, and propose a plausible framework in

which growth and adhesion are tightly co-regulated.
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Introduction

Plants are multicellular organisms that exhibit clonal multicellularity and develop from a

single cell through the process of cell division. Contrary to animal, plant cells are surrounded by

a cell wall which mediates their adhesion (Atakhani et al., 2022). Adhesion between cells is

established during cell division when a new shared wall is formed by the cell plate (Jarvis et al.,

2003). Throughout normal growth and development, cell differentiation gives rise to a complex

tissue organization roughly made up of the epidermis, ground tissues, vasculature, and

meristems. Interestingly, different tissues appear to develop differential adhesion. While the

epidermis keeps a strong adhesion to form a barrier to the environment (Galletti et al., 2016),

stomata formed within it through guard cells separation allow a controlled gas exchange

between the inside and outside of the leaf (Lin et al., 2022). Below the epidermis, the mesophyll

and cortex parenchyma (types of ground tissue) tend to develop large intercellular spaces

forming largely by cell separation at the tricellular junctions (Whitewoods, 2021). This creates a

large network of air spaces in the tissues that is important for gas exchange and photosynthesis

(Figure 1F). Further within the tissues, the vasculature tends to develop rigid and thickened cell

walls with tight adhesion to ensure the proper transport of water and nutrients (Kuriyama and

Fukuda, 2007; Lucas et al., 2013). Later on, a number of cells and organs can shed through cell

separation. For instance, leaves as well as floral organs such as sepal, petal, stamen and carpels
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undergo abscission after pollination and seed maturation (Figure 1A;

Leslie et al., 2007). The seeds can shed, and the pollen grains separate to

be disseminated individually (Figure 1D; Wen et al., 2007). In the root

system, root cap sloughing and border cells separation from the root

tip help to protect the root and promote soil penetration (Figure 1C;

Driouich et al., 2007; Wen et al., 2007). In parallel, lateral roots emerge

through the cortex and epidermis thanks to controlled cell separation

(Figure 1B; Banda et al., 2019). Some specific cell types such as the

pollen tube and fiber cells can grow intrusively by their tip, leading to

cell-cell contact rearrangement (Figure 1E; Mollet et al., 2007;

Marsollier and Ingram, 2018). Finally, cells can re-adhere through

grafting or post embryonic tissue fusion (Melnyk, 2017). This brief

overview of cell adhesion and separation dynamics in plants highlights

how important the regulation of cell adhesion is for plant growth and

development (Figure 1).

Cell adhesion is mediated by the
cell wall

The attachment of neighboring cells in plants is mediated

through the formation of the cell wall. Approximately 90% of the
Frontiers in Plant Physiology 02
total components in the cell wall are made up of polysaccharides,

namely cellulose, hemicellulose, and pectin, along with structural

proteins and cell wall remodeling enzymes making up the

remaining 10% (Anderson and Kieber, 2020). In young

expanding tissues the cell wall between two adjacent cells

generally displays a layered structure: at the center the middle

lamella is enriched in pectins, and on each side sit the primary cell

walls of each adjacent cells. This structure is believed to be

established during and following cell division (Jarvis et al.,

2003). First, when the formation of the cell plate establishes the

precursor of the middle lamella, and after the completion of the

new cell wall when each daughter cells initiate the synthesis of

their primary cell wall (Zamil and Geitmann, 2017). These newly

formed walls thus sandwich the pre-existing pectin-enriched

matrix derived from the cell plate that forms the middle lamella.

Note that the exact genesis/origin, structure and composition of

the middle lamella remains poorly understood (Zamil and

Geitmann, 2017; Malek and Mouille, 2023). Yet, overall, it is

generally recognized that pectins and the middle lamella play a

central role as components of the cell wall for mediating cell

adhesion (for extensive reviews on the topic see Knox, 1992; Jarvis
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FIGURE 1

Different examples of the processes involving cell separation in the model plant Arabidopsis. Here, we display some of the main processes that
involve cell separation during various developmental stages and during specific periodic changes in Arabidopsis, used as an example here. These
processes are not just limited to this model species only but can be involved in other plant species too. These different instances of cell separation
processes include (A) Floral organ abscission of sepals, petals, stamen, carpels including pollen separation (B) Lateral root emergence through the
cell layers of cortex and epidermis (C) Root cap sloughing and border cell separation from the root tip (D) Seed dispersal after the maturation from
the siliques (E) Intrusive growth of cambial cells in inflorescence stems (F) Intercellular space formation in the mesophyll and cortex parenchyma.
(Some segments from this figure were generated with the help of Biorender (www.bioRender.com accessed on 14 December 2023).
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et al., 2003; Daher and Braybrook, 2015; Atakhani et al., 2022).

The middle lamella can then be specifically degraded through the

action of pectin remodeling and degrading enzymes (e.g. Pectin

Methyl Esterases (PMEs), PolyGalactoronases (PGs) and Pectate

Lyases (PLs)) for cell separation (Daher and Braybrook, 2015).

Interestingly, the pectin in the middle lamella is often depicted as

the glue that makes the cells stick together (Zamil and Geitmann,

2017). However, except in specific cases (e.g. grafting) plant cells

are not adhering to each other by being put in contact to stick but

rather remain attached after cell division. In turn, it could be

argued that instead of being a “gluing layer”, the middle lamella

may primarily serve as a “degradable” layer for cell separation,

that can specifically be degraded by a subset of enzymes (pectin

degrading), without degrading the whole cell wall which would

otherwise threaten cell integrity.

The primary cell wall also serves a central role in cell and tissue

growth. It is a dynamic structure that is constantly remodeled during

the processes of growth and development (Anderson and Kieber, 2020;

Cosgrove, 2023). This is mediated by the constant synthesis and

secretion of cell wall polysaccharides and proteins. This contributes

to addingmaterial to the wall while it is being expanded and to remodel

it to allow changes of extensibility (Anderson and Kieber, 2020). Along

with turgor pressure, the action of cell wall remodeling enzymes has

been shown to be the key downstream mediator of cell expansion,

overall controlling tissue growth and morphogenesis (Cosgrove, 2022;

Coen and Cosgrove, 2023). Those enzymes typically include members

from the XYLOGLUCAN ENDOTRANSGLUCOSYLASE/

HYDROLASE (XTH), EXPANSIN (EXP), CELLULASE, PECTIN

METHYLESTERASE (PME) and POLYGALATURONASE (PG)

families (For a comprehensive review on the subject see Cosgrove,

2016). For growth to be properly regulated, the action of these enzymes

should not lead to the overall degradation and excessive weakening of

the cell wall, which could lead to cell bursting due to turgor pressure

(Feng et al., 2018; Sapala et al., 2018; Malivert et al., 2021). Instead, the

activity of these enzymes and overall cell wall remodeling needs to be

tightly regulated by cell wall integrity signaling feedback mechanisms

(Bacete and Hamann, 2020). Interestingly there are striking similarities

in the set of cell wall remodeling enzymes that are involved in growth

and cell separation (See sections below). This could imply that similar

cell wall integrity mechanisms could be in place not only for keeping

cellular integrity (preventing cell bursting) but also keeping

supracellular integrity (cell adhesion) (Verger et al., 2018) during

extensive growth.
Developmentally controlled cell
separation in plants

As described in the introductory section, there are several events

throughout plant life during which cell separation is specifically

triggered (Figure 1). The process of abscission has been particularly

studied for its agricultural implications. Here we provide a broad

description and the common mechanisms regulating these types of

developmentally regulated cell separation, but for more detailed

review see (Ballester and Ferrándiz, 2017; Patharkar and Walker,
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2018). Broadly, abscission processes can be categorized into four

stages: 1) Initially, abscission in plants involves the formation of a

defined Abscission Zone (AZ) with the specification of specialized

cell layers mediated by developmental patterning transcription

factors (Mao et al., 2000; Cho et al., 2008; Gubert et al., 2014). 2)

The second step consists in triggering the signaling cascade that will

lead to cell separation in the abscission zone. A precise balance

between ethylene and auxin has been shown to be key in triggering

abscission and may serve to integrate environmental stimuli to

regulate the timing of abscission (Taylor and Whitelaw, 2001;

Butenko et al., 2006; Meir et al., 2010). Moreover, the non-

hormonal control of abscission in plants involves the short

secretory peptide known as INFLORESCENCE DEFICIENT IN

ABSCISSION (IDA) (Butenko et al., 2003) and its downstream

receptor-like kinases (RLKs), HAESA (HAE) and HAESA-LIKE 2

(HSL2) (Cho et al., 2008; Estornell et al., 2015). Downstream, this

peptide-receptor complex activates a mitogen-activated protein

kinase (MAPK) cascade, which primarily consists of MAPK

kinase 4 (MKK4)/MKK5 and MAPK 3 (MPK3)/MPK6 (Cho

et al., 2008), and may ultimately de-repress the transcription

factors KNOTTED-LIKE FROM ARABIDOPSIS THALIANA2

(KNAT2) and KNAT6 (Shi et al., 2011). 3) This signaling cascade

then leads to the massive expression of cell wall remodeling

enzymes. While the pectin remodeling enzyme of the PME and

PG families have been shown to be central players for cell

separation, it was also shown that a wider set of CWR enzyme is

expressed during abscission. Those enzymes typically include

members from the XTH, EXPANSIN, CELLULASE, PME and PG

families (Cho and Cosgrove, 2000; Rhee et al., 2003; Francis et al.,

2006; Cai and Lashbrook, 2008; Ogawa et al., 2009). Interestingly,

the combined action of these enzymes, along with the presence of

turgor pressure in the cells also lead to local cell expansion (Cai and

Lashbrook, 2008) and overall generate forces that physically help

pull cells apart to achieve abscission (Reiche, 1885; Taesakul et al.,

2015). Finally, 4) after the abscission of the organ, a protective

epidermal layer is formed at the abscised region in the plant (Shi

et al., 2019).

Interestingly, some of the cell separation processes taking place

in the root, namely lateral root emergence and root cap sloughing

have also been shown to involve part of the IDA signaling cascade

without apparent abscission zone specification. For lateral root

emergence, auxin signaling was shown to induce the expression

of the IDA peptide around the lateral root emergence site, which

along with the HEA and HSL2 receptors, help the lateral root

primordia to emerge from different cell layers (Kumpf et al., 2013).

The IDL1 (IDA LIKE1) homologs of IDA and its receptor HSL2

have been shown to regulate root cap sloughing by controlling the

frequency of sloughing events (Shi et al., 2018). Interestingly

however, the progressive detachment of the border-like cells along

the elongating root tip seems to happen independently from the

sloughing events. Overall, this suggests that the IDA/HEA signaling

module may be widely employed to specifically trigger cell

separation events in plants. Note however, that there are

significant differences in the way in which root cap cells detach

between different species. Arabidopsis and more generally

Brassicaceae represent a specific case for which border cells do
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not fully detach (Border-like cells; (Driouich et al., 2007; Mravec

et al., 2014)) while in other species, true border cells are

continuously released as individual cells (Mravec, 2017; Mravec

et al., 2017) and thus may not require active root cap sloughing-

off events.
Active rearrangement of cell adhesion
by intrusive growth

By far most cells in plant tissues establish adhesion during cell

division and grow in a diffuse symplastic manner, keeping the same

neighbors throughout their life span. However, some specific cell

types harbor an intrusive tip growth behavior leading to the

rearrangement of cell-cell contacts. The two most studied

examples of intrusive tip growth in plants are the pollen tubes

(Kamel and Geitmann, 2023) and the fiber cells (Lev-Yadun, 2001;

Gorshkova et al., 2012). During intrusive tip growth, cells generally

elongate specifically at their tip by a combination of the addition of

cell wall material localized at the tip and internal hydrostatic

(turgor) pressure (Sanati Nezhad and Geitmann, 2013). Different

pectin modifying enzymes are believed to be implicated in the

modification of the cell wall during pollen tube growth (Bosch and

Hepler, 2005; Kamel and Geitmann, 2023). Recently it was shown

that pectate lyase-like (PLL) may contribute to the lubrication and

loosening of the middle lamella in the intruded tissues (Chebli and

Geitmann, 2023). In wood fiber cells, several studies have revealed

the contribution of cell wall remodeling enzymes. Those include the

XTH, EXPANSIN, PME and PL families (Im et al., 2000; Israelsson

et al., 2003; Gray-Mitsumune et al., 2004; Gray-Mitsumune et al.,

2008; Siedlecka et al., 2008; Kushwah et al., 2020). It is generally

unclear if those enzymes primarily play a role in the cell wall

remodeling at the tip for tip growth or specifically contribute to

loosening the middle lamella of the intruded tissues, but it is worth

considering that some of these enzymes may serve both purposes at

the same time. In addition to cell wall remodeling, physical factors

also play a major role. It has been shown that the turgor pressure in

the growing tip of pollen tubes applies considerable forces that help

penetrating between the cells (Sanati Nezhad et al., 2013). It was

also proposed that high turgor pressure and radial expansion of the

cells making up the tissues in which cells intrude may contribute to

promote intercellular spaces formation. The intruding tips could

then grow more easily within such intercellular spaces (Yanagisawa

et al., 2017; Majda et al., 2021).
Intercellular spaces formation

Plant internal tissues can develop air spaces which are notably

important for gas exchange and photosynthesis (Earles et al., 2018;

Whitewoods, 2021). In most cases they initially form by cell

separation at the tricellular junctions. Air spaces can further

expand by continued cell separation (schizogeny), through the

expansion of the already separated wall regions (expansigeny) or

a combination of both (Zhang et al., 2021), which leads to an
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increase in airspace size (Whitewoods, 2021). Interestingly this

process is tightly associated with the intense expansion of the

tissues in which it takes place such as during leaf and stem

expansion. In this case it is still unknown which cell wall

remodeling enzymes are involved in the initial cell separation

process. However, the high turgor pressure in those ground

tissues that is required to drive tissue growth (Kutschera and

Niklas, 2007) should play a key role. At tricellular junction, cell

edges often display sharp angles. Because the cortical (cell wall)

tension derived from turgor pressure would tend to round up those

edges, in fully adhering cells, those tricellular junction are

mechanical stress hotspots that contribute to separate the cells if

adhesion is weakened (Jarvis, 1998; Treado et al., 2022). In turn, it is

possible that growth-promoting cell wall remodeling enzymes

activity in combination with high separation forces at those

mechanical hotspots would be sufficient to weaken the middle

lamella to a point that would allow cell separation at tricellular

junctions. Interestingly, in this case cell separation would be a

passive process, collateral to the process of growth.
Cell adhesion maintenance: the case
of cell adhesion defective mutants

As described above, while many cells in ground tissues develop

intercellular spaces through partial cell separation, other

surrounding tissues like the epidermis and vasculature need to

maintain tight adhesion. However, the mechanisms regulating these

processes are still very unclear. Within the last three decades,

genetic screens have led to the isolation of cell adhesion defective

mutants which are thus unable to properly maintain adhesion and

offer some clues to start investigating this process. Such mutants

could either be unable to produce the cell wall polysaccharides that

keep cells attached to each other or be involved in sensing and

feedback mechanisms ensuring the maintenance of adhesion. One

of the most characteristic examples are the quasimodo1 (qua1) and

qua2 mutants (Bouton et al., 2002; Krupková et al., 2007; Mouille

et al., 2007), for which the disrupted loci encode a putative

galacturonosyltransferase and a pectin methyltransferase (Du

et al., 2020), respectively. These mutants are deficient in

HomoGalacturonans synthesis (HG), the main form of pectin in

the cell wall and middle lamella. This led to the conclusion that the

adhesion phenotype of these mutants was a direct consequence of

decreased pectin content in the cell wall, likely disrupting the

middle lamella. However, a genetic suppressor screen carried out

on both qua1 and qua2 mutants identified alleles of ESMERALDA1

(ESMD1), a putative o-fucosyltransferase (Verger et al., 2016). The

suppressor lines display a rescued adhesion phenotype without

restoring the HG fraction that is deficient in the quasimodo

mutants. ESMD1 was hypothesized to play a role in cell wall

integrity sensing, via the pectin-binding receptor WALL-

ASSOCIATED KINASES (WAKs) by potentially mediating the o-

fucosylation of the epidermal growth factor (EGF) domains of the

WAKs (Verger et al., 2016). Another putative o-fucosyltransferase

mutant, friable1 (frb1) was shown to have cell adhesion defects
frontiersin.org
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without significant pectin levels deficiency except for a perturbed

HG methylesterification level (Neumetzler et al., 2012). Altogether

this suggests that bulk pectin content in the cell wall may not be the

primary determinant of cell adhesion maintenance, but that more

complex regulations of the pectin and overall cell wall structure are

at play. However, it was later shown that enzymes of the putative o-

fucosyltransferase family, including FRB1 are instead acting as

Rhamnose RamnosylTransferases (Takenaka et al., 2018;

Wachananawat et al., 2020) and thus involved in the synthesis of

RGI pectins rather than signaling. It was also shown that WAKs are

likely not o-fucosylated on their EGF domains, that esmd1 does not

seem to impact the function of the WAKs, and that knocking out

WAKs did not rescue adhesion defects in the qua2mutant (Kohorn

et al., 2021). Nevertheless, further work confirmed that the QUA2

knockout does lead to massive secondary responses which can

largely account for its phenotypes and that most are absent in the

qua2 esmd1 suppressor line. These includes over expression of PGs,

miss regulation of PMEs as well as deficiency in cellulose synthesis

and a disrupted cuticle (Du et al., 2020; Lorrai et al., 2021; Barnes

et al., 2022; Grandjean et al., 2023). It was also recently suggested

that endogenous oligogalacturonides (small pectin fragments

derived from the degradation of HG) may play a signaling role in

this context (Grandjean et al., 2023). Furthermore, an esmd1

mutant allele was also recently isolated as a suppressor of the

cellulose deficient mutant korrigan1 (kor1). In this case it appears

to act by suppressing elevated jasmonate levels in the kor1 mutant

(Mielke et al., 2021). While it is still unclear what the function of

ESMD1 is, these observations suggest that ESMD1 may still play a

role directly or indirectly in cell wall integrity signaling which

ultimately influences cell adhesion maintenance.

It is also interesting to note that the quasimodo adhesion

phenotype can be partially rescued by decreasing the overall

growth or the tissue tensions derived from differential growth

between the inner tissues and the epidermis (Verger et al., 2018)

and that it can be enhanced by increasing the growth differential

between the inner tissues and epidermis (Kelly-Bellow et al., 2023).

This shows that in quasimodo, in addition to a reduced adhesion

mediated by extensive cell wall remodeling, the adhesion phenotype

depends on the overall extent of growth and tension pulling cells

apart in the epidermis.

In addition to QUA1, QUA2, ESMD1, and FRB1, two new gene

families have recently been identified to act in the same pathway.

Mutation in the genes coding for Golgi membrane localized protein

ELMO1, ELMO2 and ELMO4/NKS1 (Kohorn et al., 2021; Lathe

et al., 2021) as well as Golgi-localized putative S-adenosyl

methionine transporters (GoSAMT1 and GoSAMT2) (Temple

et al., 2022) also lead to a strong defect in cell-cell adhesion

which can be rescued by esmd1. ELMO family proteins are

suspected to act as scaffold for QUA1 and QUA2 in the Golgi

(Lathe et al., 2021; Kohorn et al., 2023) and GoSAMT transporter

should be necessary to provide the S-adenosyl methionine for HG

methyl esterification by QUA2 in the Golgi.

Beyond direct cell wall regulators, other mutants with clear cell

adhesion defects include mutants defective in actin filament
Frontiers in Plant Physiology 05
nucleators from the ACTIN-RELATED PROTEINS 2 and 3

(ARP2/3) complex (Le et al., 2003; Mathur et al., 2003) as well as

upstream regulators SCAR/WAVE (WASP family Verprolin

homolog — also known as SCAR for suppressor of cAMP

receptor) complex (Basu et al., 2004; El-Assal et al., 2004) and

SPIKE1 (Qiu et al., 2002). While these mutants do not appear to

have clear cell wall defects in growing tissues (Dyachok et al., 2008;

Pratap Sahi et al., 2017), they suggest a more localized role of actin-

mediated cell wall polysaccharides secretion at the subcellular level

for the proper maintenance of cell adhesion. Furthermore, the

putative mechanosensitive calcium channel DEFECTIVE

KERNEL1 (DEK1; (Galletti et al., 2015; Amanda et al., 2016) and

epidermal identity transcription factors MERISTEM LAYER1

(ATML1) and PROTODERMAL FACTOR2 (PDF2) mutants

(Abe et al., 2003) show epidermis specific adhesion defects. While

DEK1 phenotype suggests a role for mechanical signals feedback in

regulating cell adhesion maintenance, it was also shown to

contribute to epidermal cell identity (Johnson et al., 2005) and

epidermal identity was shown to be regulated by mechanical signals

(Iida et al., 2023). In dek1 and pdf2 atml1mutants, cells that should

belong to the epidermal cell layer, instead resemble mesophyll cell.

This suggests that in these mutants the outer layer of cell has either

lost the capacity to specifically maintain cell adhesion as the

epidermis normally does, or that it activates a putative signaling

pathway leading to intercellular space formation. Overall, while

they remain to be better characterized for their cell adhesion

phenotype, these mutants further hint at a complex regulation of

cell adhesion maintenance in plants through cytoskeleton

dynamics, cell wall integrity, mechanosensing and cell

identity specification.
Growth and adhesion

Based on the above review of the field it appears that there are

likely at least two separate mechanisms regulating cell adhesion in

plants. One specifically to promote cell separation and one

specifically to maintain cell adhesion. It is well established that

for active cell separation events such as in the case of abscission,

upstream control by hormones and peptides lead to the specific and

active digestion of the cell wall (see section Developmentally

controlled cell separation in plants). One could argue that in this

context the extensive cell wall remodeling that is taking place is

aimed at cell separation but with the collateral action of promoting

local expansion that in turn helps to pull cells apart. This tends to

support the idea that adhesion between cells is a passive default state

initially established during cell division, and that an active

mechanism needs to be triggered to induce separation. However,

it is important to note that these events take place in tissues which

are not actively growing anymore. It is thus necessary for the plant

to specifically re-activate cell wall remodeling that can lead to the

digestion of the middle lamella, but also differential growth between

different parts of the abscission zone to help physically pull the cells

apart. In other words, cell separation needs a combination of cell
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wall remodeling, growth, and tensions to take place. On the other

hand, similar conditions are already present by default in actively

growing tissues. The process of growth is driven by turgor pressure

which, along with cell wall remodeling, generates cell expansion

(Cosgrove, 2016). It is also well established that the layered tissue

organization leads to tissue tensions: high tension in the growth

restricting epidermis, and relative compression in the inner tissues

(Kutschera and Niklas, 2007). Work on cell adhesion defective

mutants has further revealed that cell separation in those mutants is

largely correlated with the extent of growth-derived tissue stresses

(Verger et al., 2018; Kelly-Bellow et al., 2023). In turn, this supports

the idea that in growing tissues, adhesion is not a default state.

Growth associated mechanisms actively remodel the cell wall and

tend to pull epidermal cells apart. Thus, plants may need to put

specific mechanisms in place to prevent cell separation in cell types

where adhesion is threatened and needs to be maintained. In this

framework, plants would need a cell separation pathway in non-

growing tissues (e.g. abscission) and a cell type specific adhesion

maintenance pathway in growing tissues (Figure 2).
Frontiers in Plant Physiology 06
Revisiting the relationship between
adhesion and separation in the
context of growth

With this in mind we can revisit some of the cases mentioned in

the sections above where adhesion is dynamically regulated

including those for which we still know very little regarding their

regulation mechanisms. Classical abscission and dehiscence events

(leaves, floral organs, seed shedding, etc.) are already well described

and take place in non-growing tissues, thus are less ambiguous in

this regard. On the other hand, the case of intercellular space

formation takes place in actively growing tissues and the

mechanisms regulating it are still unknown. To our knowledge,

none of the abscission deficient mutants are affected in intercellular

space formation suggesting that it may not require such pathway.

The initiation of intercellular spaces may instead be largely

collateral to growth-associated cell wall remodeling and tensions

at the tricellular junctions. Because adhesion remains tight in the
FIGURE 2

Interplay between adhesion, growth and tension. Here we take as an example the comparison between the process of abscission and growth in
elongating tissues. In this schematic representation, both start from a group of fully adhering short cells (left). On top, IDA/HEA mediated abscission
mechanisms induce local cell wall remodeling in the abscission zone (not represented), expansion and tensions, that lead to local cell separation.
Below, growth induction also involves global cell wall remodeling, expansion, and tissue tensions, however, adhesion maintenance mechanisms may
prevent cell separation that would otherwise takes place as suggested by mutants’ studies. Those mechanisms may involve a combination of
molecular players and processes: ESMD1 and DEK1 may be involved in cell wall integrity and mechanosensing to monitor the state of the cell wall in
relation to adhesion during growth. ATML1 and PDF2 epidermal identity specification may limit the activity of the adhesion maintenance pathway to
the epidermis only. Wall integrity, mechanosensing and cell identity may contribute to regulate cell wall synthesis (QUA, FRB, GoSAMT, ELMO), and
actin mediated secretion (ARP2/3, SCAR/WAVE, SPIKE), to ensure cell adhesion in the epidermis during growth. Similar mechanisms may for instance
be at play in the vasculature, while ground tissues can develop intercellular spaces.
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epidermis, keeping all inner tissues cells within a sort of epidermal

envelop, partially loosing adhesion between ground tissue cells

doesn’t threaten the supracellular integrity of the organism. Then,

the only control of cell adhesion needed would be for the

maintenance in the epidermis and vasculature. While the

molecular bases of such an adhesion maintenance pathway are

still unclear, it could rely on cell wall integrity, mechanosensing

mechanisms and be influenced by cell identity as suggested by the

study of cell adhesion defective mutants (see section Cell adhesion

maintenance: The case of cell adhesion defective mutants). The case

of intrusive tip growth is quite interesting since it is by itself directly

coupled with growth. It also takes place in tissues which are still

growing and that develop intercellular spaces for the intrusive tip to

grow in between (Majda et al., 2021). It is thus possible that the

simple process of tip growth and associated cell wall remodeling

enzyme secretion (Chebli and Geitmann, 2023) along with

formation of growth associated intercellular spaces (Majda et al.,

2021), is enough to explain the phenomenon of intrusive tip growth

without the need for specific cell adhesion regulation mechanism.

On the other hand, lateral root emergence can sometimes be

considered as a case of multicellular intrusive growth. However,

while the lateral root tip does grow, the emergence has to take place

through the mature root cortex and epidermis which are not

growing anymore. The tip of the lateral root has also been shown

to be covered with a thin cuticle layer (Berhin et al., 2019). While it

appears to help lubricating the tip for the root emergence, it would

also prevent the secretion of cell wall remodeling enzymes by the

growing root tip contrary to what has been shown for the pollen

tube intrusive growth. In turn, cells of the cortex and epidermis

within which the root will emerge, have to activate an abscission-

like pathway that specifically triggers their separations. Finally, the

case of the root cap cells is also particularly interesting. In the

Arabidopsis growing root tip, the continuous detachment of the so-

called border-like cells and the sloughing off of the root cap involves

the separation of cells, but these appear to be two separate

mechanisms at play. The border-like cells along the growing root

tip appear to progressively detach as the root grows, and in parallel

there is a periodic sloughing off of entire cell layers. While it has

been shown that the periodic sloughing off events are regulated by a

specific abscission pathway, it is likely that the progressive border-

like cell detachment is a collateral effect of the root tip growth

associated with the fact these cells enter a programmed cell death

(Feng et al., 2018) and may not be able to actively maintain their

adhesion anymore. However, as mentioned previously, border-like

cells represent a particular case that appears to be specific to

Brassicaceae (Driouich et al., 2007). In other species, the border

cells continuously detach as individual cells, remain alive and play a

key role in the root-soil interaction (Hawes et al., 2000). Border cell

detachment was shown to involve extensive cell wall remodeling

notably by PMEs but without noticeable pectin degradation by PGs

or PLs (Mravec, 2017; Mravec et al., 2017). It was proposed that this

remodeling would still contribute to loosen the middle lamella as

well as drive differential growth, along with the asymmetric

distribution of xyloglucans and extensins, between the inner and

outer faces of border cells (respective to the root surface). This

differential growth leads to the bending of individual cells which
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physically promotes their detachment from the root surface

(Mravec, 2017; Mravec et al., 2017). Interestingly this supports

the idea that growth associated cell wall remodeling and tensions

can be sufficient to alter cell adhesion even in the absence of

extensive pectin degradation. This also suggest that contrary to

border-like cells, border cell detachment does not require active

abscission-like cell separation. In turn, simply lacking a specific

adhesion maintenance mechanism for the root cap cells, in the

context of root tip growth, could largely explain their detachment

dynamics. It was also shown that inhibiting PME activity during

border cell release led to an incomplete detachment of the cells

similar to what is observed with border-like cells (Mravec et al.,

2017). Brassicaceae may have lost the ability to fully detach border

cells and instead co-opted abscission and programmed cell death

pathways to balance their root cap proliferation.
Are growth and cell separation
mechanisms really similar?

Overall, here we highlight that the mechanisms of growth and

cell separation appear to be highly similar in terms of cell wall

remodeling and mechanics. Pushing this logic further, one could

propose that abscission is only a precise targeted growth event in

which adhesion maintenance feedback mechanisms are not active.

There is, however, no clear evidence for that yet. Adhesion defective

mutants appear to be a promising tool to study what could be the

cell adhesion maintenance mechanisms. However, while here they

are somehow depicted as potentially passively unable to maintain

adhesion, the pectin deficient quasimodo mutant were for instance

shown to not only have less pectin, but also an increase of pectin

degradation by PMEs and PG and other cell wall and cuticle defects

(Du et al., 2020; Lorrai et al., 2021; Barnes et al., 2022; Grandjean

et al., 2023) reminiscent to what takes place during abscission event.

It is thus difficult to know if this relative increase in cell wall

remodeling is in fact a sign of abscission-like event triggered

throughout the plant in this mutant background or only a sign

that such cell wall remodeling is normally down regulated by a

functioning adhesion maintenance feedback mechanism. We also

pointed out several times the similarities in terms of enzymes

involved in growth and cell separation associated cell wall

remodeling, but it is important to note that these enzymes are

part of large families and that their activities can vary and lead to

radically different effects. It is for instance proposed that some

endogenous PGs have an effect specifically for expansion and other

more specifically for cell separation (Ogawa et al., 2009; Xiao et al.,

2017; Safran et al., 2023). Furthermore, in the long term, sustained

growth also involves additional cell wall synthesis and secretion,

that would compensate for some of the cell wall loosening and

adhesion weakening effect of cell wall remodeling enzymes. Overall,

such a difference in activities within enzyme families and presence

or absence of cell wall synthesis could indicate that, although they

appear similar, growth and cell separation mechanisms are really

distinct processes. Nevertheless, these processes remain tightly

linked, at least in terms of mechanics.
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Conclusion

While much progress has been achieved in the past to

characterize the processes of abscission, recent work opened the

door to study how adhesion maintenance may work. However,

much remains to be done to better characterize what really is

adhesion and adhesion maintenance in the case of plants. What sets

apart adhesion deficiency from abscission? What is the contribution

of the cell wall in the interplay between adhesion, growth, and

development? Future work will need to integrate not only the

molecular and chemical aspects of adhesion regulation but also

the mechanics and in particular the coupling with growth.
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