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abiotic stress factors
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Mickiewicz University in Poznań, Poznań, Poland
The primary function of proteolytic enzymes is the hydrolysis of peptide

bonds. Enzymes responsible for catalyzing this reaction are commonly

referred to as proteases. The vast majority of these enzymes belong to the

class of hydrolases and operate in aqueous environments. However, there is

a distinct group of proteases known as intramembrane proteases, which are

integral membrane proteins capable of cleaving peptide bonds in the

hydrophobic environment of biological membranes. Proteolysis serves

several essential functions in plant cells, ranging from the degradation of

damaged and unnecessary proteins to the removal of non-functional protein

aggregates. It plays a role in the quality control system for proteins and even

releases transcription factors from membrane proteins. Proteolytic

processes are indispensable at every stage of plant development and allow

for the modification of the cell’s protein composition based on

developmental needs and environmental requirements. Proteases are also

enzymatic components of the cell that facilitate the efficient regeneration of

many key metabolic pathways, such as photosynthesis and respiration. The

response of plant cells and the entire plant organism to various biotic and

abiotic stresses often requires the remodeling of metabolic pathways, the

regeneration of key enzymatic complexes, or changes in the protein profile.

By participating in all these processes, proteases constitute a crucial element

of the cellular response to environmental stresses. The aim of this work is to

review the role that individual proteases play in the response of plant cells to

abiotic stress factors, such as drought, salinity, cold, temperature, and light.
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Proteolysis in plant cells

Proteolysis is a process in which peptide bonds within proteins are broken,

resulting in the formation of shorter peptides that can then be further broken down

into individual amino acids. Enzymes that catalyze these reactions are known as

proteolytic enzymes, also called proteases or peptidases. These terms are often used
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interchangeably and refer to any enzyme belonging to the hydrolase

class, whose role is to hydrolyze peptide bonds. Proteases are

common enzymes throughout the whole world of living

organisms from bacteria to humans as well as in the viral

particles. Proteolytic enzymes can serve various functions in cells,

being involved in the course of multiple metabolic pathways. They

also exhibit a wide range of substrate specificity. For instance,

pepsin found in the stomach of mammals, facilitating the

breakdown of proteins in food, is a relatively non-specific

enzyme, which is advantageous in the digestion process. The task

of pepsin is to degrade as many protein chains as possible, rather

than being substrate specific. In contrast, in terms of enzymatic

specificity, the serine protease NS3-4A present in HCV virus

particles represents an extreme example. This enzyme plays a

crucial role in the virus replication process in chimpanzee hosts

and is responsible for cleavage HCV polyprotein at very precisely

defined place (Lin, 2006).

Plant proteases perform a variety of functions at every stage of a

plant’s life. These enzymes are involved in the processes of

programmed cell death, plant growth, aging, fruit, and seed

ripening, and participate in the process of hydrolysis and

mobilization of other proteins accumulated in seeds and cereal

grains (Liu et al., 2018; Martinez et al., 2019; Tornkvist et al., 2019).

In addition, they play an important role in maintaining the proper

course of many metabolic processes, such as respiration and

photosynthesis. Finally, proteases play key roles in plant

responses to abiotic stress factors (Velasco-Arroyo et al., 2016;

Velasco-Arroyo et al., 2018; Gomez-Sanchez et al., 2019; James

et al., 2019) and the attack of pathogens (Misas-Villamil et al., 2016;

Diaz-Mendoza et al., 2017).

The classification of proteolytic enzymes may be different and

depends on the adopted criterion, which may be the structure of the

active center of the enzyme, specificity of action, site of cleavage of

the polypeptide chain, etc. Taking as the first classification criterion

the place within the protein chain where the protease hydrolyzes it,

two basic groups of proteases are distinguished. The first group in

this approach are exopeptidases that cut the protein sequence at its

ends. Exopeptidases can cut off the final amino acids of the protein

chain both at the C-end of the protein and at its N-end, hence they

are referred to as C- or N-exopeptidases. The second group are

endopeptidases that catalyze the process of nucleophilic attack on

the carbon atom of the peptide bond located inside the protein

chain. As a result of this attack, an unstable complex is formed, the

breakdown of which involves the degradation of the peptide bond

and the formation of two smaller polypeptide chains (Davies, 1990).

Endopeptidases are a very broad group of proteolytic enzymes

that differ, among other things, in the structure of their active site.

Taking these differences into account, six main types of

endopeptidases can be distinguished: aspartic, cysteine, glutamine,

serine, threonine endopeptidases and metalloendoproteases. The

different structure of the active center is associated with a slightly

different mechanism of nucleophilic attack on the protein’s peptide

bond, however, all these enzymes catalyze proteolysis reactions

using a water molecule and operate only in an aquatic environment

in contrast to a separate group consists of the so-called

intramembrane proteases that are able to catalyze the reaction of
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extremely lipophilic environment (Wolfe and Kopan, 2004).

Oligopeptidases, which are distinguished as a subgroup of

endopeptidases, are enzymes capable of cleaving short amino acid

chains, but are unable to digest entire, large protein molecules. This

property results from the structure of oligopeptidases themselves,

whose active site is located at the end of a narrow cavity where only

smaller peptides can reach. The size of the peptide that is the

substrate for the protease is crucial in the process of the so-called

“docking”, i.e., attaching the substrate to the active center of the

protease. However, the spatial structure of the potential substrate is

also important for the possibility of catalysis of the hydrolysis

reaction itself. In some cases, the structure of the peptide may

inhibit the activity of catalyzing enzymes (Jacchieri et al., 2009).

In addition to the properties of the potential substrate, size,

spatial structure or amino acid sequence of the peptide,

environmental conditions are an important factor influencing the

activity of proteases. Thus, the activity of some cytosolic

oligopeptidases depends on the current redox status of the

environment. An example is zinc timet oligopeptidases - TOP,

belonging to the M3 type of metalloproteases, present in both

animal and plant cells. TOP is an enzyme whose activity is

regulated by the concentration of hydrogen peroxide. Studies on

the human embryonic kidney cell line HEK293 have shown that

increasing the concentration of hydrogen peroxide in cells leads to

an increase in the activity of TOP protease, which reaches its

maximum activity at a hydrogen peroxide concentration of

1.2nM (Icimoto et al., 2017).

Plants throughout their lives are exposed to a range of

unfavorable environmental factors. Abiotic stress factors include

primarily drought, salinity, cold, high temperature, excessive

radiation, pesticides, and heavy metals. These factors interact with

plants, often leading to a series of unfavorable functional and

structural changes. However, during evolution, plants have

developed a range of mechanisms called adaptations that allow

them to minimize or tolerate the effects of stress. Plant proteases

play an extremely important role in these processes, degrading

damaged proteins that hinder the efficient functioning of specific

metabolic pathways. Thus, proteases contribute to the efficient

regeneration of metabolic pathways or their redirection to other

paths better suited to changed environmental conditions (Figure 1

and Table 1).

Peptides produced as a result of protease activity can also

regulate the production of reactive oxygen species (Möller and

Sweetlove, 2010) and thus participate in signal transduction

pathways generated by reactive oxygen species. Proteases are

therefore involved in the transmission of information over long

distances between different tissues and organs. Proteases are

involved in this aspect, among other things, in regulatory

processes associated with abscisic acid (Schaller, 2004; van der

Hoorn, 2008; Kato and Sakamoto, 2010; Kidric et al., 2014; van

Wijk, 2015; Diaz-Mendoza et al., 2016; Sharma and Gayen, 2021).

The regulation of various plant developmental processes,

starting from seed germination and the mobilization of storage

materials, and extending to the formation and development of

specific cell organelles, such as plastids, requires the activity of
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proteases (Schaller, 2004; van der Hoorn, 2008; Kato and Sakamoto,

2010; Kidric et al., 2014; van Wijk, 2015; Diaz-Mendoza et al., 2016;

Sharma and Gayen, 2021).

Furthermore, intramembrane proteases are suspected of

degrading small polypeptides anchored in biological membranes,

leading to the release of their fragments that can function as

transcription factors or elements of polymerase-stabilizing

complexes (Adamiec et al., 2017; Adamiec et al., 2018). Such

activity is associated with changes in the gene expression profile.

This process is so significant that it has been described as

intramembrane regulatory proteolysis.

The main goal of this study is to examine the role that plant

proteases play in the response of plants to abiotic stress factors, such

as drought, salinity, low and high temperatures, and excessive

light intensity.
Drought

Drought, much like excessive water, is considered as one of the

main causes of reduced yields and plant survival, especially in the

case of crops such as corn, rice, and wheat (Furlan et al., 2016).

Lack of rainfall and high temperatures that increase

evaporation intensity led to a situation in which the amount of

transpired water by the plant exceed its capacity to its absorption

by the roots. The consequence of such a situation is the occurrence

of osmotic stress within the plant (Bray, 1997). Water deficit in

cells results in structural and functional changes in cell walls and
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cell membranes, altering their permeability and disrupting basic

metabolic pathways such as photosynthesis and cellular

respiration (Kumar et al., 2018; Kapoor et al., 2020). One of the

most common consequences of drought in plants, as well as other

stresses, is secondary oxidative stress, caused by the generation of

large quantities of reactive oxygen species (ROS), which damage

both proteins and nucleic acids as well as lipids (de Carvalho,

2008). Naturally, over the course of evolution, plants have

developed protective mechanisms to minimize the damage

caused by drought.

One of the initial responses of plants to emerging soil water

deficit is the synthesis of abscisic acid (ABA), which is subsequently

transported to the leaves where it induces the closure of stomata

(Moloi and Ngara, 2023). This restricts water loss from the leaves.

However, stomatal closure is associated with limited gas exchange,

thereby inhibiting the supply of CO2 to the mesophyll cells. As a

result, there is a decrease of CO2 assimilation and the

photosynthetic electron transport chain, leading to the generation

of increased levels of ROS that need to be scavenged by the cellular

machinery; otherwise, damage to lipids, proteins and nucleic acids

may occur (Wang et al., 2003; Sharma et al., 2012; Moloi and Ngara,

2023). However, ABA is not the only hormone participating in a

plant’s response to drought. The literature extensively describes the

involvement of other hormones such as jasmonic acid, ethylene,

gibberellins, cytokinins, and auxins in the comprehensive response

to drought stress (Moloi and Ngara, 2023).

Drought stress is a triggering factor for the upregulation of

many genes encoding proteases belonging to various classes.
frontiersin.o
FIGURE 1

Schematic representation of the plant proteases action during stressful conditions. Intramembrane proteases cleave the protein transcription factor
anchored in the biological membrane. This process, called regulatory intramembrane proteolysis (RIP), enables the activation of transcription factors
and, ultimately, changes in the expression of related genes. The other proteases degrade proteins damaged during plant stress exposure. Degraded
proteins are replaced with new functional copies. Proteases also degrade unnecessary proteins, which also enables remodeling the
metabolic pathways.
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TABLE 1 Plant proteases involved in the response to abiotic stress factors.

species References

A. thaliana; Coffea Yao et al., 2012;
Sebastian et al.,
2020; Fernandes
et al., 2021

, high light A. thaliana Sakamoto et al.,
2002; 2003; Yu et al.
2004; Luciński and
Jackowski, 2013;
Kato and
Sakamoto, 2018

A. thaliana Lindahl et al., 2000

Synechocystis spp. Krynicka et al., 2015

A. thaliana Chen et al., 2018

A. thaliana Zhang et al., 2014;
Maziak et al., 2021

, high light A. thaliana Chassin et al., 2002;
Kapri-Perdes et al.,
2007; Luciński
et al., 2011

A. thaliana Kapri-Perdes
et al., 2007

A. thaliana Kley et al., 2011

A. thaliana Huber et al., 2019

Halothece sp. Patipong et al., 2020

A. thaliana Pinti et al., 2016;
Sharma and
Gayen, 2021

A. thaliana Kato and Sakamoto,
2010; Ali and Baek,
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Nucleus of guard cells drough

AtFtsH Zn2+-containing metaloprotese Degradation of PsbA,
Lhcb1, Lhcb2
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maintaining the
hydrogen peroxide
and auxin homeostasis

mitochondria High temperature
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Deg5/Deg8 Serine-type Degradation of PsbA chloroplasts High light

Deg1 Serine-type Degradation of PsbA chloroplasts High light
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Available data show that in many species, the organs in which the

expression of genes encoding specific proteases increases are leaves

and roots (Moloi and Ngara, 2023). In A. thaliana and in Coffea,

one of the key enzymes determining the plant’s drought resistance is

the aspartyl protease guard cell, ASPG1 (Yao et al., 2012; Fernandes

et al., 2021). Overexpression of this protein is associated with lower

stomatal density and reduced stomatal aperture, resulting in

increased drought tolerance in such plants (Sebastian et al., 2020).

The increased drought resistance effect in A. thaliana is also

observed in plants overexpressing the LON4 protein (Li et al.,

2010), which is believed to play a significant role in maintaining

mitochondrial homeostasis under drought conditions. LON4 is an

ATP-dependent serine protease located in mitochondria. The

nuclear gene encoding this protease shows increased expression

under drought conditions (Pinti et al., 2016; Sharma and Gayen,

2021). It has long been known that the early response of A. thaliana

to dehydration also includes the induction of the expression of ClpA

and ClpB proteins (Kiyosue et al., 1993). These proteins are part of

the larger Clp protease complex, which recognizes and degrades

misfolded or damaged proteins. ClpA is a chaperone-like protein,

which is responsible for substrate recognition, while ClpB is

described as a disaggregase, facilitating the disaggregation of

previously misfolded or aggregated proteins.

In the leaves of drought tolerant varieties of Barley and Wheat,

an increase in the content of ClpP proteases is observed (Ashoub

et al., 2013; Chmielewska et al., 2016), as well as ClpD1 protease in

the case of Rice (Wu et al., 2016). ClpD1 plays an important role in

the degradation of damaged proteins in plastids (Kato and

Sakamoto, 2010; Ali and Baek, 2020; Moloi and Ngara, 2023),

and it is encoded by the nuclear so-called gene OsClpD1, which is

induced under drought conditions (Wu et al., 2016). In the leaves of

drought-resistant Barley varieties, an increase in the expression of

the metalloprotease FtsH1 was also observed (Wang et al., 2015).

FtsH1 is a part of the chloroplast heterocomplex FtsH “Type A,”

along with Ftsh5. This complex participates in the repair of

damaged polypeptide PsbA (D1 protein), a component of the

photosystem II reaction center (Yu et al., 2004). FtsH

heterocomplex in A. thaliana has been found to be responsible

for the degradation of the desiccation related damaged of

photosystem II (PSII) polypeptides - Lhcb1 and Lhcb2 (Luciński

and Jackowski, 2013).

Drought tolerance in Wheat is also associated with the cysteine

protease SUMO (small ubiquitin-like modifier), an enzyme

commonly found in plants and yeast (Le Roux et al., 2019).

Additionally, in the leaves of drought-resistant Wheat varieties,

increased expression of alpha-type proteasome protein (Faghani

et al., 2015), as well as type II metacaspases and leucine

aminopeptidases, is noted (Ford et al., 2011). In the case of

leucine aminopeptidase, it is observed that its levels do not return

to their previous levels after drought stress subsides, but they

remain increased (Ford et al., 2011). Since leucine aminopeptidase

participates in the activation of some proteins and metabolic

turnover, some authors suggest that its increased level upon

rehydration may be the result of an important role of this

peptidase in the processes of changing the protein composition of

cells regenerating after drought stress (Moloi and Ngara, 2023).
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Salinity

Salinity is one of the most significant environmental factors

responsible for a substantial decrease in the chemical potential of

soil solution water. This can lead to situations where plants lose the

ability to efficiently take up water from the soil. High soil salinity

results in changes in the structure and permeability of cell

membranes, leading to disruptions in ion balance within cells

(Shah et al., 2017). Furthermore, deficiencies in mineral nutrients

and secondary oxidative stress occur due to the excessive generation

of ROS, resulting in damage to nucleic acids and overproduction of

oxidized proteins. This salinity-induced genotoxicity is also

associated with a decrease in photosynthetic efficiency and

disturbances in the mitochondrial electron transport chain

(Sharma and Gayen, 2021).

Plants have evolved a range of adaptations to minimize the

negative effects of excessive salinity. The plant’s response includes

both enzymatic and non-enzymatic reactions. Accumulation of

proline, sugars, and other osmotically active compounds is one of

the elements that lower the water potential of the cell sap and

extend the cell’s ability to take up water in unfavorable

osmotic conditions.

Since salinity induces a strong synthesis of ROS in plant cells,

there is a need for the degradation of oxidized proteins. Cysteine

proteases play a significant role in these processes (van der Hoorn,

2008), especially proteins RD19 and RD21 belonging to the papain-

like cysteine protease family. A strong induction of the expression of

genes encoding them has been observed under salinity stress

conditions (Koizumi et al., 1993). It is suggested that changes in

the osmotic potential of cells are the direct stimulus for the

alteration in the expression levels of genes RD19 and RD21. The

levels of RD19 and RD21 did not change significantly under low or

high-temperature conditions or in the presence of ABA (Koizumi

et al., 1993). Another cysteine protease whose levels significantly

increase in response to high salt concentrations in the environment

is Cyp15 from Pisum sativum. The activity of this protease is linked

to changes in the levels of various mRNAmolecules under salt stress

conditions (Jones and Mullet, 1995).

A separate class of proteases involved in the response to high

salinity is serine proteases. It has been shown that under conditions

of high salinity in the cyanobacterium species Halothece sp., there is

a significant increase in the expression of the gene encoding the

protease HtrA2 (Deg). This enzyme is responsible for the

degradation of misfolded proteins (Patipong et al., 2020). Protease

HtrA2 has an optimum pH of 8.0 and remains active under

conditions of high salt concentration and high temperature. This

protein was detected in both the soluble protein fraction and within

the cell membrane and thylakoid membranes. Exposure of cells to

high salt stress and high-temperature stress caused a significant

change in the subcellular localization of HtrA2. Under such

conditions, the protein mostly localized to the cell membrane

(Patipong et al., 2020). In higher plants, within the thylakoid

membranes of chloroplasts, there are also cysteine, ATP-

independent proteases like Deg (Huesgen et al., 2005; Huesgen

et al., 2006; Sun et al., 2007; Chi et al., 2012; Schuhmann et al., 2012,

Butenko et al., 2018). One of them is Deg2, which is involved in the
Frontiers in Plant Physiology 06
degradation of the Lhcb6 polypeptide under salt stress conditions

(Luciński et al., 2011). The Lhcb6 polypeptide is part of the minor

antenna complexes of PSII and plays an important role in the

formation of PSII-LHCII supercomplexes. The absence of Lhcb6 is

associated with the preferential formation of C2S2-type

supercomplexes and an increase in non-photochemical quenching

of chlorophyll a fluorescence (Illikova et al., 2021). Therefore,

protease Deg2 may play a significant role in maintaining the

proper composition of PSII-LHCII supercomplexes and the

efficiency of photosynthesis under salt stress conditions.
Low temperature

The stress associated with low temperatures is most commonly

considered as chilling (for temperature ranges from 0°C to slightly

below 15°C) and freezing (below 0°C). Prolonged exposure of plants

to low temperatures results in the inhibition or slowing down of

development, a decrease in growth rate, and a drop in productivity.

Low temperatures significantly affect the efficiency of basic

metabolic pathways such as respiration and photosynthesis.

Therefore, the ability to cope with low temperatures is crucial for

most plants living on Earth. The photosynthetic conversion of light

into energy stored in chemical bonds and CO2 assimilation are

processes that are highly temperature dependent. Low temperatures

reduce the efficiency of reactions within PSII and decrease the

synthesis of the large subunit of Rubisco, the enzyme directly

responsible for CO2 assimilation in the Calvin-Benson cycle

(Sharma and Gayen, 2021). Such changes necessarily imply a

decrease in photosynthesis efficiency.

There are several proteases located in the chloroplasts, which

mostly belong to FtsH, Deg, and Clp and play a significant role in a

range of processes related to the quality control of chloroplast

proteins and in maintaining chloroplast homeostasis (van Wijk,

2015). Some of these proteases also have importance in plant

acclimatization to low temperatures. Under low-temperature

conditions, a decrease in the content of polypeptides of the main

energy antenna of PSII (LHCII), namely Lhcb1 and Lhcb2, has been

observed. The degradation of these proteins in low-temperature

conditions is attributed to the heterocomplex AtFtsH, located in the

thylakoid membranes (Luciński and Jackowski, 2013). It is also

possible that the inner membrane protease S2P2, located within

chloroplasts, plays a role in shaping cold resistance in A. thaliana

(Wang et al., 2016). S2P2 is a metalloprotease belonging to the class

of site-2-proteases (S2P), which are known as enzymes that release

transcription factors from membranes. Therefore, it can be

imagined that the involvement of S2P2 in shaping cold resistance

is more related to shaping the expression profiles of certain genes

rather than the direct degradation of proteins damaged by the

action of a stress factor.
High temperature

High temperature has a significant impact on the development,

growth, flowering, and productivity of plants. It also alters the rate
frontiersin.org

https://doi.org/10.3389/fphgy.2023.1330216
https://www.frontiersin.org/journals/plant-physiology
https://www.frontiersin.org
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and efficiency of metabolic pathways. Throughout evolution, plants

have developed various mechanisms that allow them to rapidly

respond to temperature changes in their environment and,

consequently, adapt quickly to changing temperatures. Therefore,

the temperature values that are harmful to plants are largely species-

specific (Sharma and Gayen, 2021). Plants often respond to the

presence of temperature stress factors through changes in the

composition of membrane lipids, increased activity of stress-

related transcription factors, alterations in the course and

regulation of metabolic pathways, and various detoxification

pathways (Kai and Iba, 2014). Proteins are molecules that

undergo significant changes due to temperature stress. Dangerous

phenomena for plants include protein denaturation, improper

folding, and, consequently, changes in spatial structure. Protein

denaturation itself is an irreversible process in which proteins lose

their biological activity. Improper folding can lead to the formation

of aggregates, preventing proper cell function. The consequences of

such a state can be equally severe. In plant cells, protein aggregates

can cause endoplasmic reticulum dysfunction, known as ER stress

(Li and Sun, 2021). To prevent such situations or mitigate their

consequences, cells have a range of structures and mechanisms.

Firstly, lysosomes and proteasomes should be mentioned, whose

primary role is the degradation of damaged proteins. Additionally,

plant cells contain special chaperone proteins, known as heat shock

proteins (HSP; Burgos et al., 2020).

Proteases also play a significant role in the response of plant

cells to temperature stress. In the green tissues of leaves with

constitutive expression, Clp proteases are involved (Sharma and

Gayen, 2021). These serine proteases, ATP-dependent, play a

crucial role in the functioning and development of plastids by

removing improperly folded, aggregated, or otherwise unwanted

proteins. The plant Clp system consists of a tetradecameric

proteolytic core with catalytically active ClpP subunits and

inactive ClpR subunits, hexameric ATP-dependent chaperone

proteins, and adaptor proteins (Nishimura and van Wijk, 2015).

ClpB, ClpC, and ClpD subunits function as chaperone proteins (Lee

et al., 2007). In A. thaliana cells, these proteins are essential for

plant acclimatization to high temperatures. ClpB is constitutively

expressed in chloroplasts and mitochondria in A. thaliana (Lee

et al., 2007) and P. lunatus (Keeler et al., 2000). On the other hand,

strong upregulation of the ClpB gene was observed in O. sativa cells

in response to high temperatures. Moreover, A. thaliana mutants

lacking the ClpB protein grew significantly slower than the wild-

type form, and under high-temperature conditions, the absence of

this protein in mutants led to premature plant death (Lee

et al., 2007).

The FtsH metalloproteases are crucial for the functioning of

chloroplasts and mitochondria under high-temperature conditions.

These proteases are a fundamental component that determines a

plant’s ability to survive in high-temperature conditions (Langer,

2000). In chloroplasts, the FtsH11 protease is essential for the

functioning of photosystem I (PSI) and PSII under high-

temperature conditions. A. thaliana mutants lacking FtsH11

showed significantly reduced efficiency in PSI and PSII reactions

(Chen et al., 2018). Chlorophyll a fluorescence analyses indicate that
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the presence of FtsH11 is necessary for regulating the response of

photosystems to high-temperature stress (Chen et al., 2018).

The mitochondrial protease FtsH4 and OMA1 are crucial for A.

thaliana’s acclimatization to moderate, prolonged temperature

stress (Maziak et al., 2021). Mutants lacking FtsH4 or OMA1

displayed a range of phenotypic changes when grown at 30°C,

although their phenotype remained unchanged compared to wild-

type plants when grown at 22°C (Smakowska et al., 2016; Migdal

et al., 2017). Phenotypic changes observed in ftsh4 mutants

included delayed germination, reduced rosette size, and shorter

root length. Similar changes in rosette size and root length were

observed in oma1 mutants (Smakowska et al., 2016; Migdal et al.,

2017; Maziak et al., 2021). These phenotypic effects are associated

with the accumulation of protein aggregates composed of small heat

shock proteins (sHSPs). The protease and chaperone activities of

FtsH4 and the protease activity of OMA1 are crucial for protecting

mitochondria from the formation of these aggregates (Maziak et al.,

2021). Additionally, the FtsH4 protease plays a significant role in

regulating the developmental processes of A. thaliana by mediating

a peroxidase-dependent interplay between hydrogen peroxide and

auxin homeostasis (Zhang et al., 2014).

For the proper functioning of plants under elevated temperature

conditions, another mitochondrial protease, Deg10, is also essential.

The absence of this protein in A. thaliana mutants was associated

with disruptions in root elongation, reduced seed production, and

changes in the content of proteins that build components of the

mitochondrial respiratory chain (Huber et al., 2019).

Deg proteases also play a significant role in the functioning of

chloroplasts and their photosynthetic apparatus. Under high-

temperature conditions, damage can occur to, among others, the

polypeptide Lhcb6, which is subsequently intensively degraded.

Experiments conducted using deg2 mutants have determined that

the degradation of Lhcb6 under temperature stress, as well as under

salt stress, is carried out by the Deg2 protease (Luciński et al., 2011).
Light

Light is a crucial factor that determines the functioning of plants

and the existence of life on our planet. Light energy is converted into

chemical energy, which is used in biochemical reactions in the

process of photosynthesis. Simultaneously, photosynthesis is the

primary source of oxygen in the Earth’s atmosphere. Excessive light

intensity can lead to the phenomenon of photoinhibition, and

prolonged light stress can result in damage to key proteins that

make up the photosynthetic complexes in thylakoid membranes

(i.e., Haußühl et al., 2001; Luciński and Jackowski, 2006; Sharma

and Gayen, 2021). As a result, there is a limitation or inhibition of

the light reactions of photosynthesis and a decrease in the efficiency

of CO2 assimilation. Chloroplast proteases play a role in plant

acclimatization to high light intensities. They are responsible for the

degradation of light-damaged proteins, thereby enabling the

regeneration of entire photosynthetic complexes.

The protein most susceptible to photodamage, especially, is the

polypeptide PsbA (D1), which, along with PsbD (D2), forms the core
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of the PSII reaction center (Baena-Gonzales and Aro, 2002; Luciński

and Jackowski, 2006; Sun et al., 2007). Damage to PsbA leads to the

inactivation of the entire PSII complex and necessitates its repair by

replacing the damaged PsbA with a new, functional copy (Baena-

Gonzales and Aro, 2002). The degradation of photodamaged PsbA is

a multi-step process involving proteases from different classes. It is

believed that proteases Deg and FtsH play a crucial role in this

process. Deg1 and Deg2 proteases perform the initial proteolytic

cleavage within the hydrophilic loops connecting the individual

transmembrane domains of the PsbA protein (Chassin et al., 2002;

Kapri-Perdes et al., 2007). There are also reports in the literature

suggesting that the Deg5/Deg8 protease complex is also involved in

this process (Sun et al., 2007). Likely, the protease Deg1 cleaves the

CD loop, while the Deg5/Deg8 complex cleaves the CD loop of

photodamaged PsbA (Kapri-Perdes et al., 2007). Furthermore, high

light intensity stimulates the activation of the Deg1 protease by

inducing the transformation of an inactive monomer into an active

proteolytic hexamer (Kley et al., 2011). All Deg proteases perform

peptide bond hydrolysis in an ATP-independent manner. The

degradation products generated by Deg proteases are subsequently

digested in an ATP-dependent manner by the FtsH protease

(Sakamoto et al., 2002; Sakamoto et al., 2003; Kato and Sakamoto,

2018). It has been shown that the degradation of the 23 kDa fragment

of PsbA is mediated by the FtsH1 protease (Lindahl et al., 2000),

although other experiments indicate the involvement of FtsH2 and

FtsH5 proteases, which are part of the FtsH heterocomplex

(Sakamoto et al., 2002, 2003, Kato and Sakamoto, 2018). In the

case of Synechocystis spp. cells, the degradation of D1 is attributed to

the FtsH2/FtsH3 heterocomplex (Krynicka et al., 2015).

Photodamaged PsbA is not the sole proteolytic target of

chloroplast proteases under high light stress conditions.

Polypeptides Lhcb1 and Lhcb2, damaged under light stress

conditions, can be degraded by the chloroplast heterocomplex

FtsH (Luciński and Jackowski, 2013). Protease Deg1 is also

suspected of degrading other PSII polypeptides, specifically PsbS

and PsbO. Furthermore, based on in vitro experimental results, it is

attributed the ability to degrade the polypeptide Lhcb4 and Lhcb5,

which constitute the polypeptide moiety of CP29 and CP24,

respectively (Chassin et al., 2002; Kapri-Perdes et al., 2007;

Zienkiewicz et al., 2011).

On the other hand, protease Deg2 is responsible for the

degradation of polypeptide Lhcb6, similarly under temperature

and salt stress conditions (Luciński et al., 2011).

The chloroplast subunit of the Clp complex with chaperone

activity, ClpB3, is also upregulated under high light stress

conditions (Adamiec et al., 2011). It has been demonstrated that

the gene encoding ClpB3 contains specific cis-regulatory elements

to which transcription factor PAP1 can bind. It is suggested that

PAP1 acts as an intermediary in the induction of CLPB3 gene

expression under stress conditions (Adamiec et al., 2011).

High light intensity also enhances the expression of the gene

encoding the pseudo-protease EGY3 (similar to what occurs under

temperature stress) and the protease EGY2. However, despite

demonstrated proteolytic activity of EGY2 (Chen et al., 2012), its
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substrates are generally not known. However, there are speculations

that such a substrate may be the chloroplast transcription factor

pTAC16, which is able to interact with chloroplast RNA polymerase

(Adamiec et al., 2018 and unpublish data). It is known that its

absence significantly alters the levels of PsbA, PsbD, and PsbC

polypeptides by affecting the expression of the genes that encode

them (Adamiec et al., 2018). Therefore, EGY2 may be another

protein with protease activity that plays a significant role in a plant’s

response to light stress.
Intramembrane proteases and their
role in plant response to stress factors

Intramembrane proteases are a relatively recently discovered,

remarkable group of proteases. What distinguishes these enzymes

from other proteases is their ability to hydrolyze the peptide bond

within the lipid bilayer of the biological membrane (Chen et al.,

2012; Adam, 2013; Adamiec et al., 2017). Despite the uniqueness of

this process, it occurs widely in practically all living organisms.

Intramembrane proteases are classified into several different

families, including site-2-proteases, rhomboid proteases,

presenilins, and signal peptide peptidases. These enzymes play a

significant role in plant developmental processes and in the course

of many metabolic pathways, being involved in protein quality

control, cell adhesion, membrane remodeling, and cell signaling

(Adam, 2013; Schneider and Glickman, 2013; Adamiec et al., 2017).

It is often believed that the primary function of these proteases

is to cleave the polypeptide chain, releasing membrane-anchored

transcription factors. This activity ultimately leads to changes in the

expression profile of certain genes, a process referred to as regulated

intramembrane proteolysis (RIP) (Figure 1) (Adam, 2013;

Schneider and Glickman, 2013, Adamiec et al., 2018; Adamiec

et al., 2021). The first substrate described within the RIP framework

was the endoplasmic reticulum (ER)-associated transcription factor

bZIP28 (Liu et al., 2007a; Tajima et al., 2008; Adam, 2013; Sun et al.,

2015; De Backer et al., 2022). It has been demonstrated that the

release of bZIP28 from the ER membrane to the cytoplasm allows it

to migrate to the cell nucleus, where it induces the expression of

genes related to the plant’s response to salt stress (Liu et al., 2007b;

Tajima et al., 2008). It is possible that the protease directly

responsible for releasing bZIP28 from the ER is S1P or S2P (Liu

et al., 2007a; Tajima et al., 2008). Another transcription factor,

whose release from the ER membrane is associated with the

response to stress is bZIP60 (Iwata and Koizumi, 2005).

Accumulation in the cell nucleus of the soluble domain of this

protein is linked to increased transcription of BIP proteins, which

belong to the HSP70 family and are typical representatives of the

plant’s ER stress response (Iwata et al., 2008). S1P and S2P proteases

are once again involved in the release of the bZIP60 factor from ER

membranes. Intramembrane proteases are also suspected of

releasing the transcription factors belonging to the NAC family:

NTL1, NTL7 and NTL8 from endoplasmic reticulum membranes

and NTL6 from the plasma membrane. NTL8 is associated with the
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regulation of flowering processes in A. thaliana under saline and

low temperature conditions (Kim et al., 2007). NT1 and NTL7 is

activated under oxidative stress conditions conditions (De Backer

et al., 2022), while NTL6 and NTL8 are related to salinity and low

temperature (Kim et al., 2007, Seo , 2008, 2010) (Table 2).

Despite the still limited knowledge about the role of

intramembrane proteases, some of them are suspected to be

involved in the response of plant cells to various stress factors. In

this context, examples include the chloroplasts’ rhomboid protease

RBL10, which may be involved in photoprotective mechanisms in

response to low temperatures (Thompson et al., 2012). On the other

hand, the plasma membrane-localized RBL14 seems to be involved

in the response to elevated temperature (Lee et al., 2015). Rhomboid

proteases are also suspected to be involved in the response to H2O2-

mediated stress signaling by releasing the ANAC017 transcription

factor from ER membranes (Ng et al., 2013) (Table 2).

Within chloroplasts, intramembrane proteases belonging to the

S2P family, namely EGY1 and EGY2, may also influence the

functioning of these organelles under light stress conditions. Both

proteins are located within the thylakoid membranes (Chen et al.,

2005; Chen et al., 2012). It has been shown that Arabidopsis thaliana

mutants lacking EGY1 or EGY2 exhibit changes in the stoichiometry

of proteins building the PSII core and LHCII antennas, resulting in

increased sensitivity to photoinhibition (Adamiec et al., 2018;

Adamiec et al., 2022). There are also suggestions that EGY2 may

affect the expression of chloroplast genes PSBA, PSBC, and PSBD by

releasing the protein factor pTAC16 from the thylakoid membranes.

On the other hand, the protein EGY3, considered a pseudoprotease

due to the lack of proteolytic activity, seems to play a significant role

under salt stress conditions, influencing the amount of H2O2

produced in chloroplasts by stabilizing copper/zinc superoxide

dismutase 2 (CSD2; Zhuang et al., 2021).
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Programmed Cell Death

Programmed Cell Death (PCD) is an essential part of the plant

life cycle, occurring throughout the development of a plant, from

embryogenesis to the death of the entire plant (Stael et al., 2019).

PCD in plants can be executed through various pathways, including

autophagy, apoptosis, hypersensitive reactions, and autolytic

(vacuolar) PCD. Inducing PCD is required for many growth and

development processes, such as the development of aleurone cells

and grain in cereals, tissues that store seeds, the differentiation of

female gametophytes, leaf abscission, pollen separation, the aging of

the entire plant, and many more (Mondal et al., 2021; Basak and

Kundu, 2022).

Several groups of proteolytic enzymes are involved in the

process of PCD, including metacaspases (Fagundes et al., 2015).

Metacaspases are structural homologs of caspases, which are

enzymes found in animals. Unlike caspases, metacaspases do not

show substrate specificity for aspartate (Asp); instead, they cleave

substrates just after arginine (Arg) or lysine (Lys) residues

(Vercammen et al., 2004). Two main types of metacaspases are

recognized (Fagundes et al., 2015). Type I metacaspases have a

proline-rich N-terminal prodomain and a C-terminal metacaspase

domain with a zinc finger motif. Type II metacaspases lack a

prodomain at the N-terminus but have a connecting region

between the large (p20) and small (p10) caspase-like catalytic

domains. Most metacaspases feature a catalytic dyad His-Cys in

their active site, with the Cys residue acting as a nucleophile for

peptide bond hydrolysis of substrates (Vercammen et al., 2004). In

Arabidopsis thaliana, there are nine metacaspases, with AtMC1,

AtMC2, and AtMC3 exhibiting characteristics of type I

metacaspases, while enzymes from AtMC4 to AtMC9 display type

II metacaspase features.
TABLE 2 Membrane bound transcription factors that are substrates for intramembrane proteases in different stress conditions.

MB-TF Cellular
localization

Stress or other TF biolo-
gical function

Processing
protease

Reference

bZIP17 ER ER stress response Site-1 protease (S1P); site-2
protease (S2P)

Liu et al. 2007a; Tajima et al., 2008; Adam, 2013; De
Backer et al., 2022

bZIP28 ER ER stress response Site-1 protease (S1P); site-2
protease (S2P)

Liu et al. 2007a; Tajima et al., 2008; Adam, 2013; Sun et al.,
2015; De Backer et al., 2022

bZIP60 ER ER stress response Site-1 protease (S1P); site-2
protease (S2P)

Iwata et al., 2008; Adam, 2013; Seo, 2014

NTM1 ER, NM Salinity Calpain protease Kim et al. 2007; Seo et al., 2008; Seo, 2014

NTL1 ER Oxidative stress Rhomboid protease De Backer et al., 2022

NTL6 PM Cold, drough, salinity metaloproteases Kim et al. 2007; Seo et al., 2008; Seo et al., 2010; Seo, 2014

NTL7 ER Oxidative stress Rhomboid protease De Backer et al., 2022

NTL8 ER Cold, salinity metaloproteases Kim et al. 2007; Seo et al., 2008; Seo, 2014

PTM ChE Chloroplast-nucleus signalling Serine-type protease Sun et al., 2011; Adam, 2013

ANAC013 ER Hypoxia Rhomboid-like 2 (Rbl2) Eysholdt-Derzso et al., 2023

ANAC017 ER Oxidative stress Rhomboidlike proteases Ng et al., 2013
Proteolytic cleavage allows the release of a soluble protein fragment from membranes, which, are able to changes the expression level of related genes. MB-TF, membrane bound transcription
factor; ER, endoplasmic reticulum; NM, nucleus membrane; PM, plasma membrane; ChE, chloroplast envelope.
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AtMC1 and AtMC2 antagonistically regulate the PCD process

in A. thaliana. AtMC1 promotes programmed cell death, while

AtMC2 acts as an inhibitor of AtMC1-dependent PCD (Coll et al.,

2014). Vacuolar processing enzymes (VPEs) are activated in the

acidic environment provided by the vacuole, as well as during the

hypersensitive response (HR) and abiotic stresses. Thus, AtMC1

activates hydrogen peroxide-dependent cell death and initiates the

hypersensitivity response (Coll et al., 2010; Coll et al., 2014).

The CEP proteases are another group involved in PCD in

plants. CEP1 is a protease responsible for PCD in the tapetum of

anthers, which is essential for pollen grain development in

angiosperms (Zhang et al., 2014). Premature or interrupted cell

death of tapetal cells disrupts the nutrient supply to pollen

microspores, leading to plant infertility (Ku et al., 2003). CEP1

initially appears as a proenzyme in precursor vesicles of the protease

and is then transported to the vacuole, where it matures into an

active enzyme. CEP1 influences nuclear degeneration, the

formation of tapetal secretory structures, and pollen development

(Zhang et al., 2014). Additionally, CEP1 is involved in xylem

maturation in A. thaliana, regulating secondary wall thickening

(Han et al., 2019).
Conclusion

Proteases in plant cells are a crucial part of the enzymatic

machinery, contributing to a plant’s ability to acclimatize to

changing environmental conditions. These enzymes are

responsible not only for the degradation of damaged or

unnecessary proteins within the cell but also for preventing the

formation of non-functional protein aggregates or breaking them

down. A well-functioning cellular proteolytic system is a condition

that enables the cell to change its protein composition and redirect

its metabolism to new pathways that are better suited to the altered

environmental conditions. Additionally, proteases can play a

significant role in processes aimed at removing unfavorable

metabolites from the cell. Proteolytic enzymes are also essential

components of many signaling pathways and can influence changes

in the gene expression profile.

Despite many years of research into various aspects of

proteolysis in plant cells, many aspects remain unclear. In
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particular, intramembrane proteases, commonly believed to be

involved in intramembrane regulatory proteolysis processes,

appear to be poorly understood. This process leads to the release

of transcription factors from membranes, resulting in changes in

gene expression. Intramembrane proteases are enzymes that

operate in the extremely hydrophobic environment of the lipid

bilayer of biological membranes. This characteristic alone makes

them extraordinary enzymes, the full significance of which is not yet

completely understood. A thorough understanding of the

mechanisms of protease action and the processes they are

involved in will undoubtedly bring us many tangible benefits in

the future.
Author contributions

RL: Writing – review & editing. MA: Writing – review

& editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Adam, Z. (2013). Emerging roles for diverse intramembrane proteases in plant biology.
Biochim. Biophys. Acta: Biomembr. 1828, 2933–2936. doi: 10.1016/j.bbamem.2013.05.013

Adamiec, M., Ciesielska, M., Zalaś, P., and Luciński, R. (2017). Arabidopsis thaliana
intramembrane proteases. Acta Physol. Plant 39, 146. doi: 10.1007/s11738-017-2445-2

Adamiec, M., Dobrogojski, J., Wojtyla, Ł., and Luciński, R. (2022). Stress-related
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