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Cell walls are not just passive barriers; they are dynamic and adaptable structures

that are actively remodeled in response to both internal and external cues. They

are crucial in defining cellular identity, ensuring structural integrity, and

mediating interactions with the environment. The concept of cell wall integrity

(CWI) encompasses the mechanisms by which cells monitor and maintain their

walls, ensuring proper function and response to challenges. While significant

knowledge has been accumulated on CWI in certain model organisms, there

remains a vast landscape of uncharted territory in others. In this review, we aim to

bridge this gap, offering a comparative perspective on CWI across different

evolutionary lineages, from the well-studied yeasts to the diverse world of

plants. We focus especially on the green lineage –the group of green algae

and land plants, hence the green wall–, but also consider some insights from

organisms with radically different lifestyles and cell wall arrangements, which

serves as a base to some intriguing questions about the role of CWI across

evolution and environmental adaptation.
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1 Introduction

Across diverse organisms, from yeasts to algae and terrestrial plants, the presence of

robust extracellular matrixes, known as cell walls, is a defining feature. Beyond providing

mechanical support, these walls act as dynamic interfaces, mediating interactions with the

environment and playing instrumental roles in growth and development (Levin, 2005;

Anderson and Kieber, 2020; Zhang et al., 2021). Their adaptability is underscored by their

compositional plasticity, which allows for modifications in tune with developmental

transitions, environmental shifts, and stressors.

The concept of cell wall integrity (CWI) refers to the sophisticated mechanisms that

enable cells to perceive and adapt to changes in this structure, ensuring their walls remain

resilient and functional (Levin, 2005; Bacete and Hamann, 2020). This adaptability is not
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just a passive trait; it is an active response, an essential function

reflecting the cell wall’s role in safeguarding cellular identity and

mediating environmental interactions. While substantial knowledge

has been generated in the last years regarding CWI in specific model

organisms, a vast expanse remains unexplored in others. In this

mini-review, we made a concerted effort to synthesize existing

knowledge on CWI, drawing parallels and distinctions across

different organisms. By putting together, the well-characterized

mechanisms in yeasts with the emerging insights from the plant

kingdom and the intriguing recent findings in some algae, this

review seeks to offer a cohesive understanding of CWI with a focus

on the green lineage i.e., the green wall.
2 Defining cell wall integrity

The very notion of an “integral” cell wall is a subject of ongoing

debate. What does integrity mean in the context of cell wall

integrity? Is it purely structural, or does it encompass functional

and dynamic aspects of the wall?

While foundational principles of CWI have been elucidated in

certain organisms, such as Saccharomyces cerevisiae (Levin, 2011),

the vast diversity of cell walls across different organisms introduces

layers of complexity. For instance, the multicellular nature of plants

brings forth challenges stemming from intercellular dynamics,

where cells can exert force on their neighbors, leading to intricate

mechanical interactions within tissues (Coen and Cosgrove, 2023).

Similarly, unicellular organisms like algae, with their unique

evolutionary histories and environmental interactions, offer

distinct perspectives on CWI, further broadening the scope of our

understanding (Peaucelle et al., 2012; Galindo-Trigo et al., 2016).

As we explore the complex world of CWI, it becomes clear that

a comprehensive view is crucial. Analyzing each organism’s unique

cell wall composition is only the beginning. We must also consider

how CWI mechanisms interact with and adapt to the organism’s

environment and lifestyle. This interconnectedness provides a more

nuanced understanding of “integrity” in the context of cell walls and

sets the stage for exploring its implications across diverse

biological systems.
3 Yeast: a model system for
CWI studies

S. cerevisiae has for a long time been at the forefront of CWI

studies. Its cell wall is primarily composed of glucans (glucose

polymers), mannans (mannose-containing polysaccharides), and

proteins. CWI is maintained through three mechanisms. First, the

Cch1 and Mid1 proteins form a Ca2+ channel that detects

membrane stretching, possibly from a weakened cell wall and

high turgor pressure, leading to calcium ion influx and

downstream signaling via calmodulin (Levin, 2005). Second, the

cell-surface sensor kinase, Sln1, monitors turgor pressure. Under

hyperosmotic stress, Sln1 activates the MAPK Hog1, enabling yeast

cells to sense and adjust to turgor changes (Levin, 2005). Lastly,
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CWI sensors containing cell wall integrity and stress response

component (Wsc) domains such as Wsc1 and Wsc2 detect cell

wall mechanical changes. These sensors interact with the G protein

Rho1 upon deformation, triggering responses essential for cell wall

biosynthesis and cytoskeletal organization (Levin, 2005; Dupres

et al., 2009). Central to CWI is transcriptional regulation, where

activated transcription factors, especially Skn7, modulate target

gene expression, guiding cellular responses to environmental or

developmental cues (Kono et al., 2016). CWI pathways of other

fungi share significant similarities with that of S. cerevisiae,

suggesting a conserved mechanism of cell wall stress response

among yeasts (Dichtl et al., 2016).
4 Land plants: blooming of CWI
monitoring systems

Land plants, spanning from simple to complex forms, provide a

rich diversity of evolutionary adaptations. The cell wall, a key element

in the transition from aquatic to land environments, is no exception,

with compositions and structures that vary among plant species,

developmental stages, tissues, and even across a single cell wall

(Knox, 2008; Somssich et al., 2016; Gigli-Bisceglia et al., 2020). The

primary cell walls of land plants, predominantly composed of cellulose,

hemicellulose, and pectin recently reviewed by Cosgrove (2022), have

evolved to offer flexibility during cell growth. In contrast, the secondary

cell walls –Recently reviewed by Zhong et al., 2019, found in specialized

cells like tracheids, vessel elements, and fibers, are more rigid and

provide structural support. These secondary walls are rich in cellulose,

hemicellulose, and notably, lignin, which makes them rigid

and resistant.

The diversity of plant cell walls is mirrored by their CWI systems,

which are much more intricate than those of their unicellular

counterparts (Table 1). Arabidopsis thaliana, the renowned eudicot

model, has been instrumental in elucidating CWI mechanisms. The

CWI in Arabidopsis is closely associated with receptor-like kinases

(RLKs) and receptor-like proteins (RLPs) that perceive changes in the

cell wall’s integrity by putatively binding to glycan ligands. Once

bound, these RLKs initiate intricate signalling cascades that modulate

a range of cellular responses, ensuring the cell wall remains robust

and functional (Bacete et al., 2018). The Catharanthus roseus

receptor-like kinase1-like (CrRLK1L) family –comprising 17

members in Arabidopsis– is a prominent example of RLKs

involved in CWI sensing, with THESEUS1 (THE1) and FERONIA

(FER) being prominent examples (Decreux and Messiaen, 2005;

Kohorn, 2016; Feng et al., 2018; Gonneau et al., 2018; Bacete et al.,

2022; Ortiz-Morea et al., 2022; Zhong et al., 2022). Wall-Associated

Kinases (WAK) and LysM RLKs such as chitin elicitor receptor

kinase 1 (CERK1) are also key elements of the receptor-mediated

CWI perception (Kohorn, 2016; Bacete et al., 2018; Mélida et al.,

2018; Rebaque et al., 2021; Martıń-Dacal et al., 2023). Beyond the

molecular interactions, the physical aspect of cell wall perception

cannot be overlooked. Mechanoperception, the ability of cells to sense

and respond to mechanical stimuli, is integral to CWI. The

displacement between the cell wall and plasma membrane caused
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by mechanical forces can activate membrane-bound receptors and

ion channels (Basu and Haswell, 2020; Yoshimura et al., 2021; Codjoe

et al., 2022). This mechanosensory capability ensures that plants can

swiftly and effectively respond to physical challenges, from turgor

pressure changes to external mechanical stresses (Bacete and

Hamann, 2020).

The bryophyte Marchantia polymorpha offers insights into the

evolutionary transition of plants from aquatic to terrestrial habitats,
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with its CWI system hinting at evolutionary links with certain

Arabidopsis receptors, including a FER homologue that regulates

cellular expansion and cell wall integrity (Westermann et al., 2019;

Mecchia et al., 2022). CrRLKs are present as well in other

bryophytes such as Physcomitrium patens (Lehti-Shiu et al., 2009)

although their implication in CWI sensing remains unclear. These

observations give relevance to the importance of RLK-based

mechanisms for plant CWI. However, no homologues for

CrRLKs, WAKs, or any other relevant plant CWI RLK have been

identified in fungi or algae. Conversely, the absence of Wsc sensors

in plants, prevalent in other organisms, accentuates this

evolutionary divergence, suggesting that plants might have

evolved distinct mechanisms for CWI perception.

Poplar stands out as a model organism for studying CWI in

woody plants, pivotal in understanding the intricacies of

lignification and the development of secondary cell walls

(Coleman et al., 2008; Gorzsás et al., 2011). However, the

existence of a secondary cell wall CWI monitoring system has

been questioned. Downregulation of xylan synthesis genes leads to

changes in xylan content, improved lignocellulose saccharification

efficiency, and stimulated growth. Shifts in cellulose orientation and

cell wall thinning suggest the presence of a cell wall integrity

monitoring mechanism that senses and responds to reduced

xylan elongation in developing wood.(Ratke et al., 2018).

However, the analysis of the stem transcriptome in Arabidopsis

xylan mutants revealed minimal changes, suggesting a lack of a

robust secondary CWI response (Faria-Blanc et al., 2018). Grasses,

like Brachypodium distachyon, with their differential cell wall

attributes (Coomey et al., 2020), can further enrich our

understanding of secondary CWI and reveal both conserved and

unique mechanisms distinguishing monocots from eudicots.
5 Green algae: unicellular proxies to
plant-esque cell wall integrity

The green lineage is split into two significant subgroups:

Chlorophyta, containing most green algae species (Cronmiller

et al., 2019); and Streptophyta, consisting of the land plants

(Embryophyta) and streptophyte algae. Plant terrestrialization

required numerous cellular adaptations, which allowed land plant

ancestors to withstand novel stress conditions, such as high UV

radiation and desiccation (de Vries and Archibald, 2018). These

included changes in the cell wall composition and organization, and

probably novel mechanisms to monitor and modify cell wall

structure accordingly.

Chlorophyta green algae have very diverse cell wall

compositions, from cellulose-pectin complexes to hydroxyproline-

rich glycoproteins (Domozych et al., 2012). Chlamydomonas

reinhardtii has emerged as a model system for this subgroup. Its

cell wall, primarily composed of hydroxyproline-rich glycoproteins,

is crucial for environmental protection. In an interesting work by

Cronmiller et al. (2019). C. reinhardtii was shown to respond to

gametolysin by rapidly activating over 100 cell wall-related genes.

This activation is partly driven by osmosensing channels and cell
TABLE 1 Comparative analysis of cell wall integrity mechanisms in
different organisms.

Organism Signal
Detected

Relevant
Proteins

References

Saccharomyces
cerevisiae

Membrane
stretching

Cch1, Mid1 Levin, 2005

Turgor
pressure

Sln1, Hog1 Levin, 2005

Cell wall
mechanical
changes

Wsc1, Wsc2,
Rho1

Levin, 2005

Arabidopsis
thaliana

Cell wall
fragments

WAK1,
CERK1

Kohorn, 2016; Bacete
et al., 2018; Mélida et al.,
2018; Martıń-Dacal
et al., 2023; Rebaque
et al., 2021

Cell wall
mechanical
changes

THE1 Bacete et al., 2022

Membrane
stretching

MCA1,
MCA2,
OSCA1.1,
OSCA1.2,
MSL2, MSL3,
MSL8, MSL10

Basu and Haswell 2020;
Hamilton et al., 2015;
Hou et al., 2014;
Maksaev and Haswell,
2012; Nakagawa et al.,
2007; Yamanaka et al.,
2010; Yuan et al., 2014

Displacement
of plasma
membrane

AHK1,
AHK4/CRE1

Tran et al., 2007; Urao
et al., 1999; Wohlbach
et al., 2008

Marchantia
polymorpha

Cellular
expansion and
CWI

FER
homologue

Westermann et al., 2019;
Mecchia et al., 2022

Poplar Secondary
CWI in
developing
wood

Not specified Coleman et al., 2008;
Gorzsás et al., 2011;
Ratke et al., 2018

Chlorophyta
Green Algae

Osmosensing,
cell wall-
anchored
surface
receptors

SRCR-domain
proteins
(putative)

Cronmiller et al., 2019

Streptophyte
Algae

Mechanical
changes in cell
wall

Microtubules,
Unknown
receptors

Hamant et al., 2019;
Ochs et al., 2014;
Mecchia et al., 2022;
Morris et al., 2003

Diatoms Cell wall
plasticity,
environmental
cues

Unknown,
Wsc domains
in T.
pseudonana

Pančić et al., 2019;
Pondaven et al., 2007;
McNair et al., 2018;
Claquin et al., 2002;
Hildebrand et al., 2018
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wall-anchored surface receptors, whereas no homologues for

CrRLK1Ls, WAKs, or BR-signaling components for cell wall

integrity were identified. Instead, the authors suggest that C.

reinhardtii employs scavenger-receptor cysteine-rich (SRCR)-

domain proteins as surface receptors. These SRCR proteins,

including five TRP-type channels, are implicated in calcium-

mediated signaling (Cronmiller et al., 2019). Intriguingly, Wsc

domains, essential for CWI in yeast, can be found in the

sequenced genomes of some other unicellular–Dunaliella

tertiolecta and Tetradesmus obliquus– and colonial –Gonium

pectorale– Chlorophyta green algae (Hanschen et al., 2016;

Carreres et al., 2017; Malerba et al., 2020).

Streptophyte algae, also known as charophytes, are the closest

relatives to land plants. They can be split into the basal-

branching Klebsormidiophyceae, Chlorokybophyceae, and

Mesostigmatophyceae (KCM) and the higher-branching

Zygnematophyceae, Coleochaetophyceae, and Charophyceae (ZCC)

group (de Vries et al., 2016). ZCC group are the closest land plant

relatives with cell walls comprised of polysaccharides present in land

plants, unlike the KCM group (Sørensen at al., 2011). Similarities in

cell wall composition between land plants and charophytes are

additionally reflected by the presence of canonical cell wall

biosynthetic enzymes and structural proteins in the genomes of

these algae (Feng et al., 2023). Therefore, exploring CWI

mechanisms in members of ZCC group holds great promise for

understanding the evolution CWI processes in land plants.

Surprisingly, no FERONIA homologs were found in the genomes

of charophytes (Mecchia et al., 2022), indicating that these organisms

utilize alternative CWI systems. Proliferation of CrRLK1L family of

receptors in land plants is more likely to be an adaptation to complex

multicellular body plans (Morris et al., 2003), in which cell-to-cell

communication is essential for coordinated tissue growth and

development. It is plausible that in the unicellular and simple

multicellular Zygnematophyceae, mechanical changes in the cell

wall can be registered by alternative pathways, such as sensing by

microtubules, which were proposed to act as tension sensors in plant

cells (Hamant et al., 2019). Indeed, depolymerization of microtubules

by oryzalin in unicellular Penium margaritaceum leads to cell

swelling and abnormal cell shape (Ochs et al., 2014). It remains

unclear what type of receptors, if any, are involved in CWI

mechan i sms in comp l ex mu l t i c e l l u l a r f o rms f rom

Coleochaetophyceae and Charophyceae classes. Future research and

understanding of land plant evolution is currently hampered by the

lack of molecular biology tools and reliable transformation protocols

for charophyte algae. With new algal genomes being published at an

accelerated pace, the time has come to answer previous calls (Rensing,

2017) and establish charophytes as molecular biology model systems.
6 Diatoms: the implications of a rigid
cell wall

Diatoms, which are of high ecological and biotechnological

relevance, arose from several secondary endocytosis events, with

their plastid derived from a eukaryotic red algae (Nelson et al., 1995;
Frontiers in Plant Physiology 04
Yool and Tyrrell, 2003; Armbrust, 2009). There are estimated to be

well over 100,000 diatom species, making it one of the most species-

rich group of eukaryotic microorganisms (Mann and Droop, 1996).

Interestingly, unlike most other photosynthetic organisms, their cell

walls are not mainly composed of polysaccharides, but instead made

up by two porous silica shells, called frustules, which fit together like

a petri-dish (Hildebrand, 2008). This rigid cell wall is coated by an

organic matrix composed of proteins, long-chain polyamines and

polysaccharides, whose exact composition still remains to be

studied more extensively apart from a few select examples mainly

derived from the main model system for studying diatom cell wall

biogenesis, Thalassiosira pseudonana (Sumper et al., 2005; Brunner

et al., 2009; Richthammer et al., 2011; Kotzsch et al., 2016). Beyond

the already discussed cell wall roles of providing protection and

supporting the large vacuole of the cell, recent studies suggest that

the frustules act as a photonic crystal, improving conditions for

photosynthesis inside while providing protection from UV light (De

Tommasi et al., 2018; Goessling et al., 2018). While the process of

cell wall formation has been studied extensively [for a review on the

topic see (Hildebrand et al., 2018)], very little is known about the

plasticity of their silicified cell wall. Silica content per cell varies

widely among species, but has been shown to be correlated with cell

size (Conley et al., 1989). Growth-limiting conditions generally

result in increased silicification rates, thus resulting in an inverse

correlation between silicification and growth rates (McNair et al.,

2018). Limitation of silica content, however, results in a decrease of

silicification without differences in growth speed (Claquin et al.,

2002). However, there are select examples for adaptation of cell wall

thickness in response to grazing: The diatom Thalassiosira

weissflogii has been shown to increase silicification upon

incubation with grazers without changes in growth rates (Pančić

et al., 2019). Similarly, Skeletonema marinoi, a chain-forming

diatom, strongly reduces chain lengths upon incubation with

copepods, successfully reducing grazing rates (Pondaven et al.,

2007). Thus, there are examples of cell wall plasticity in diatoms,

suggesting a CWI perception system, but very little is known about

how these environmental cues get translated into modifications of

the silica cell wall and/or its organic matrix. And it is intriguing to

think on a CWI system that perceives the physicochemical integrity

of a rigid wall. Like in other unicellular algae, Wsc domains have

been identified in sequenced genomes such as that of T.

pseudonana, but their function is unknown.
7 Beyond the wall: perception
of extracellular matrix in
other eukaryotes

The perception and composition of extracellular structures in

eukaryotes is not restricted to cell walls and CWI. Extracellular

matrixes (ECMs) are diverse and serve various functions, from

structural support to cellular communication, similar to cell walls.

So far, we have discussed eukaryotes from Plantae –plants and

green algae–, Chromalveolates –diatoms and Phaeophytes (brown

algae) and Unikonts (yeast) (Figure 1). Plantae have cell walls rich
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in carbohydrates like cellulose, whereas certain Chromalveolates

possess cell walls composed of materials like silica, and fungi in the

Unikonts group have chitin-based cell walls. In contrast, animals,

also part of the Unikonts, do not have cell walls but possess an ECM

mainly composed of proteins like collagen (Frantz et al., 2010). This

ECM serves multiple functions, including providing structural

support and mediating cellular interactions through various types

of receptors (Hynes, 2009). The perception of the ECM is often

mediated by integrin receptors, which bind to specific ligands in the

ECM and initiate cellular signalling pathways (Friedland et al.,

2009). Interestingly, animals share with fungi and plants the

presence of carbohydrate-binding proteins collectively known as

lectins. This heterogeneous group of proteins plays crucial roles in

important processes, from immune responses to cell adhesion (De

Coninck and Van Damme, 2021; Radhakrishnan et al., 2023).

Rhizaria and Excavates, two other eukaryotic groups, generally

lack traditional cell walls but may possess unique extracellular

structures. For instance, some Rhizaria have elaborate shells made

of organic material or silica (Nakamura et al., 2018), while certain

Excavates have a pellicle, a tough but flexible outer covering that

provides shape and protection (Cavalier-Smith, 2010). The vital role

of these extracellular structures for survival likely means these

organisms have ways to sense and adapt to changes in their outer

layers. However, the specific mechanisms remain a mystery.
Frontiers in Plant Physiology 05
8 Discussion

As we explore the complexities of CWI, the importance of

investigating less-studied organisms and systems becomes

increasingly clear. These could offer fresh perspectives and

expand our understanding of CWI across a range of walled

Eukaryote (Figure 1). One captivating aspect of CWI is the

variety of cues that activate its monitoring systems. While we

have made significant progress in understanding chemical cues,

such as interactions between ligands and receptors, the role of

physical cues like mechanical stress remains relatively uncharted

territory. In animals, integrins serve as vital sensory molecules,

converting chemical and physical cues from ECM into signals that

guide cell behavior. They achieve this by responding to the ligand

(proteins and glycoproteins) density and chemical affinity between

receptors and ligands in the ECM, initiating processes like integrin

clustering which in turn translate these cues into biochemical

signals (Paszek et al., 2009). To date, no similar system has been

identified in plants, where chemical and mechanical CWI cues have

traditionally been studied separately (Bacete and Hamann, 2020).

How have different organisms tailored their CWI mechanisms

to meet their unique environmental challenges and life cycles? The

lack of certain CWI receptors in fungi and algae, compared to

plants, suggests an evolutionary divergence that deserves further
FIGURE 1

Distribution of cell wall integrity (CWI) sensors across the tree of life. Organisms with cell walls are distributed among various of the biological
groups within the domain of Eukaryota. Plantae have cell walls rich in carbohydrates like cellulose, whereas certain Chromalveolates possess cell
walls composed of materials like silica, and fungi in the Unikonts group have chitin-based cell walls. In contrast, animals, also part of the Unikonts,
do not have cell walls but possess an extracellular matrix composed mainly of proteins like collagen, which serves to provide structural support and
mediate cellular interactions. Rhizaria and Excavates generally lack traditional cell walls but may have other forms of extracellular structures for
protection and support. Land plants, with complex cell walls and immobile cells bound together throughout the apoplast, have the most complex
CWI system, comprised of different specialized receptors including receptor-like kinases (RLKs) and receptor-like proteins (RLPs), ion channels, and
membrane-bound mechanoreceptors. In contrast, yeast have simpler systems, in a higher extend based on cell wall integrity and stress response
component (Wsc) domain-containing receptors. Intriguingly, Wsc domains are widespread among Eukaryota, including animals, diatoms and brown
algae (Phaeophytes). Based on the Eukaryotic tree of life created by Keeling et al. (2005).
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study. Understanding these evolutionary intricacies could provide

insights into why some CWI mechanisms are conserved across

species while others are not. The unique challenges and life cycles of

plants–composed of immobile cells connected to each other

through their cell walls, in a dry environment and under the

pressure of gravity– raise compelling questions about how they

perceive and respond to mechanical stimuli affecting their cell walls.

All in all, the plant cell walls of different cells are bound together

forming the apoplast, and thus CWI alterations could be an efficient

mechanism to transfer signals across the plant, but this would

require specific systems different from those in motile cells. Given

that plants can respond to CWI challenges with both death and

growth, could the complexity of CWI mechanisms be linked to the

complexity of the organism itself? In contrast, for unicellular

organisms like yeasts, CWI is often a life-or-death issue, either

due to severe damage or the death of a similar organism nearby.

Charophytes live in water, which involves a very different context

for mechanoperception and self-perception. This could be a reason

for the lack of plant-like CWI receptors in these organisms.

Interestingly, carbohydrate-binding Wsc domains are widespread

in numerous unicellular organisms from yeast to green algae,

although with unknown functions and in many cases lacking a

transmembrane domain which would be essential for intracellular

signal transduction. These domains are present even in mammals,

where they are in some cases linked to diseases associated with a

misperception of the extracellular matrix such as polycystic kidney

disease (Weston et al., 2003). However, to date, there have not been

identified in any member of the Streptophyta subgroup. Brown

algae such as Ectocarpus siliculosus with more than 100 Wsc-

containing proteins seem the only example of multicellular

photosynthetic organisms with the possibility of a putative Wsc-

based CWI monitoring system (Cock et al., 2010). The question of

when and why this system was replaced by other CWI monitoring

systems can shed light on the origins of multicellularity, the

transition to land and the loss of cell motility.

Emerging technologies offer promising directions for CWI

research. Non-invasive live-imaging methods are crucial for

capturing real-time data on plant cell wall dynamics. Synthetic

biology enables engineering cells with customized cell walls.

Computational models are needed to integrate data across

different organisms and cell types. These models could simulate

how various factors affect CWI. Machine learning algorithms could

predict how changes in one factor affect overall CWI.

Nanotechnology can provide real-time insights into CWI through

nano-sensors, providing immediate data crucial in such a

dynamic process.
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