
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Physiol.
Sec. Avian Physiology
Volume 16 - 2025 | doi: 10.3389/fphys.2025.1581088
This article is part of the Research Topic Methods in Avian Physiology: 2023/24 View all 7 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Chicken mucosal phosphatases can partially degrade phytate contained in the feed. Little is known about the characteristics and degradation products of such mucosal phosphatases and the effects of age and genetic strain of the chicken. The objective of this study was to characterize endogenous mucosal phosphatases of two laying hen strains fed diets with or without mineral phosphorus (P) before and after the onset of egg laying. Hens of the strains Lohmann Brown-classic (LB) and Lohmann LSL-classic (LSL) were sacrificed in weeks 19 and 24 of age after 4 weeks of feeding one of two diets with (P+) or without (P-) mineral P supplement. Mucosa of the duodenum was collected, and the brush border membrane (BBM) of enterocytes was enriched and used for phosphatase activity determination. Additionally, the BBM was used in a modified three-step in vitro assay to study the InsP6 degradation products. The results of both in vitro assays were not significantly affected by hen strain and diet. The activity of mucosal phosphatase in 19-week-old hens was, on average, 0.8 µmol Pi/g BBM protein/min lower than in 24-week-old hens (P < 0.002). Consistently, the InsP6 concentration in the incubation residue was significantly higher in 19-week-old hens than in 24-week-old hens (P < 0.001). In the incubation residue, the concentrations of Ins(1,2,3,4,5)P5, Ins(1,2,3,4,6)P5, and Ins(1,2,3,4)P4 were significantly lower (P ≤ 0.002), and those of InsP3 and InsP2 were significantly higher (P ≤ 0.027) when BBM of 24-week-old hens was used compared to 19week-old hens. The InsP6 degradation products suggest the activity primarily of a 6-and secondarily of a 5-phytase in the duodenal mucosa. The consistent results from both in vitro assays provide a comprehensive characterization of these enzymes. Under the conditions of this study, small intestine calcium concentration appeared to influence mucosal enzyme activity more than dietary mineral P supplementation.
Keywords: age, Brush border membrane, Genetic strain, in vitro assay, Laying hen, mucosal phosphatase, Phosphorus, Phytate degradation
Received: 21 Feb 2025; Accepted: 20 Mar 2025.
Copyright: © 2025 Hanauska, Sommerfeld, Schollenberger, Huber and Rodehutscord. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Anna Hanauska, Department of Animal Nutrition, University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
Vera Sommerfeld, Department of Animal Nutrition, University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
Markus Rodehutscord, Department of Animal Nutrition, University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.