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Using 13N2 and PET to track in
vivo nitrogen gas kinetics during
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Introduction: Decompression sickness (DCS) during extravehicular activity in
space or after diving is caused by gaseous nitrogen. The pathophysiology is
still not fully understood, as mechanisms of dissolved gas uptake and bubble
development are challenging to study.We aimed to develop a newmethod using
nitrogen-13 (13N2) gas in vivo using positron emission tomography (PET) under
normobaric pressure.

Methods: A single anesthetized and ventilated Sprague Dawley rat lay supine
inside a PET scanner for 30 min. The rat breathed oxygen for the first 2 min,
then 13N2 gas mixed with oxygen for 20 min, then oxygen alone for the final
8 min. Following the scan, a mixed blood sample was taken from the heart,
while the brain, liver, femur and thigh muscle were removed to determine organ
radioactivity using a gamma counter.

Results: The signal intensity in the PET scanner increased from baseline (0.03)
to 2–12 min (0.68 ± 0.31), and 12–22 min (0.88 ± 0.06), before reducing slightly
from 22 to 30 min (0.61 ± 0.04). All organs had radioactivity when measured
in the gamma counter. We confirmed that the gas decayed radioactivity in
expectance with the half-life of 13N2 (R2 = 0.9324), and that the spectroscopy
peaked just over 500 keV, suggesting no additional isotopes were present.

Discussion: This study successfully demonstrated a quantitative method of
tracking nitrogen gas through the body both in vivo using PET and ex vivo using
a gamma counter.

KEYWORDS

hyperbaric medicine, radiolabeling, diving, decompression sickness, extravehicular
activity

1 Introduction

Decompression sickness (DCS) is caused by gaseous nitrogen.When the partial pressure
of nitrogen increases, such as when SCUBA diving to depth, tissues become more saturated
than at sea-level (Doolette and Mitchell, 2001). As a result, when decompressing, such
as during ascent from a dive, rapid ascent to altitude, or during extravehicular activity
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(EVA) in space, the tissues become supersaturated as the
partial pressure of nitrogen exceeds the ambient partial pressure
(Mitchell et al., 2022). When this happens bubbles can form as
the gas expands, which can cause complications (Junes et al.,
2022). Bubble formation leads to a range of symptoms including
musculoskeletal pain, neurological impairment, and respiratory
distress; collectively known as DCS (Mitchell et al., 2022), which
poses a severe occupational risk to commercial and scientific
divers (Dardeau et al., 2012), as well as aviators and astronauts
(Conkin et al., 2017). Despite this, knowledge of howDCSmanifests
is largely unknown, and is a product of retrospective and empirical
analysis conducted after individuals are diagnosed with DCS.
Recently we have published new methods that track the movement
of nitrogen in hyperbaric conditions; which could be vital to
understanding how DCS forms, how it varies between individuals,
and how it can be treated (Ashworth et al., 2024a; Ashworth et al.,
2024b). These methods could be used to quantify the effectiveness
of a prebreathe protocol prior to EVAs, and therefore can help
optimize the effectiveness and efficiency of the prebreathe protocol.
This would minimize the risk to astronauts and optimize time for
mission objectives.

These methods have used the radionuclide nitrogen-13 (13N2).
13N2 is an isotope of nitrogen that emits beta-radiation with a
half-life of 9.965 min. Beta-radiation can be tracked with positron-
emission tomography (PET) to provide localized information as
to where the radiation is coming from, enabling the tracking of
nitrogen as 13N2 (Berger, 2003). Furthermore, the emitted positron
rapidly annihilates with an electron, leading to the production
of two gamma rays (Richardson, 1938). These gamma rays can
be measured using a gamma counter which measure smaller
quantities of radioactivity in smaller volumes (Wilde and Ottewell,
1980). Several studies have previously looked at 13N2 in humans,
primarily injected as part of a saline solution to investigate lung
function (Winkler et al., 2022; Vidal Melo et al., 2003). One study
in humans breathing 13N2 gas in normobaric conditions with a
gamma detector placed by the knee showed it was capable of being
used to track nitrogen wash-in and wash-out (Weathersby et al.,
1986), however it was not able to discern whether the reported
nitrogen was in blood or tissue. Since this lone experiment ∼40
years ago, technical developments have produced new imaging
modalities, such as PET scanning, which can provide spatial
and temporal resolution of radioactive substances within the
body thereby increasing the range of possibilities for tracking
13N2 movement through the body. Recently, we utilized these
technological advancements to demonstrate firstly organ uptake of
13N2 indifferingprebreatheconditionsusinggammacountingalone
(Ashworth et al., 2024b). Secondly, we demonstrated the potential
use of PET to provide spatial and temporal information on when
13N2 is in vivo,underhyperbaricconditions(Ashworthetal.,2024b).
Both experiments showcase the potential for the use of 13N2 to
research the mechanisms and potential treatments and prevention
strategies relating to DCS. To further enable investigations on the
effects of gas uptake and off-gassing we hypothesized that the
method would work under normobaric conditions, and still detect
nitrogen wash-in and wash-out (despite the much lower partial
pressure of gas).

2 Methods

2.1 Use and care of animals

The animal used in this experiment was used in line with
the UCSD standard of care, and under approval of the UCSD
Institutional Animal Care and Use Committee (IACUC) protocol
S19154. The animal was maintained under the surveillance of a
veterinarian prior to being used in the study.

2.2 Nitrogen-13

The 13N2 was created off-site (PETNET, Siemens Medical
Solutions, San Diego, CA) using a cyclotron in accordance with
prior studies (Iwata et al., 1978). A liquid target containing aqueous
NH4Cl solution (1.0 M, pH = 11) was irradiated with 15 MeV
protons for 30 min 13N2 was extracted from the target by a helium
sweep gas, which passed through a P2O5 absorber to purify the gas of
NH3 and water vapor. The products were released into a vial, placed
inside a lead ingot and casing, and delivered to the laboratory (transit
time ∼10 min).

2.3 Analysis of 13N2

To confirm the presence of 13N2 several investigations were
conducted on the produced gas containing 13N2. A syringe
containing the gaseous 13N2 sample was placed in a dose calibrator
(CRC-15W, Capintec, NJ, United States) with recordings were made
every minute for 20 min. A separate sample of the gaseous 13N2
was placed in a gamma counter (2,480 Wizard2, Perkin Elmer, MA,
United States) to obtain radioactive spectroscopy.

2.4 In vivo experiment

Upon arrival at the laboratory the vial was placed into a dose
calibrator and radioactivity recorded. The vial was then shaken
for 10 s and bubbled (to release the 13N2 gas from solution) at
0.5 L min-1 directly from the isoflurane vaporizer (VS1482, Visual
Sonics, Canada) into a non-diffusing bag (Figure 1 – Gaseous 13N2
Bag; 112,110, Hans Rudolph Inc., KS, United States) pre-filled with
7 L of oxygen-isoflurane mix (3% isoflurane). Bubbling continued
for 1.5 min, causing flow of an additional 1.5 L of air into the bag,
providing a total of ∼8.5 L which was estimated to be required for
the 30 min scan time (30 min × 3.2 mL.breath-1 x 90 breath.min−1).

A Sprague-Dawley rat (6 months, 320 g) was anaesthetized
using 5% isoflurane and placed on an intubation rack (Kent
Scientific, CT, United States) in accordance with institutional review
board approval (IACUC, UCSD, protocol S19154). With the airway
exposed an intubation tube (16G Safelet Catheter, Exel, CA, United
States) with an intubation safety wedge (Kent Scientific, CT, United
States) was placed down the trachea. The intubation line was then
connected to a mechanical ventilator (PhysioSuite, Kent Scientific,
CT, United States) set to deliver air at a rate of 90 breaths per
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FIGURE 1
Schematic detailing how the process required to ventilate a rat with 13N2. The

13N2 arrives in liquid form and is bubbled into gaseous form which is
collected in a non-diffusing bag housed within a lead cabinet. Gas is then drawn from this bag by a ventilator to a rat located inside a PET scanner, with
the expired gas being collected in an exhaust bag within the lead cabinet. Created in BioRender.com.

minute, at a tidal volume of 1% body mass (i.e., 300 g = 3 mL).
Isoflurane was then reduced to 3% and the rodent was set on
the PET scanner (eXplore VISTA DR, GE Healthcare, IL, United
States) gantry, with the center of the PET located at the level of the
lungs. The PET scanner recorded 13N2 using a dynamic emission
scan for 30 min with energy windows of 250–750 keV. During the
first 2 min of the PET scan the rat breathed oxygen, before being
switched to 13N2 at 2 min. After 22 min of scanning had elapsed the
inspiration line was switched back to the oxygen.

After 5 min, and thereafter at 10 min intervals, a gas sample
was obtained from the inspiration line connected to the ventilator
using a 10 mL gas syringe to determine the dose being delivered
to the animal (Figure 1). The syringe was immediately placed in
the dose calibrator, recorded, and then flushed into an extraction
vent. Immediately prior to the gas sample collection a background
radiation measurement was taken to be subtracted from the
recorded values. These values were then corrected for the 13N2
half-life using Equation 1.

A0 =
A(t)
e−λ·t

(1)

where A0 is baseline counts per minute, A(t) is counts per minute at
the time point (t), and λ is equal to 0.693/9.965 min, where 0.693 is
equal to the natural logarithm of 2, and 9.965 min is the half-life of
13N2.

Upon cessation of the PET scan the rodentwas surgically opened
and euthanized by a mixed blood draw from the heart. Immediately
thereafter, the liver, brain, femur and quadriceps muscles were
surgically removed and, alongside the remaining rat, were placed
in the dose calibrator to assess whole-rat radioactivity. The organs
were then placed into a gamma counter (Gamma 8,000, Beckman,
IN, United States) to obtain organ-specific counts. All counts were
obtained within a window of 400–600 keV. Counting continued
until the certainty reached 95%, or 10 min had elapsed. Organ
counts were corrected firstly by subtracting background radiation,
and then using Equation 1 to account for the difference in time

between each sample, effectively reporting the counts when the
counting process began. All organs were then weighed (CP64,
Sartorius, Germany) to enable calculation of counts relative to mass.

The PET image was analyzed in Fiji image analysis software
(Schindelin et al., 2012) in composite images of 2 min each. Images
were converted into 3D stacks, and the entire image in each view had
signal intensity recorded. Mean and standard deviation (SD) were
calculated for each 2 min block. Additionally, the PET images for
minutes 2-22 were amalgamated into one image to visualize the 13N2
activity in the lung.

3 Results

The vial produced contained 1,158.1 MBq, which had reduced
to 577.2 MBq by the time it was measured in the laboratory.
Analysis of the gaseous 13N2 gas showed decay as expected
(Figure 2A) with good reliability. The spectroscopy revealed a peak
just over 500 keV, close to the expected peak for positron emission
of 511 keV (Figure 2B).

The bubbling of the vial contents left 418.1 MBq in the vial,
indicating that ∼75.1 MBq of the original dose (when corrected)
had been removed from the vial as 13N2 and entered the gaseous
13N2 bag. The in-line gas concentration was consistent between
the two measurement periods, and was reduced when the 13N2
flow stopped (Table 1).

The signal intensity recorded by the PET increased once the 13N2
was connected and approached a plateau before reducing in the final
minutes of the experiment (Figure 3). Visual analysis of the PET
image reconstruction clearly shows the shape of the lungs being filled
with 13N2, seen alongside the intubation tube and trachea which
show the highest concentrations of positron emission (Figure 4).

Upon conclusion of the PET scan the whole rat had 58.1
kBq of radioactivity. The liver, brain and bone had higher relative
counts per minute than the blood, whereas the muscle had
lower counts (Table 2).
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FIGURE 2
Radioactivity in the gaseous 13N2 recorded every minute using a dose calibrator (A) and radioactive spectroscopy measured using a gamma counter
(B). Results are displayed as both absolute values (open circles) and values adjusted for 13N2 radioactive decay (closed circles). The spectroscopy shows
a peak just above 500 keV.

TABLE 1 Radioactivity of inspiration line gas samples while
breathing13N2 gas. Samples are corrected for radioactive decay.13N2 gas
was turned off after 22 min.

Time (min) Gas radioactivity (kBq.ml-1)

5 5.735

15 5.254

25 0.148

FIGURE 3
Signal intensity in arbitrary units (a.u.) over time showing the changes
in radioactive positron emission from a sedated rodent breathing 13N2

gas. Values shown are an average signal intensity of the specified
interval. An oxygen-isoflurane mix was breathed from 0 to 2 and
22–30 min (white bars), while the 13N2 gas was turned on from 2 to
22 min (black bars).

4 Discussion

This study successfully demonstrated a method of tracking
nitrogen gas through the body that could be imaged both in
vivo using PET, where 13N2 was tracked going in and out

of the lung, and ex vivo where a gamma counter assessed
individual organs.

The total radioactive volume received was only 577.2 MBq, a
safe experimental quantity, that comfortably lasted the duration
of the experiment (∼1 h). Future experiments could likely be of
longer duration or increase the starting dose.The radioactive gas had
both the decay constant, and decay spectroscopy of 13N2 (Figure 2),
thereby confirming the radioactive substance breathed was 13N2.
The supply of 13N2 to the rat measured in the inspiratory line was
reasonably consistent between the two measurements taken during
13N2 delivery (Table 1) suggesting good mixing of gas within the
gaseous 13N2 bag.The constant supply of 13N2 increases the potential
for uptake over time as only a small volume of 13N2 will be taken up
with each breath, whereas if a bolus of 13N2 was delivered a large
proportion could be expired.

The PET image shows 13N2 in the main areas we would expect
to see it–the trachea and the lungs, with minor signal coming
from the surrounding areas (Figure 4). During the first 2 min of
the experiment while oxygen-isoflurane was breathed PET signal
resembled background levels (Figure 3). Upon switching to 13N2 the
PET signal increased steadily from 2 to 12 min, reaching a plateau
from 12 to 22 min, suggesting equilibrium of pulmonary 13N2 was
reached rapidly (Figure 3). Then when 13N2 delivery ceased we saw
a drop in PET signal (Figure 3), showing the washout of 13N2 from
the lung and surrounding tissue. Due to the natural movement of
the lungs during image acquisition it is hard to quantify the amount
of 13N2 taken up in pulmonary tissue or adjacent tissue, but the
subsequent organ counts showed that 13N2 uptake was widespread.

The organ counts showed higher relative 13N2 content in the
liver, brain and bone than the blood (Table 2), which despite
being only for a single rat, is in line with current physiological
understanding. Although these results do differ from those observed
in our prior study (Ashworth et al., 2024b), this can be attributed to
differences in the prebreathe procedure and post-breathing oxygen
in the present study enabling off-gassing. The brain has the highest
proportion of fat of any organ and is highly perfused, so might be
expected to take up 13N2 more than the other organs (O'Brien and
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FIGURE 4
PET image of rat lung while breathing 13N2 gas. Recording window was set to 250–750 keV. The trachea conducts all of the radioactive gas, and
therefore has the strongest signal (red). The radioactivity then spreads throughout the lungs, being more condensed within the middle of the lungs as
the lungs are continuously moving due to respiration.

TABLE 2 Organ parameters following breathing13N2 for 20 min followed
by 10 min of breathing oxygen. All counts were corrected for
radioactive decay (Equation 1).

Sample Mass (g) Error (%) Counts.min−1.g−1

Blood 3.722 1.99 3,390.28

Liver 8.751 1.91 12,593.29

Brain 1.811 1.99 5,382.77

Muscle 1.364 1.99 2,686.57

Bone 0.180 4.53 3,882.01

Sampson, 1965). However, these factors alsomean that it will off-gas
faster during the oxygen breathing period of the experiment. Indeed,
neurological decompression sickness is largely reported during short
dives (Schipke and Tetzlaff, 2016; Lang et al., 2013), suggestive that
brain is a tissue with fast nitrogen kinetics. A review of solubility
coefficients by Weathersby and Homer (Weathersby and Homer,
1980) showed brain and blood to have similar levels of nitrogen,
with a range of approximately 50%–150%. In the current study the
brain has 159% more 13N2 than the blood, falling just outside of this
range, which may be due to the breathing gas being oxygen which
would increase the potential for nitrogen uptake. Only one study
used the samemethod tomeasure brain and blood nitrogen content,
finding brain tissue to be 13% more soluble than blood in rabbits
(Ohta et al., 1979). It is unclear whether using a perfused brain, as in
the current study, would lead to similar results, and to what degree
organ perfusion can be quantified. The liver is also highly perfused,
and is the fattiest abdominal organ, which likely accounts for the
large values seen here (Sijens et al., 2010). Bone 13N2 contentwas also
elevated compared to blood, althoughonly slightly.This could be due
to bone marrow making up 10% of adult human total fat content
which may help with nitrogen uptake. Conversely, muscle has less
fat, with human intramuscular thigh fat as low as 8% of the tissue,
and thereforewould be expected to store less 13N2 (Goodpaster et al.,

2000). While the present study looked at a single rodent, the muscle
was observed to store less 13N2 than blood (Table 2).

4.1 Methodological limitations

The use of a PET scanner alone makes tracking the exact
organs taking up 13N2 difficult as organ positions vary between
individuals, the PET provides no anatomical landmarks, and the
spatial resolution of PET is low (Vaquero and Kinahan, 2015).
For the lungs which receive a large dose, their outline is easily
observed due to the contrast with adjacent tissue (Figure 4), but
this is not the case for other tissues. It is possible that future
studies could look to use PET and computed tomography in concert
to guide locating where 13N2 is, particularly in studies where
survival is prioritized (Vaquero andKinahan, 2015). In non-survival
experiments, the use of the gamma counter provides a unique
opportunity to gather rich data as this is sensitive to much lower
radiation doses.

However, the 10 min half-life of 13N2 still limits experiments to
be short (∼100 min) as otherwise the radioactive signal dissipates to
that of background radiation. This limits the scope of experiments
that can be done with this method while keeping radiation within
safe limits. However, continuous generation and supply of 13N2
could provide a mechanism by which experimental times could
be extended. Alternatively, 13N2 could be supplied at any point
within the experimental procedure, thereby evaluating different
stages during the nitrogen wash-in/wash-out process.

Usually a standardized uptake value is used to quantify
PET signal (Kinahan and Fletcher, 2010), which could be achieved
in the future using biopsies or a blood draw to calibrate
the signal.

4.2 Future applications

The current experiment was performed at normobaric pressure,
with enough signal to noise without the compression and
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subsequent decompression that occurs with diving. This shows
that the method could be used to optimize oxygen prebreathing
protocols before EVAs in spaceflight. Using larger animals and
combining the PET with a CT scan in the future would enable full
body scans and give strong spatial resolution to determine exactly
which organs are most at risk following a prebreathe procedure.
Indeed, while this experimental paradigm has been devised for
rodents it can be extended to pigs and possibly humans in the future.
Application of this technique to humans would also require careful
management of the radiation dose. The dose would need to be small
enough to cause minimal harm to the participant, whilst remaining
large enough to provide the spatial resolution needed for robust
scientific data.
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