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Background: Muscle fatigue represents a primary manifestation of exercise-
induced fatigue. Electromyography (EMG) serves as an effective tool for
monitoring muscle activity, with EMG signal analysis playing a crucial
role in assessing muscle fatigue. This paper introduces a machine
learning approach to classify EMG signals for the automatic detection of
muscle fatigue.

Methods: Ten adult participants performed isometric contractions of lower
limb muscles. The EMG signals were decomposed into multiple intrinsic
mode functions (IMFs) using improved complementary ensemble empirical
mode decomposition adaptive noise (ICEEMDAN). Time-domain, frequency-
domain, time-frequency domain, and nonlinear features associated withmuscle
fatigue during isometric contraction were analyzed through EMG signals.
Dimensionality reduction was achieved using t-distributed stochastic neighbor
embedding (t-SNE), followed by machine learning-based classification of
fatigue levels.

Results: The findings indicated that EMG signal characteristics changed
significantly with increasing fatigue. The combination of support
vector machines (SVM) and ICEEMDAN achieved an impressive
accuracy of 99.8%.

Conclusion: The classification performance of this study surpasses that of
existing state-of-the-art methods for detecting exercise-induced fatigue.
Therefore, the proposed strategy is both valid and effective for supporting
the detection of muscle fatigue in training, rehabilitation, and occupational
settings.
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1 Introduction

Muscle fatigue is a critical component of exercise-induced fatigue and serves as
a primary indicator of muscle performance and endurance during physical activities
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(Behm et al., 2021). Muscle fatigue results in diminished exercise
capacity, characterized by reduced muscle strength and decreased
power output (Supruniuk et al., 2023). Lower limbs play a key role
in the exercise process (Finn et al., 2020; Kulmala et al., 2020).
Numerous researchers have employed various techniques to analyze
lower limbmovement (Fidalgo-Herrera et al., 2021;Mehmood et al.,
2021; Zhang W. B. et al., 2024). In muscle submaximal tasks, fatigue
manifests as increased neural drive to offset peripheral declines in
muscle force capability, as evident by concomitant measurements
of EMG and motor pathway excitability (Ruggiero and McNeil,
2019). Effective monitoring and assessment of muscle fatigue are
essential for optimizing training protocols, preventing injuries, and
enhancing performance in sports and rehabilitation settings.

Electromyography (EMG) has emerged as a valuable
tool for real-time monitoring and analysis of muscle activity
(Rampichini et al., 2020; Hou et al., 2021; Sun et al., 2022). By
recording the electrical signals generated by muscle fibers during
contraction, EMG enables researchers and practitioners to evaluate
muscle function and detect early signs of fatigue.

In recent years, there has been a growing interest in
leveraging machine learning techniques to automate the detection
and classification of muscle fatigue based on EMG signals
(Makaram et al., 2021; Liu et al., 2023). By extracting relevant
features from EMG data and training classification models, these
approaches provide a data-driven framework for objectively
assessing fatigue levels. Studies on lower limb rehabilitation
training using EMG primarily focus on time-frequency domain
analysis (Hatamzadeh et al., 2023; Daniel et al., 2024). Given
the non-stationary and nonlinear characteristics of EMG signals
(Wang S. R. et al., 2021). Nonlinear dynamic analysis can better
decode the variation trends during muscle fatigue (García-
Aguilar et al., 2022).

This study aims to propose a novel machine learning strategy
based on the classification of electromyography (EMG) signals for
the automatic detection of muscle fatigue. Specifically, we focus on
isometric contractions of lower limb muscles, a common scenario
in both athletic training and rehabilitation programs. The proposed
methodology incorporates advanced signal processing techniques,
including improved complementary ensemble empirical mode
decomposition adaptive noise (ICEEMDAN) for decomposing
EMGsignals into intrinsicmode functions (IMFs) (Tian et al., 2024).

We conduct a comprehensive analysis of the time-domain,
frequency-domain, time-frequency domain, and nonlinear
features extracted from EMG signals to characterize muscle
fatigue during isometric contractions. Additionally, we employ
t-distributed stochastic neighbor embedding (t-SNE) for feature
dimensionality reduction, facilitating a more concise representation
of the data (Olobatuyi et al., 2024).

Machine learning algorithms, particularly Support Vector
Machines (SVM), are employed to classify fatigue levels based on the
extracted features (Chauhan et al., 2019). Our results demonstrate
significant changes in EMG features as fatigue levels increase,
underscoring the potential of EMG-based classification for fatigue
assessment.

Notably, the combination of SVM and ICEEMDAN achieves
an impressive classification accuracy of 99.8%, surpassing existing
methods for exercise fatigue classification (Wang J. H. et al., 2021).
This study significantly enhanced the accuracy and efficiency of

FIGURE 1
Methodology proposed for the implementation of the exercise fatigue
classifier.

muscle fatigue detection by introducing advanced signal processing
andmachine learning techniques, providing new ideas andmethods
for research and application in related fields, including training,
rehabilitation, and occupational health.

2 Materials and methods

The proposed methodology aims to develop the classification
system for assessing exercise fatigue of three general phases: 1)
the preprocessing, filtering, and decomposition of the signals; 2)
the extraction and reduction of features; and 3) the classification
of the data (Figure 1).

The subsequent sections detail each phase and outline the
metrics essential for developing and evaluating the classifier.

2.1 Data acquisition

Lower extremity muscle isometric contraction fatigue in the
subjects was induced by performing wall squats. The American
Delsys Trigno electromyography system collected signals from the
quadriceps muscles, including the vastus medialis, rectus femoris,
and vastus lateralis. The data collection frequency was 1000 Hz.
The area was first cleaned with mild soap and water to remove
surface contaminants. Excessive hair was trimmed or shaved to
ensure adequate electrode contact. An abrasive gel (e.g., NuPrep)
was applied and gently rubbed in circularmotions for approximately
15–20 s to remove dead skin cells and reduce impedance. The area
was then wiped with an alcohol swab to remove residual gel and
dried thoroughly. Surface electrodes were strategically positioned
over themuscle bellies of interest, with specific locations determined
based on standardized anatomical landmarks. During the test,
subjects were asked to subjectively rate their perceived level of
fatigue as either easy or difficult. This study was approved by the
Ethics Committee of Jilin University and conforms to the Helsinki
Declaration.
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TABLE 1 Descriptive data of participants.

Variable Mean (SD)

Age (years) 24.21 ± 3.65

Height (cm) 169.58 ± 4.53

Weight (kg) 62.88 ± 9.22

Body Mass Index (kg/m2) 21.86 ± 3.62

Participants were healthy individuals with no known
diseases and had not consumed alcohol or drugs prior to the
experiment. They read and signed an informed consent form
before participating. The experiment was conducted under the
supervision of a tester, with subjects instructed to warm up before
the test and stop immediately if they felt any discomfort during
the procedure. During the test, subjects performed wall squats with
their backs against the wall, legs naturally spaced shoulder-width
apart, and arms relaxed at their sides. The torso was positioned
at a 90-degree angle to the thighs, and the thighs were at a
90-degree angle to the calves. Subjects continued the task until
exhaustion. A total of ten participants completed the experiment,
each performing ten trials, resulting in a total of 300 complete test
datasets.The basic information for tenmale participants in the study
is shown in Table 1.

2.2 Pre-processing

EMG signals are inherently susceptible to noise and
artifacts, which can arise from various sources such as
electrical interference, motion artifacts, and physiological factors
(Ashraf et al., 2023; Boyer et al., 2023). These extraneous
components can obscure the underlying muscle activity patterns,
thereby impeding accurate interpretation of the EMG signals.
Consequently, the implementation of effective preprocessing
techniques is essential for enhancing the quality and reliability
of EMG signal analysis. Bandpass filtering selectively attenuates
noise outside the frequency range of interest, while high-pass
filtering removes low-frequency drift and motion artifacts. A
notch filter specifically targets and eliminates 50 Hz power line
interference. Additionally, baseline correction is imperative to
remove baseline drift and establish a consistent reference level
for EMG signals. Baseline drift elimination is accomplished
through mean subtraction, which involves subtracting the mean
value of the signal from each data point to center the signal
around zero.

2.3 Signal decomposition

TherecordedEMGsignals often contain redundant information,
making direct classification from the rawdata suboptimal. To extract
meaningful features for signal classification, it is more effective to
decompose the signal intomulti-resolution components that capture
relevant information about themuscle state. ICEEMDAN represents
an advanced signal processing technique that builds upon the

traditional Empirical Mode Decomposition (EMD) method. EMD,
initially developed by Huang et al. in the late 1990s, was designed
to decompose non-stationary and nonlinear signals into a finite
number of oscillatory components known as IMFs (Colominas et al.,
2014). However, EMD is subject to certain limitations, including
mode mixing and sensitivity to noise, which can significantly
impede its effectiveness, particularly in practical applications.
To mitigate these challenges, ICEEMDAN incorporates several
enhancements. It addresses the inherent limitations of EMD
by introducing adaptive noise and ensemble strategies, thereby
improving its performance in handling non-stationary and noisy
signals. At its core, ICEEMDAN decomposes a given signal
into a finite number of IMFs and a residual component. What
distinguishes ICEEMDAN is its adaptive noise mechanism, which
dynamically adjusts to the characteristics of the signal during the
decomposition process. This adaptability enables ICEEMDAN to
effectively extract meaningful components from signals corrupted
by varying degrees of noise, a common issue in real-world signal
processing applications. Additionally, ICEEMDAN employs an
ensemble strategy, where multiple decompositions are performed
with randomized initialization conditions. By aggregating the results
from these ensemble decompositions, ICEEMDAN enhances the
robustness of the decomposition process and minimizes the risk of
obtaining biased results.

ICEEMDAN algorithm is described as follows (Bommidi
et al., 2023).

Step 1: Noise addition by Formula 1:

x(i) = x+ β0E[w
(ⅈ)] (1)

where x is the original signal, β0 is the noise standard deviation,
E(w(ⅈ)) is the special noise, w(ⅈ) is the added ith Gaussian
white noise.

Step 2: EMD decomposition by Formulas 2, 3:

r1 =
1
N

N

∑
i=1

M[x(i)] (2)

̃c1 = x− r1 (3)

where r1 is the residual of the first decomposition, M[·] is the
operator to compute the local mean and ̃c1 is the value of
the first IMF.

Step 3: Iterative decomposition by Formulas 4, 5:

rk =
1
N

N

∑
i=1

M{rk−1 + βk−1Ek[w
(i)]}, k = 2,3,…N (4)

̃ck = rk−1 − rk (5)

where rk is the residual of the kth decomposition and ̃ck is the value
of the kth IMF.

The versatility of ICEEMDAN makes it a valuable tool
across various domains, including biomedical signal processing,
financial forecasting, environmental monitoring, and structural
health monitoring. Its ability to effectively handle noisy and non-
stationary signals through adaptive noise modulation and ensemble
decomposition makes it particularly useful in applications where
precise signal analysis is crucial for decision-making and inference.
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2.4 Feature extraction

Effective feature extraction is crucial for deriving meaningful
information from EMG signals and elucidating muscle activation
patterns. Feature extraction serves a pivotal role in quantifying
various aspects of muscle activity, including intensity, timing,
frequency content, and temporal dynamics.This section provides an
overview of commonly employed EMG feature extraction methods
and their applications in muscle activity analysis.

2.4.1 Time domain features
Time domain features capture the amplitude and temporal

characteristics of EMG signals. Commonly extracted features
include Mean Absolute Value (MAV), Variance (VAR), and Root
Mean Square (RMS) (Chen et al., 2020; Wang H. B. et al., 2021)
according to Formulas 6–8. MAV provides information on the
overall magnitude of the signal. VAR indicates the variability or
fluctuations within the signal. RMS reflects the overall energy or
power of the signal.

MAV = 1
N

N

∑
i=1
 |xi| (6)

VAR = 1
N

N

∑
i=1
 (xi − x)

2 (7)

RMS = √ 1
N

N

∑
i=1
 x2i (8)

where xi represents the EMG signal samples and N is the total
number of samples in the window. x is the mean of the EMG signal.

2.4.2 Frequency domain features
Frequency domain analysis of EMG signals enables the

characterization of spectral content and frequency distribution.
Mean Frequency (MF) andMedian Frequency (MPF) are commonly
used features to describe the central tendency of frequency
components in the signal (Zhang X. D. et al., 2024) according to
Formulas 9, 10. MF provides information on the central tendency
of the frequency distribution, while MPF serves as a measure of the
signal’s spectral center of mass.

MF =

N

∑
i=1
  fiPi

N

∑
i=1
 Pi

(9)

MPF == 1
2

N

∑
i=1
 Pi (10)

where fi is the frequency and Pi is the power at that frequency.

2.4.3 Time-frequency domain features
Time-frequency domain analysis captures both temporal and

spectral characteristics of EMG signals. Instantaneous Mean
Frequency (IMDF) and Instantaneous Median Frequency (IMNF)
provide insights into the dynamic changes in frequency content
over time (Ghosh and Swaminathan, 2020). IMDF represents the
mean frequency content of the signal at various time points,
capturing how the frequency content evolves over time. IMNF,

similar to IMDF, represents the median frequency content at
different time points, offering insight into the temporal variations
of the signal’s spectral characteristics.

2.4.4 Non-linear feature
EMG signals exhibit complex dynamics that cannot be fully

captured by linear methods alone. Nonlinear feature extraction
aims to capture the intricate patterns, irregularities, and nonlinear
interactions within the signal. Sample Entropy quantifies the
regularity or predictability of the EMG signal (Chatain et al., 2020).
It measures the likelihood that similar patterns of data points will
repeat over a specified length within the signal. The Hurst exponent
is a measure of long-range dependence or self-similarity in the
EMG signal (Irfan et al., 2023). It characterizes the persistence or
anti-persistence of trends in the signal across different time scales.

2.5 Feature reduction

The features of EMG signals during exercise were extracted,
and a dimensionality reduction was performed to map the selected
feature vectors into a lower-dimensional space. Linear methods
assume that the underlying relationships between variables are
linear, whichmay not hold true for all datasets. Consequently, linear
techniques may fail to capture complex, non-linear relationships
present in the data. Although linear methods preserve most of
the variance, they may not retain all the information inherent in
the original high-dimensional space. Non-linear techniques, on
the other hand, can capture complex relationships and manifold
structures in the data that linear methods may overlook. Methods
such as t-SNE excel at preserving local structures, making
them particularly suitable for tasks like visualization. Non-linear
techniques effectively handle high-dimensional data by capturing its
intrinsic structure.

t-SNE (t-Distributed Stochastic Neighbor Embedding) is a
dimensionality reduction technique primarily used for visualizing
high-dimensional data in a lower-dimensional space, typically
2D or 3D. The principle behind t-SNE involves mapping multi-
dimensional data points to a lower-dimensional space while
preserving their pairwise similarities as accurately as possible.
The process begins by computing pairwise similarities between
data points in the high-dimensional space. These similarities are
typically measured using Gaussian kernels based on the Euclidean
distance between points, which quantifies how close or similar
each pair of points is in the original space. Next, t-SNE constructs
a similar map in the lower-dimensional space (e.g., 2D or 3D)
by placing points such that similar points in the original space
remain close together in the new space. The positions of points in
the lower-dimensional space are optimized iteratively to minimize
the discrepancy between the original pairwise similarities and
the similarities in the lower-dimensional space. The optimization
process in t-SNE minimizes the Kullback-Leibler (KL) divergence
between the distribution of pairwise similarities in the original
space and the distribution of pairwise similarities in the lower-
dimensional space. This divergence measurement ensures that
similar points are represented by nearby points in the lower-
dimensional embedding. t-SNE introduces a hyperparameter called
perplexity, which balances the attention given to local versus global
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aspects of the data. It influences the number of nearest neighbors
considered when computing similarities. A higher perplexity value
results in a more global view of the data, while a lower value
focuses more on local relationships. The optimization of t-SNE
is performed using gradient descent methods to minimize the
KL divergence. It adjusts the positions of points in the lower-
dimensional space iteratively until convergence criteria are met.
Unlike linear methods like PCA (Principal Component Analysis), t-
SNE is inherently non-linear and is particularly effective at capturing
complex structures and relationships in high-dimensional data, such
as clusters, nonlinear manifolds, and local neighborhoods.

The t-SNE algorithm is as follows.

Step 1: Similarity in High-Dimensional Space by Formula 11:
In the high-dimensional space, the similarity between data

points xi and xj is measured using a Gaussian distribution:

pj∣i =
exp(−

‖xi−xj‖
2

2σ2i
)

∑
k≠i
 exp(− ‖xi−xk‖

2

2σ2i
)

(11)

Here, σi is the standard deviation of the Gaussian distribution
for point xi, which controls the perplexity (a measure of the effective
number of neighbors). pj∣i represents the probability that xj is a
neighbor of xi in the high-dimensional space.

To make the similarity matrix symmetric, a joint probability
distribution pij is defined by Formula 12:

pij =
pj∣i + pi∣j
2N

(12)

where N is the total number of data points.

Step 2: Similarity in Low-Dimensional Space by Formula 13:
In the low-dimensional space, the similarity between mapped

points yi and yj is measured using a Student’s t-distribution with one
degree of freedom (which is equivalent to a Cauchy distribution):

qij =
(1+ ‖yi− yj‖2)−1

∑
k≠l
 (1+ ‖yk− yl‖2)−1

(13)

The t-distribution has a heavier tail compared to the Gaussian
distribution, which helps to alleviate the “crowding problem” in low-
dimensional space.

Step 3: Optimization Objective by Formula 14:
The goal of t-SNE is to minimize the Kullback-Leibler (KL)

divergence between the joint probability distributions P and Q in
the high-dimensional and low-dimensional spaces, respectively:

C =∑
i
KL(Pi‖Qi) =∑

i
∑
j
pij log

pij
qij

(14)

Pi and Qi are the conditional probability distributions for point i in
the high-dimensional and low-dimensional spaces, respectively.The
KL divergence measures the difference between the two probability
distributions, and the optimization aims to make P and Q as close
as possible.

Step 4: Gradient Descent Update by Formula 15:

To minimize the KL divergence, the low-dimensional
embeddings yi are updated using gradient descent:

∂C
∂yi
= 4∑

j
 (pij − qij)(yi − yj) (15)

In summary, t-SNE transforms high-dimensional data into
a lower-dimensional representation while preserving local and
some global structures by minimizing the Kullback-Leibler (KL)
divergence between the pairwise similarities of the original and
lower-dimensional spaces. It is widely employed for exploratory data
analysis, visualization, and understanding complex data patterns in
fields such as machine learning, data mining, and natural language
processing.

2.6 Classification

Machine learning classifiers learn patterns from labeled data
to predict the labels of new, unseen data points. Machine
learning classification methods aim to construct models that can
automatically categorize data into predefined classes or categories.
These methods can be broadly categorized into two main types:
generative and discriminative. Generative classifiers model the joint
probability distribution of the features and class labels. They learn
the probability distribution of each class and use Bayes' theorem
to calculate the posterior probability of each class given the input
features. Examples of generative classifiers include Naive Bayes,
Gaussian Mixture Models (GMM), and Hidden Markov Models
(HMM). Discriminative classifiers directly model the decision
boundary that separates different classes in the feature space. They
aim to find a function that maps input features to class labels
without explicitly modeling the underlying probability distribution.
Examples of discriminative classifiers include Logistic Regression,
Decision Trees, Random Forests, SVM, and Neural Networks.

SVM is a powerful discriminative classifier designed to identify
the optimal hyperplane that maximally separates different classes
in the feature space while maximizing the margin between the
hyperplane and the nearest data points from each class. SVMs
excel in handling both linearly separable and non-linearly separable
data by employing various kernel functions to map the data into
higher-dimensional spaces, enabling linear separation. SVMs are
particularly effective in high-dimensional spaces and are less prone
to overfitting; however, they can be computationally intensive,
especially for large datasets.

3 Results

The results of our study demonstrate a comprehensive
approach to fatigue classification utilizing electromyographic
(EMG) signals. We began the process with preprocessing the
EMG signals, followed by decomposition using ICEEMDAN.
This decomposition facilitated the extraction of components
in both the time and frequency domains, enabling a detailed
analysis of the underlying physiological phenomena associated
with fatigue. Figure 2 illustrates the decomposition of a preprocessed
EMG signal into 13 IMFs and a residual component using the
ICEEMDAN method. This figure demonstrates the effectiveness
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FIGURE 2
ICEEMDAN decomposition of an EMG signal in its 13 IMFi, i = (1,2, …,13).

FIGURE 3
The normalized features of different fatigue levels extracted from raw
data (∗p < 0.05,∗∗p < 0.01).

of ICEEMDAN as a standardized methodology for accurately
decomposing signals.

Subsequently, we conducted feature extraction on the raw
data and decomposed components, encompassing time-domain,
frequency-domain, time-frequency domain, and nonlinear features.
This multi-dimensional feature set captured diverse aspects of the
signal characteristics associated with fatigue, thereby enhancing the
discriminative power of our classification model. The trend changes
of these features are illustrated in Figures 3, 4.

To visualize and further refine the feature space, we employed
t-SNE to nonlinearly reduce the dimensionality of the extracted
features to three dimensions. This transformation facilitated a
more intuitive representation of the data, potentially aiding in the
identification of distinct clusters corresponding to different fatigue
levels. t-SNE dimensionality reduction was applied to both the
original and decomposed EMG features, as illustrated in Figure 5.

Finally, we employed three machine learning methods (ANN,
KNN, SVM) for classification, leveraging the enriched feature
set and the reduced feature space obtained through t-SNE. SVM
exhibited the best performance. As illustrated in Figure 6, the
classification accuracy increases with the number of IMFs, and
the classification accuracy using dimensionality-reduced features is
higher than that of the original features. Our findings demonstrate
that, compared to the original features, the dimensionality-reduced
features have markedly enhanced the classification performance.
The method for calculating accuracy is as follows by Formula 16:

Accurary = TP+TN
TP+TN+ FP+ FN

(16)

where TP (True Positive) represents the number of true positive
results, TN (True Negative) represents the number of true negative
results, FP (False Positive) represents the number of false positive
results, and FN (False Negative) represents the number of false
negative results.

The classification accuracies were achieved by combining
three classifiers with EMD, Ensemble Empirical Mode
Decomposition (EEMD), Complementary Ensemble Empirical
Mode Decomposition (CEEMD), Complementary Ensemble
EmpiricalModeDecompositionwithAdaptiveNoise (CEEMDAN),
and ICEEMDAN for predicting exercise-induced fatigue are
noteworthy. The accuracy of classification results for various
decomposition methods is shown in Figure 7. In comparing
the decomposition methods, the three classifiers exhibit similar
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FIGURE 4
Changes in the features of the IMF of EMG during exercise.

FIGURE 5
Scattergrams using t-SNE method for reducing the high dimensionality of the feature set. (a) Dimensionality reduction of features extracted from raw
data. (b) Dimensionality reduction of features extracted from decomposed EMG data.
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FIGURE 6
Classification accuracy of original feature and feature dimensionality reduction.

FIGURE 7
Comparison of the achieved classification accuracy obtained from five
different signal decomposition methods.

performance overall, with ICEEMDAN and SVM demonstrating
the best combination. Specifically, SVM exhibited higher accuracy.
EMD-based methods demonstrate promising results, with EMD
alone achieving an accuracy of 90.9%, followed by EEMD at
91.3%. These methods leverage empirical mode decomposition
to extract IMFs, which capture the underlying oscillatory modes
present in the fatigue data. Moving towards enhanced performance,
CEEMD and CEEMDAN further refine the decomposition process,
leading to accuracies of 93.7% and 94.5%, respectively. These
improvements can be attributed to the complementary advantages
of ensemble empirical mode decomposition and complementary
ensemble empiricalmode decompositionwith adaptive noise, which
effectively handle nonlinearity and non-stationarity in the fatigue
signals. Notably, ICEEMDAN achieves the highest accuracy of
99.8%, indicating its superior capability in fatigue classification
when combined with SVM. ICEEMDAN integrates ensemble
empirical mode decomposition with an adaptive noise algorithm,
offering enhanced adaptability to complex signal variations
and noise. ICEEMDAN effectively captures subtle variations in
fatigue-related EMG signals, leading to superior classification
performance.

4 Discussion

Muscle fatigue is a critical factor influencing physical
performance, rehabilitation outcomes, and occupational safety
(Sun et al., 2022). The ability to accurately detect muscle
fatigue is essential for optimizing training regimens, preventing
injuries, and enhancing the efficacy of rehabilitation programs.
Traditional methods for assessing muscle fatigue often rely on
subjective measures (Zhou et al., 2011) or invasive procedures,
which may not provide real-time or precise feedback. This paper
highlights the efficacy of integrating advanced signal processing
techniques with machine learning algorithms for accurate and
reliable fatigue classification, aiming to improve the accuracy and
effectiveness of muscle activity analysis in various research and
clinical settings.

The results of this study highlight the effectiveness of combining
improved complementary ensemble empirical mode decomposition
adaptive noise (ICEEMDAN) (Liang et al., 2022)with support vector
machines (SVM) for classifying EMG signals. The decomposition
of EMG signals into intrinsic mode functions (IMFs) using
ICEEMDAN allows for a detailed analysis of muscle activity
across multiple domains (time, frequency, time-frequency, and
nonlinear). This comprehensive approach captures the nuances of
muscle fatigue progression, which is reflected in the significant
changes observed in EMG signal characteristics as fatigue increases.
The use of t-distributed stochastic neighbor embedding (t-SNE)
for dimensionality reduction further enhances the classification
performance by preserving the local structure of the data while
reducing its complexity.This superior performance can be attributed
to the robustness of ICEEMDAN in handling non-linear and non-
stationary EMG signals, combined with the powerful classification
capabilities of SVM (Chauhan et al., 2019). The outstanding
accuracy achieved by ICEEMDAN emphasizes its potential for
real-world applications requiring highly accurate fatigue detection,
such as sports performance monitoring and healthcare diagnostics.
The superior performance of ICEEMDAN can be attributed
to its ability to effectively capture subtle variations in fatigue-
related EMG signals, which is crucial for distinguishing between
different levels of fatigue. This capability is particularly valuable
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in dynamic environments where signal characteristics can vary
significantly.

Our study demonstrates that the combination of ICEEMDAN
and SVM provides a powerful tool for fatigue classification
using EMG signals. Compared with the results of fatigue
classification based on simple EMG characteristics, this study has a
higher accuracy (Jamaluddin et al., 2017). Further investigations
could focus on exploring the robustness of these methods
across diverse fatigue datasets, including different types of
physical activities and patient populations, and evaluating their
generalization capabilities in real-world scenarios. Additionally,
future work could involve exploring other advanced signal
processing techniques and machine learning algorithms to further
enhance the accuracy and reliability of fatigue classification. The
integration of real-time data processing and adaptive learning
mechanisms could also be explored to develop more responsive
and personalized fatigue monitoring systems. In sports training,
the ability to accurately detect muscle fatigue in real-time
can help coaches and athletes optimize training intensity and
duration, thereby reducing the risk of overtraining and injury.
In rehabilitation settings, this method can provide objective
feedback to clinicians, enabling them to tailor exercise protocols
to individual patient needs and monitor progress more effectively.
In occupational settings, particularly those involving repetitive or
physically demanding tasks, the detection of muscle fatigue can
help prevent work-related musculoskeletal disorders and improve
worker safety.

5 Conclusion

In conclusion, our study demonstrates the efficacy of a multi-
stage approach for identifying exercise-induced fatigue using
electromyographic (EMG) signals. By preprocessing the EMG
signals and decomposing them using ICEEMDAN, we were able
to extract a comprehensive set of features encompassing time-
domain, frequency-domain, time-frequency domain, and nonlinear
characteristics from the resulting components. Furthermore,
employing t-SNE enabled us to reduce the dimensionality of
the extracted features to three dimensions, facilitating a more
intuitive representation of the data. This nonlinear dimensionality
reduction technique aided in capturing the intrinsic structure
of the feature space, potentially improving the discriminative
power of subsequent classification models. Finally, leveraging
SVM for classification, we observed significantly enhanced
classification performance compared to conventional methods. The
integration of advanced signal processing techniques with machine
learning algorithms, as demonstrated in our approach, holds
promise for robust and accurate fatigue classification in various
domains, including sports science, healthcare, andhuman-computer
interaction.

Overall, our findings underscore the importance of adopting
a holistic approach that integrates signal processing, feature
extraction, dimensionality reduction, and classification techniques
for effective fatigue recognition. Future research endeavors could
investigate the generalizability and scalability of our methodology
across diverse populations, activities, and real-world applications.
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