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Introduction: The adequacy of hemodialysis (HD) in patients with end-stage
renal disease is evaluated frequently by monitoring changes in blood urea
concentrations multiple times between treatments. As monitoring of urea
concentrations typically requires blood sampling, the development of sweat-
sensing technology offers a possible less-invasive alternative to repeated
venipuncture. Moreover, this innovative technology could enable personalized
treatment in a home-based setting. However, the clinical interpretation of sweat
monitoring is hampered by the limited literature on the correlation between
urea concentrations in sweat and blood. This study introduces a pioneering
approach to estimate blood urea concentrations using sweat urea concentration
values as input.

Methods: To simulate the complex transport mechanisms of urea from
blood to sweat, a novel pharmacokinetic transport model is proposed.
Such a transport model, together with a double-loop optimization strategy
from our previous work, was employed for patient-specific estimation of
blood urea concentration. 32 patient samples of paired sweat and blood
urea concentrations, collected both before and after HD, were used to
validate the model.

Results: This resulted in an excellent Pearson correlation coefficient (0.98,
95%CI: 0.95–0.99) and a clinically irrelevant bias (−0.181 mmol/L before and
−0.005 mmol/L after HD).

Discussion: This model enabled the accurate estimation of blood urea
concentrations from sweat measurements. By accurately estimating blood
urea concentrations from sweat measurements, our model enables non-
invasive and more frequent assessments of dialysis adequacy in ESRD
patients. This approach could facilitate home-based and patient-friendly dialysis
management, enhancing patient comfort while enabling more personalized
treatment across diverse clinical settings.

KEYWORDS

kidney failure, end-stage renal disease, patient monitoring, pharmacokinetic modeling,
inverse modeling
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1 Introduction

Monitoring urea concentrations in blood is essential for
determining the adequacy of HD in patients with end-stage
renal disease (ESRD). The necessity of frequent hospital visits for
the HD treatment, often multiple times per week, significantly
diminishes the quality of life of these patients. Home-based HD
treatment could improve patients’ quality of life by reducing
travel and providing a familiar environment. Additionally,
customizing HD treatment to meet individual patient requirements
could further optimize their treatment and, consequently,
improve their wellbeing. To realize these personalized HD
treatments in home settings, there is an urgent clinical need for
developing non-invasive alternatives to frequent venipuncture.
These alternatives should be capable of remote and continuous
monitoring of biomarkers, both during and in intervals between
HD sessions.

As a non-invasive biofluid, sweat contains a wide variety of
biomarkers, including urea, presenting a promising alternative for
assessing blood urea concentration. Although the measurement
of urea concentrations in sweat is now achievable (Futane et al.,
2023), the clinical consideration of sweat urea concentrations
remains limited due to the unclear relationship between urea
concentrations in sweat and blood. In previous work of our group
and other recent literature, concentrations of urea in sweat are
found to be somewhat higher than in plasma (Adelaars et al.,
2024; Al-Tamer et al., 1997; Bulmer, 1957), implying that urea
might not only diffuse passively over the different compartments.
Possible explanations for the higher concentration in sweat
include an additional urea source outside plasma like epidermal
accumulation of urea (Brusilow, 1967; Gordon et al., 1976), the
impact of evaporation on sweat urea concentrations, cleavage
of arginine to urea in the sweat gland (Szondi et al., 2021;
Baker et al., 2022), and active transport mechanisms via urea
transporters in the sweat gland membrane (Xie et al., 2017). To
our knowledge, no study has established a method to estimate
plasma urea concentrations based on measurements in sweat.
Advanced modeling of the urea transport mechanism from
plasma to sweat would provide valuable insights into the kinetics
of urea and facilitate the clinical interpretation of sweat urea
monitoring results.

In a previous study of our group (Yin et al., 2024), we proposed
a novel double-loop strategy using a glucose transport model that
enables estimations of blood glucose concentrations based on sweat
measurements in a personalized manner. It is important to note that
this method is specifically designed for glucose monitoring, where
the transport mechanism is known to be purely passive. Compared
to glucose, urea transport kinetics between blood and sweat are
more complex.

Building on the optimization framework introduced in our
previous work (Yin et al., 2024), here we propose an innovative
method that allows for the estimation of urea in blood using
sweat urea concentrations, taking into account the complex kinetic
behavior of urea. By incorporating physiological mechanisms into
the modeling of urea transport, this approach offers a more
robust clinical interpretation of sweat-based urea monitoring. This
approach was tested on a population of ESRD patients with a large
variation in urea concentrations across HD.

2 Materials and methods

2.1 Urea transport model

To simulate the mechanism of urea transport from blood to
sweat, a pharmacokinetic urea transport model was developed using
COMSOL Multiphysics® software (Zoetermeer, Netherlands). This
model builds upon the glucose transport model from previous work
(Yin et al., 2024), which exclusively considered a passive transport
mechanism based on convection and diffusion. The urea transport
model is composed by three compartments: the blood capillary,
interstitial fluid (ISF), and sweat gland.The overall transport process
is summarized in Figure 1.

Firstly, a flow rate of urea from the blood capillary compartment
to the ISF compartment, denoted as Jsource in mol s−1, arises due to
the concentration difference of urea between the plasma and the ISF.
This process can be described as shown in Equation (1)

Jsource = kDE (Cp −CISF)Vp, (1)

where Cp and CISF are the concentrations of urea in mol m−3 in
plasma and ISF, respectively, kDE is the dermal clearance constant of
urea in s−1 (Ibrahim et al., 2012), quantifing the rate at which urea
is transferred from the capillary to the ISF, and Vp is the effective
volume of the blood capillary compartment related to a single sweat
gland inm3 (Himeno et al., 2016).

At the same time, due to the pressure difference between the
blood capillary compartment and the ISF compartment, water flows
from the blood capillary into the ISF at a flow rate denoted byQwater
inm3 s−1.This process is modeled by the Starling equation as shown
in Equation (2)

Qwater = Lp,cAc (Pc − PISF) , (2)

where Lp,c represents the hydraulic conductivity in m s−1 mmHg−1

(Kellen and Bassingthwaighte, 2003), Ac represents the blood
capillary compartment surface area inm2 (Haggerty and Nirmalan,
2019), Pc is the capillary hydrostatic pressure in mmHg (Haggerty
and Nirmalan, 2019), and PISF is the interstitial hydrostatic pressure
inmmHg (Haggerty and Nirmalan, 2019).

The water flow velocity in the ISF compartment, uISF (in
m s−1), is given by dividing the water flow rate, Qwater, by
the cross-sectional area of the ISF compartment, AISF (in m2),
as shown in Equation (3)

uISF =
Qwater

AISF
. (3)

In the ISF compartment, urea undergoes a joint process of
convection and diffusion, and a portion of it is also actively
transported out this compartment. This active transport is
facilitated by urea transporters located in the following sweat
gland compartment (Xie et al., 2017). The transport process can
be modeled as shown in Equation (4)

∂CISF

∂t
=
Jsource
VISF
+DISF

∂2CISF

∂y2ISF
− uISF

∂CISF

∂yISF
− S, (4)

where VISF is the effective volume of the ISF compartment related
to a single sweat gland in m3 (Himeno et al., 2016), DISF is the urea
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FIGURE 1
(A) Schematic illustration of the urea transport mechanism from blood to sweat along a single sweat gland, encompassing both passive and active
transport. (B) Compartmental model and relevant formulas for urea transport.

diffusion coefficient in the ISF inm2 s−1 (Steiner, 1981), and yISF is
the distance between urea and the entrance of the ISF compartment
in m. S represents the rate at which urea is actively transported out
of the ISF compartment in mol m−3 s−1, serving as a sink term that
reflects the active clearance rate of urea from the ISF compartment.
This active transport removes urea from the ISF and transfers it
into the sweat gland compartment, where the same term S acts
as a source.

Thereafter, due to the concentration gradient between the ISF
compartment and sweat gland compartment, urea is passively
transported to the sweat gland compartment through diffusion
across the gland wall.This process can be quantified by the urea flux
JISF−sg inmol s−1, and can be described by the Fick’s first law as shown
in Equation (5)

JISF−sg = Dsg,wall

∂(CISF −Csg)
∂hsg

, (5)

where Dsg,wall in m2 s−1 is the urea diffusion coefficient for the
gland wall (Steiner, 1981), Csg is the concentration of urea in the
sweat gland compartment in mol m−3, and hsg is the gland wall
thickness inm (Sonner et al., 2015).

Water flows from the ISF compartment into the sweat gland
compartment, and then to the skin’s surface, driven by the pressure
difference (ΔP in mmHg) between the ISF and the external
environment through the sweat gland (Schulz, 1969).Thewater flow
rate Qwater,sg in m3 s−1, is described using Darcy’s law as shown in
Equation (6)

Qwater,sg =
ΔP
R
, (6)

where R in Pa ⋅ s m−3 is the hydraulic resistance, and ΔP is the
pressure difference under passive sweating conditions.Thehydraulic
resistance R is expressed as shown in Equation (7)

R =
128μL
πd4
, (7)

where μ in Pa ⋅ s is water viscosity (Kestin et al., 1978), L in m is the
length of the sweat gland compartment (Wilke et al., 2007), d in m
is the luminal diameter of the sweat gland (Hibbs, 1958).

The pressure difference in Equations 2, 6 are closely related, with
the interstitial pressure PISF acting as a common variable linking
the water flow from the blood capillaries into the ISF and from the
ISF into the sweat gland. For instance, if the pressure difference
across the sweat gland (ΔP) becomes zero, water flow through the
sweat gland ceases, halting sweat secretion. As a result, without the
removal of water via the sweat gland, the continued influx of water
from the capillaries would increase PISF, decreasing the pressure
difference (Pc − PISF) in Equation 2. This would lead to a decrease
in Qwater, the water flow rate from the capillaries into the ISF, until
equilibrium is reached when (Pc − PISF) becomes zero, and water
flow from the blood capillaries stops entirely.

The water flow velocity in the sweat gland compartment, usg
in m s−1, is adjusted with a correction factor, usweat,n, to account
for variations between passive sweating condition and experimental
conditions involving sweat stimulation, as shown in Equation (8)

usg =
Qwater,sg ⋅ usweat,n

Asg
, (8)

where Asg is the luminal area of the sweat gland inm2, usweat,n is the
normalized experimental sweat velocity, normalized relative to the
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passive sweat velocity (3× 10−4 m s−1 (Nie et al., 2018)).This factor
represents physiological influences, such as exercise or temperature
changes, ensuring the model reflects real-world conditions.

Simultaneously, a fraction of the urea is actively transported into
the sweat gland by urea transporters, which move urea against its
concentration gradient (Xie et al., 2017). As water enters the sweat
gland, a fraction of it is absorbed by the duct wall, reducing the
water content and thereby increasing the concentration of urea. Both
the passively- and actively-transported urea flow through the sweat
gland to the skin surface. This process can be modeled using the
diffusion-convection equation as shown in Equation (9)

∂Csg,dil

∂t
= Dsw

∂2Csg,dil

∂y2sg
− usg

∂Csg,dil

∂ysg
+ S, (9)

where Csg,dil is the diluted concentration of urea in the sweat gland
compartment in mol m−3, Dsw is the urea diffusion coefficient in
sweat in m2 s−1 (Chikode et al., 2021), ysg is the distance between
the urea and the entrance of the sweat gland compartment in m,
S represents the urea transport rate in mol m−3 s−1, serving as a
source term that reflects the active transport of urea mediated by
urea transporters. The source term S in this equation is equal in
magnitude to the sink term S in Equation 4, representing the same
physiological process of the active transport of urea from the ISF
compartment to the sweat gland compartment. This ensures mass
conservation within the system.

Due to the dilution effect of water entering the sweat gland
and the absorption of a fraction of this water by the duct wall
(Schwartz et al., 1953), the original concentration of urea in the
sweat gland (Csg) is impacted.This results in a diluted concentration
(Csg,dil), which can be described as shown in Equation (10)

Csg,dil =
Csg

1+Kw/uusg,n
, (10)

Where Kw/u is the dimensionless ratio of the volumetric flow rate of
water to urea (Kancharla et al., 2019), and usg,n is the sweat gland
water flow velocity (usg) normalized to the passive sweat velocity, as
defined in Equation 8.

2.2 Inverse estimation of blood urea using
double-loop optimization

As shown in Figure 2, solving the inverse problem by estimating
blood urea concentration from sweat urea concentration can be
realized using a double-loop optimization strategy, similarly to
in our previous work on glucose estimation (Yin et al., 2024).
This strategy consists of two intertwined optimization loops: the
first loop refines the estimated blood urea concentration (Ĉblood,i),
while the second loop updates the physiological parameter values
(θ̂) of the urea transport model. These loops operate iteratively,
with one loop succeeding the other to minimize the error
between the estimated and experimentally measured sweat urea
concentrations.

2.2.1 Initialization of parameters
The optimization process begins with initializing the blood

urea concentration (Ĉblood,0) and the transport model parameters

(θ̂). We set Ĉblood,0 to 6.4 mmol L−1, which is the average of
our experimental post-HD blood urea concentrations. The urea
transport model parameters θ̂, excluding the urea source term (S),
are initially set based on values from literature (see Table 1 for
details). The value of S is initialized to 0 due to the lack of reference
values in existing studies. Setting S to 0 assumes that urea transport
relies solely on passive urea transport mechanisms.

2.2.2 Optimization processes
Using the initialized parameters, we input Ĉblood,0 into the

urea transport model to estimate the sweat urea concentration
(Ĉsweat,0). The estimated concentration is then compared with
the experimentally measured value (Csweat), and the error (ei)
for each i-th iteration is quantified using the squared error
as shown in Equation (11)

ei = (Csweat − Ĉsweat,i)
2, (11)

where Csweat is the experimentally measured sweat urea
concentration, and Ĉsweat,i is the estimated sweat urea concentration
for the same data point in the i-th iteration.

Theoptimizationprocess continues until ei < 0.01 mmol2 L−2.
At this point, the estimated urea concentration in blood (Ĉblood,i)
is considered the final estimate (Ĉblood, final). For a more detailed
explanation of the double-loop optimization, please refer to our
previous work (Yin et al., 2024).

2.3 Data sources and performance metrics

2.3.1 Urea data sources
This developed model was validated with data obtained during

the observational clinical trial that is registered in the International
Clinical Trials Registry Platform (UMIS Study, ID NL9831). The
studywas approved by the local ethical review board and themedical
research Ethics CommitteesUnited (MEC-U), andwritten informed
consent was obtained from each patient before participation. This
study was carried out in accordance with the principles of the
Declaration of Helsinki (Fortaleza, Brazil, October 2013) and in
accordance with Dutch law. In the UMIS study, a total of 40 patients
were initially included. At the beginning and end of a single HD
cycle, both sweat and blood samples were collected from patients.
Sweat samples were gathered from the forearm using theMacroduct
Advanced Sweat Collection System (Elitechgroup, Logan, Utah,
United States), following the manufacturer’s guidelines. Sweat
samples were collected under routineHD conditions, where patients
typically remained seated or reclined throughout the procedure.
While our protocol specified the general sample collection method,
we did not explicitly track or control factors such as recent physical
activity or dietary intake prior to sweat collection. However, given
that participants remained in a resting state duringHD and followed
standard pre-dialysis dietary guidelines, we did not consider the
potential variability in sweat urea concentration due to these factors
within this controlled clinical setting. Concurrently, blood samples
were obtained while patients were connected to the HD machine,
with dialysis flow temporarily reduced from 300 to 100 mL/min. All
collected samples were centrifuged within 2 h after collection and
urea concentrations ware determined using a kinetic method by the
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FIGURE 2
Double-loop optimization flowchart for inverse estimation of blood urea concentrations from sweat urea concentrations: Loop 1 refines the estimated
blood urea concentrations, and Loop 2 optimizes the parameter values of the urea transport model, with the two loops alternating sequentially.

Cobas Pro analyzer (Roche Diagnostics, Rotkreutz, Switzerland).
For further information regarding the acquisition protocol, please
refer to the study by Adelaars et al. (2024). In this work, 8 patients
were excluded due to the absence of at least one required sweat
measurement before and/or after HD. The missing values were
attributed to the low volume of collected sweat, which hindered the
accurate quantification of urea. Consequently, the study proceeded
with 32 patient samples, involving paired sweat and blood urea
concentrations collected both before and after HD, to validate
the model. Figure 3 illustrates the measured sweat urea versus
measured blood urea concentrations. Table 2 presents the baseline
characteristics of the 32 included patients.

2.3.2 Performance metrics
The accuracy of our estimation strategy was assessed by

computing the Root Mean Square Error (RMSE) and Root
Mean Square Percentage Error (RMSPE) (Taraji et al., 2017),

and determining the Pearson Correlation Coefficient R, between
the estimated and experimental values. To assess the impact
of GFR variability on model performance, subjects were
stratified into three groups based on their GFR values: low GFR
( <5 mL/min/1.73 m2), mid GFR (5–8 mL/min/1.73 m2), and high
GFR ( >8 mL/min/1.73 m2). Model performance was evaluated
separately for each group using RMSE and RMSPE to determine
whether estimation accuracy varied across different levels of
residual renal function. Furthermore, a Bland-Altman analysis was
conducted to analyze the agreement between the experimental data
and estimated results.

To evaluate the significance of the urea source term S in the
urea transport model, we compared Ĉblood, final with that obtained
by using a “passive urea transport model”. In the latter, all the
model parameters, with exception of the S, were optimized,
while S was set at 0 to exclusively account for passive transport
mechanisms. Both models were tested using the same experimental
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TABLE 1 Parameters used in the urea transport model.

Parameter Unit Value Ref

Capillary hydrostatic pressure: Pc mmHg 30 Haggerty and Nirmalan (2019)

Capillary hydraulic conductivity: Lp,c m s−1 mmHg−1 6.5× 10−10 Kellen and Bassingthwaighte (2003)

Dermal clearance constant of urea: kDE s−1 1.2× 10−3 Ibrahim et al. (2012)

Diffusion coefficient of urea for gland wall: Dsg,wall m2 s−1 3.01× 10−10 Steiner (1981)

Diffusion coefficient of urea in ISF: DISF m2 s−1 9.29× 10−10 Steiner (1981)

Diffusion coefficient of cortisol in sweat: Dsw m2 s−1 1.38× 10−9 Chikode et al. (2021)

Effective area of sweat gland: Asg m2 1.96× 10−11 Hibbs (1958)

Effective surface area of capillary: Ac m2 1.5× 10−8 Himeno et al. (2016)

Effective cross-sectional area of ISF: AISF m2 2.2× 10−8 Himeno et al. (2016)

Effective volume of capillary: Vp m3 3.02× 10−13 Himeno et al. (2016)

Effective volume of ISF: VISF m3 6.0× 10−13 Himeno et al. (2016)

Interstitial hydrostatic pressure: PISF mmHg −3 Haggerty and Nirmalan (2019)

Inner luminal diameter of sweat gland: d m 5× 10−6 Hibbs (1958)

Length of sweat gland: L m 4× 10−3 Wilke et al. (2007)

Ratio of volumetric flow rate of water to urea: Kw/u - 2.5 Kancharla et al. (2019)

Thickness of sweat gland wall: hsg m 5× 10−5 Sonner et al. (2015)

Viscosity of water: μ Pa ⋅ s 1× 10−3 Kestin et al. (1978)

FIGURE 3
Relationship between measured sweat and blood urea concentrations
in patients undergoing HD.

datasets to assess the estimation performance. Two-tailed
Wilcoxon signed-rank tests were applied to evaluate the statistical
significance of the differences in estimation performance between
the two models.

2.3.3 Parameter sensitivity analysis for the urea
transport model

We conducted a sensitivity analysis to assess the extent to
which each parameter of the urea transport model, along with its
input Cp, can be accurately estimated. To this end, we assessed
the sensitivity of the simulated sweat concentration to variations in
bothmodel parameters andCp, identifying key variables influencing
the model’s output. For most model parameters and the input Cp,
100 samples were drawn from a Gaussian distribution centered
at each parameter’s literature value, with a standard deviation set
to 10% of the mean. The urea source term (S), whose values are
not available from the literature, was set based on the average of
our estimates. Matched simulated sweat urea concentrations were
computed for each variation, and corresponding coefficients of
variation (CV) (Krishnamoorthy and Lee, 2014) were calculated to
quantify the model’s sensitivity.

2.3.4 Robustness analysis for the double-loop
optimization strategy

To evaluate the robustness of the double-loop optimization
strategy to its initial input, the estimated blood urea concentration
Ĉblood,0, its value was varied from 0 to 50mmol L−1 in intervals of 10
mmol L−1. For each variation, the RMSPE of estimation results was
computed, and the corresponding CVs were calculated.
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TABLE 2 Patient characteristics and measured urea concentrations (N =
32): BMI (body mass index), IQR (interquartile range), GFR (glomerular
filtration rate).

Variable Number Percentage (%)

Gender, men 23 71.9%

BMI

  < 18 1 3.1%

 18–25 10 31.3%

 25–30 14 43.8%

  > 30 7 21.9%

Variable Median IQR (Q1–Q3)

Age, years (min–max) 68 (22–90) 60–77

GFR (mL/min/1.73 m2) 7.2 4.8–8.2

Sweat Concentrations (mmol/L)

Pre-HD 28.57 22.05–33.90

Post-HD 12.01 8.07–15.03

Plasma Concentrations (mmol/L)

Pre-HD 23.16 19.00–27.00

Post-HD 6.40 4.28–7.90

3 Results

The plasma urea concentrations estimated using our novel
approach are presented in Figure 4A, demonstrating a very high
correlation coefficient of 0.98, with a RMSE of 2.9 mmol L−1

and a RMSPE of 17.4% acquired before and after HD. In
contrast, the results of the passive urea transport model (Figure 4B)
showed significantly higher errors with a RMSE and RMSPE
of 341.90 mmol L−1 and 2,627.17% (p-value<0.001), while its
correlation coefficient was still higher than 0.70, as shown in
Table 3. Notably the estimation results of the passive urea transport
model, as depicted in Figure 4B, are substantially divergent from
the experimental value, indicating a marked overestimation. The
model’s estimation performance was further analyzed across
different GFR levels. Table 4 summarized the RMSPE and RMSE of
blood urea estimation pre- and post-HD. Pre-HD RMSPE ranged
from 10.6% to 19.2%, while post-HD RMSPE varied between 13.9%
and 19.9%. The absolute difference of RMSPE across GFR groups
remained within 9%.

The results of the Bland-Altman analysis are shown in
Figure 4, assessing the agreement between estimated and
experimentally determined blood urea concentrations for both
pre-HD (Figure 5A) and post-HD (Figure 5B) data sets. The mean
bias was −0.17± 5.64 mmol L−1 (mean ± Limits of Agreement
(LoA)) before HD (Pre-HD) and 0.01± 1.89 mmol L−1 after
HD (Post-HD).

Figure 6 shows the distribution of estimated values for the urea
active transport term S pre- and post-HD. For pre-HD, the median
(IQR) value of S is 0.51 (0.11) mmol L−1 s−1. For post-HD, the
median (IQR) value of S is of 0.21 (0.06)mmol L−1 s−1.

Table 5 displays the results of the sensitivity analysis for the
parameter values of the urea transport model, reporting only those
model parameters that exhibit a CV higher than 1%. Among all
parameters, the diffusion coefficient of urea in sweat Dsw has the
highest CV at 8.8%, followed by the urea source term S with a
CV of 7.2%. Additionally, the robustness analysis showed that the
CV of the RMSPE for the estimated blood urea concentration
(Ĉblood,0) was 0.06%.

4 Discussion

In this study, we introduced a novel urea transport model to
describe the process of urea transport from blood to sweat through
a single sweat gland, considering both passive and active transport
mechanisms.

4.1 Model accuracy and robustness

The urea concentration before and after HD was accurately
estimated by the proposed urea transport model, with an average
RMSE of 2.1mmol L−1 and a correlation coefficient of 0.98 (95% CI:
0.95–0.99). Across all observed GFR levels, the model exhibited
consistent estimation performance, with RMSPE variability
remaining below 9% across different GFR groups. This suggests
that the relationship between sweat and blood urea concentrations
remains robust within all observed GFR levels, indicating that
residual renal function does not significantly impact the validity
of the proposed model. Additionally, since HD sessions occurred
at different times of the day, any existing circadian variation was
inherently reflected in themeasured blood urea values.This suggests
that our model captures urea transport dynamics across varying
time points without requiring explicit circadian adjustments.
Moreover, in dialysis patients, the impact of treatment schedules
on urea levels may partially overshadow circadian fluctuations,
further supporting the robustness of our approach in real-world
clinical applications. Several physiological and environmental
factors influence sweat secretion, including variations in sweat
gland density across anatomical sites, age-related changes in gland
function, and external conditions such as temperature and humidity
(Baker, 2019; Schmidt et al., 2022; Taylor and Machado-Moreira,
2013). These factors primarily affect sweat rate rather than the
underlying urea transport mechanisms. Since our model explicitly
incorporates each individual’s measured sweat rate as an input
parameter, it inherently accounts for these variations, ensuring
robust estimation of blood urea concentrations across different
conditions.

Further validation of our urea transport model was performed
using Bland-Altman analysis to compare the model estimates
with experimental plasma values. The analysis revealed a clinically
irrelevant bias of −0.17 mmol L−1 for pre-HD and −0.01 mmol L−1

for post-HD that are well within the analytical inaccuracies of urea
assays and biological variation (“EFLM Biological Variation,” n.
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FIGURE 4
Comparison of estimated vs experimental blood urea concentrations based on measured sweat urea concentrations (A) Estimations using the urea
transport model incorporating both passive and active transport (B) Estimations derived solely from passive transport within the same model.

TABLE 3 Overview of the urea transport models’ performance.

Model Transport Moment Correlation (95% CI) RMSE (mmol/L)

Full Urea Transport Model Active + Passive

Pre HD 0.92 (0.84–0.96) 2.9

Post HD 0.92 (0.83–0.96) 1.0

Total 0.98 (0.95–0.99) 2.1

Passive Urea Transport Model Passive

Pre HD 0.73 (0.51–0.86) 433.4

Post HD 0.70 (0.46–0.84) 214.4

Total 0.86 (0.74–0.93) 341.9

TABLE 4 Model performance metrics across different GFR groups.

Metric Low GFR ( < 5) Mid GFR (5–8) High GFR ( > 8)

Subject Numbers 9 13 10

Pre-HD RMSPE (%) 19.2 10.6 10.8

Post-HD RMSPE (%) 13.9 19.9 16.9

Pre-HD RMSE (mmol/L) 4.1 2.6 1.7

Post-HD RMSE (mmol/L) 1.0 1.1 0.7

d.). These near-zero values underscore the high accuracy of our
proposed urea transport model.

Beyond evaluating the accuracy and performance of our
model, we also investigated its robustness under varying initial
conditions to ensure reliability across a broad spectrum of clinical
scenarios. Specifically, the initial value of the model input, i.e., the
estimated blood urea concentration (Ĉblood,0), was varied from 0
to 50 mmol L−1. The resulting coefficient of variation was 0.06%,
indicating that changes in input initialization had only a minimal
effect on the final estimation of blood urea concentration. This
finding demonstrates the negligible impact of input variability on

the model outcomes, underscoring its robustness against local error
minima. Such stability not only enhances the reproducibility of
the model predictions but also ensures reliable estimations across
diverse clinical contexts.

4.2 Mechanistic insights into urea transport

The strategy proposed in this paper introduces an active
transport mechanism of urea through the model parameter S.
The presence of active transporters is supported by existing
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FIGURE 5
Bland-Altman Analysis of (A) Pre-HD and (B) Post-HD Estimation Results. The dashed lines represent the 95% limits of agreement, which are derived as
the mean difference ± 1.96 times the standard deviation (SD).

FIGURE 6
Box plot depicting distribution of estimated urea source (S) values for
Pre-HD and Post-HD statuses.

literature. Consistent with previous research from our group
(Adelaars et al., 2024) and others (Bulmer, 1957; Al-Tamer et al.,
1997; Adelaars et al., 2024), we found that experimental urea
concentrations in sweat are higher than those in plasma. There
is only very limited literature about the possible urea transport
mechanisms that could explain the elevation in sweat. Although
several dated studies hypothesize an epidermal source of urea
(Brusilow, 1967), these were not scientifically confirmed. More
recently, Xie et al. (2017) identified increased expression of active
urea transporters (UTs) in themembranes of sweat glands in uremic
patients. This suggests an enhanced active transport of urea into
sweat under uremic conditions. Furthermore, existing literature
confirms the presence of aquaporins-5 (AQP-5) in the sweat gland
(Nejsum et al., 2002; Inoue et al., 2013), indicating the possibility of
either active dilution or desiccation of urea within the sweat gland
through active water transport. This observation also aligns with

our introduction of the parameter S in the model. The introduction
of the source term S in our urea transport model offers insights
into the dynamics of urea transport, particularly in response to the
physiological changes induced by HD. Pre-HD, when blood urea
concentrations are elevated, the mean value of S was also higher,
likely due to increased interactions betweenureamolecules and their
transporters. Conversely, post-HD analysis revealed significantly
lower S values, consistent with the expected reduction in urea
transport activity following dialysis.

The critical role of S in our urea transport model is further
clarified through the presented sensitivity analysis (Table 5). With a
CV of 7.2%, S is the second most influential parameter affecting the
performance of our proposed urea transport model. The diffusion
coefficient of urea in sweat (Dsw) emerged as the most sensitive
parameter, with a CV of 8.8%. These findings highlight the model’s
sensitivity to changes in different physiological conditions, as
reflected by variations in key parameters. The diffusion coefficient
Dsw represents the ease by which urea molecules move in the
sweat gland. Clinically, this parameter may vary due to differences
in glandular function, which are known to change with age
(Schmidt et al., 2022). Lower Dsw values might suggest reduced
gland function, commonly observed in aging individuals. Similarly,
the urea source term S represents the active transport of urea into
the sweat gland, influenced by transporter expression. Elevated
S values may reflect upregulated transporter activity, potentially
associated with uremic conditions, as suggested by Xie et al. (2017).
These findings emphasize the importance of personalized parameter
estimation to ensure reliable model performance.

4.3 Comparison with existing models

When considering amodel accounting for passive urea transport
only, the results show a significant under performance due to a
systematic overestimation of blood urea concentrations. Such an
overestimation by the passive urea transport model is attributed
to its exclusive reliance on the passive transport mechanisms of
diffusion and convection. When these are the sole mechanisms
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TABLE 5 Sensitivity analysis of key parameters in the urea transport model.

Parameters Symbol Unit Coefficient of variation (CV)

Diffusion coefficient of urea in sweat Dsw m2s−1 8.8%

Urea source term S mol m−3s−1 7.2%

Ratio of volumetric flow rate of water to urea Kw/u - 4.7%

Urea concentration in plasma Cp mol m−3 2.1%

Thickness of sweat gland wall hsg m 1.1%

considered, the influx of water into the sweat glands leads to
a dilution effect that notably reduces the urea concentrations in
sweat, which is responsible for the observed overestimation. Our
urea transport model addresses this limitation by incorporating an
additional term, S, which represents the active transport of urea
mediated by urea transporters. This adjustment effectively corrects
for the dilution effect and its associated overestimation.

The only existing research focused on estimating plasma urea
from sweat urea concentrations was performed by our group using
linear regression analysis (Adelaars et al., 2024). Adelaars et al.
(2024) indicated an average RMSE and RMSPE of 4.3 mmol L−1

and 37.7%, respectively, which are doubled with respect to the
2.1 mmol L−1 and 15.6% achieved by our work. Adelaars et al.
(2024) also reported a Spearman’s correlation coefficient of 0.92
(95% CI: 0.88–0.95). In comparison, our model exhibited superior
performance, achieving a Spearman’s correlation coefficient of 0.98
(95% CI: 0.95–0.99). These findings indicate that the urea transport
model proposed in this study more accurately estimates blood urea
concentrations from sweat measurements.

4.4 Clinical implications and future
directions

Our study demonstrates the efficacy of kinetic modeling
in elucidating the dynamics of urea across body fluid and its
relationship with plasma concentrations both during and between
HD sessions. This methodology could enable more personalized
monitoring andmanagement of renal failure patientswho are not yet
undergoing HD treatment, potentially postponing the clinical need
for HD. It also holds promise for extending its application to predict
plasma concentrations of other clinically relevant biomarkers using
sweat-sensing technology.

Our urea transport model represents an important step towards
clinical implementation of sweat-based urea monitoring, which
has been hampered by the unclear relationship between urea
concentrations in blood and sweat.This advancement could broaden
the scope of non-invasive patient monitoring, paving the way
for innovative, patient-friendly tools that enhance clinical practice
beyond ESRD. Moreover, our proposed method not only estimates
blood urea concentrations, but also provides physiologically
meaningful model parameters, offering insights for improved
diagnosis and decision-making, and contributing to achieving more
personalized and effective patient care. Clinically, this modeling
framework could be integrated into sweat-sensing devices for home-
based urea monitoring, reducing the need for frequent blood

draws and enabling more frequent assessments of dialysis adequacy.
In home dialysis settings, such non-invasive technology could
improve patient comfort and adherence, allowing earlier detection
of inadequate dialysis and timely treatment adjustments. This
approach may ultimately enhance quality of life for ESRD patients
by minimizing hospital visits and personalizing therapy schedules.

With this model, we have taken the initial steps towards
enabling the clinical interpretation of sweat urea concentrations,
validated with data from 32 patients undergoing HD. However, the
study presents some limitations. First, the computational demand
of our approach is relatively high. Multiple simulation iterations
lead to computation times of approximately 5–10 min per data
point, which may hinder its application for real-time monitoring
in clinical settings. Future work should focus on developing
more efficient algorithms or streamlined simulation techniques to
facilitate real-time estimation. Second, the dataset used in this study
is relatively small and lacks healthy subjects and patients in the early
stages of kidney disease, potentially limiting the generalizability of
the model beyond individuals with ESRD. Although the dataset
includes diverse demographic and physiological factors, such as
sex, age (22–90 years), and BMI (18–30), it does not explicitly
categorize factors like concomitant drug use and ethnicity, whose
influence on sweat physiology remains unexamined. Findings by
Xie et al. (Xie et al., 2017) suggest a decrease in AQP5 expression
in uremic patients compared to healthy individuals, indicating
that transport mechanisms for urea and water may vary across
populations. Moreover, the study was conducted in a relatively
controlled clinical setting (HD) and did not systematically assess
the impact of demographic and environmental factors, such as
temperature and humidity, on model performance. Future studies
should validate the model in a broader population, including
both healthy individuals and patients at earlier stages of kidney
disease, while investigating how demographic and environmental
variables may affect model parameters. Additionally, 8 patients
were excluded due to insufficient sweat volume for accurate urea
quantification. While this represented only 20% of the study cohort,
it underscores a potential limitation in real-world applications,
particularly for individuals with limited sweat production. However,
current research is focusing on the development of microfluidic-
based devices for collection of low sweat volumes which should be
better investigated in the future to ensure reliable measurements
of sweat under various conditions (Moonen et al., 2024). Finally,
while this proposed strategy offers promise for non-invasive urea
monitoring, its adoption into practice may face certain obstacles.
Home-based monitoring devices, while enabling convenient and
frequent assessments, can be costly and may be unaffordable

Frontiers in Physiology 10 frontiersin.org

https://doi.org/10.3389/fphys.2025.1547117
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Yin et al. 10.3389/fphys.2025.1547117

for some patients. Besides, integrating these systems into clinical
workflows may require staff training and process adjustments.
Overcoming these challenges will require affordable device design,
simplifiedworkflows, and user-friendly implementation for effective
integration into routine care.

Although measuring urea concentrations in sweat has become
feasible, research towards the clinical significance of sweat urea
remains limited. This study introduces a novel urea transport
model that includes both active and passive transport of urea from
blood to sweat. By accurately estimating blood urea concentrations
from sweat measurements, our model bridges a crucial gap,
enabling the translation of sweat urea data into clinical insights.
This advancement facilitates the progression toward remote, non-
invasive ureamonitoring in patients with ESRD using sweat-sensing
technology.
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