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Objectives: Lumbar spinal stenosis (LSS) is an increasingly important issue related
to back pain in elderly patients, resulting in significant socioeconomic burdens.
Postoperative complications and socioeconomic effects are evaluated using the
clinical parameter of hospital length of stay (LOS). This study aimed to develop a
machine learning-based tool that can calculate the risk of prolonged length of
stay (PLOS) after surgery and interpret the results.

Methods: Patients were registered from the spine surgery department in our
hospital. Hospital stays greater than or equal to the 75th percentile for LOS was
considered extended PLOS after spine surgery. We screened the variables using
the least absolute shrinkage and selection operator (LASSO) and permutation
importance value and selected nine features. We then performed
hyperparameter selection via grid search with nested cross-validation.
Receiver operating characteristics curve, calibration curve and decision curve
analysis was carried out to assess model performance. The result of the final
selected model was interpreted using Shapley Additive exPlanations (SHAP), and
Local Interpretable Model-agnostic Explanations (LIME) were used for model
interpretation. To facilitate model utilization, a web application was deployed.

Results: A total of 540 patients were involved, and several features were finally
selected. The final optimal random forest (RF) model achieved an area under the
curve (ROC) of 0.93 on the training set and 0.83 on the test set. Based on both
SHAP and LIME analyses, intraoperative blood loss emerged as the most
significant contributor to the outcome.

Conclusion: Machine learning in association with SHAP and LIME can provide a
clear explanation of personalized risk prediction, and spine surgeons can gain a
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perceptual grasp of the impact of important model components. Utilization and
future clinical research of our RF model are made simple and accessible through
the web application.
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SHAP value

1 Introduction

Lumbar spinal stenosis (LSS) is one of the common spinal
diseases, which is a well-known cause of back pain, leg pain, and
neurogenic intermittent claudication (Katz et al., 2022). It is
estimated that 103 million people are suffering from LSS
worldwide, bringing a great socioeconomic burden on families
(Won et al., 2022; Ravindra et al., 2018). The treatment of LSS
can be categorized into conservative, interspinous spacers, epidural
steroid injections, and surgical decompression with or without
fusion (Paisley et al., 2012; Phan et al., 2016). However, surgical
decompression is still regarded as the most effective option (Davis
et al., 2017). Surgery for LSS requires more medical costs and, as a
result, costs more money than nonoperative options (Cairns et al.,
2019). One of the causes of the cost rise is the duration of the
postoperative length of stay in the hospital, which is also an indirect
indication of surgical recovery and postoperative problems. In other
words, a prolonged length of stay (PLOS) after surgery suggests a
delayed post-spine surgery recovery.

Previous research regarding the prolonged length of stay has
been reported about fusion and laminectomy (decompression)
surgeries (Lu et al., 2022; Saravi et al., 2022; Basques et al., 2014).
Independent risk factors, including age, American Society of
Anesthesiologists class (ASA), preoperative hematocrit, body
mass index, number of affected levels, liposomal bupivacaine,
operation time, etc., have been explained (Roh et al., 2020).
Additionally, it was thought that the enhanced recovery after
surgery (ERAS) protocol was a preferable option as it has been
demonstrated to speed up the recovery of physiological function and
decrease early postoperative discomfort, problems, and hospital
length of stay (LOS) (Dietz et al., 2019; Porche et al., 2022). Even
though some of the abovementioned research used complex
approaches, there are still some limitations when it comes to
clinical practice as the lack of utilized explanation approach.

The term machine learning describes a group of computer
science-based techniques that employ data patterns to recognize
or forecast outcomes. Machine learning (ML) techniques for
predictive modeling have recently attracted more attention.
While some ML algorithms have been around for a while, their
use for predicting new data from patterns that have already been
identified has only recently attracted significant attention. This has
allowed researchers to identify patterns that are difficult to recognize
from complex combinations of multiple biomarkers. The rise in ML
usage can be attributed to the emergence of the big data era as well as
to the creation of new algorithms and gradually increasing
processing capacity. It offers a potent set of tools to define and
may automatically create associations between the traits and
outcomes of interest, especially when they are nonlinear and
complex, by analyzing the available data and maximizing

performance criteria. Complex non-linear machine learning
models, on the other hand, have a reputation for being a black
box (inadequate interpretation) that fails to reveal the elements
influencing a prediction in situations when the majority of clinical
patterns identified in data are non-linear (Leidner et al., 2019; Marko
et al., 2017). Besides, insufficient model applicability in clinical
practice is also the main issue that needs to be solved (Zhang
et al., 2018; Jain and Potdar, 2021).

It is reported that medical data is increasing up to 48% annually,
and surges in data pose challenges for its proper utilization in
improving patient care, thus leading to the creation of numerous
new tools that rely on artificial intelligence (AI) and machine
learning (ML) (Gunzer et al., 2022). The rapid advancement in
computing power and accessibility has triggered a technological
revolution in medicine that is already altering various aspects of the
field, through the integration of AI and ML. ML is commonly
employed in various health-related tasks, such as the integration of
multiple variables to emulate human clinical decision-making skills,
automation of testing and treatment algorithms, recognition and
interpretation of patterns from imaging data, and monitoring trends
in test utilization. There is a noticeable necessity to implement
systematic principles of data science that are rationally driven to
manage the constantly expanding collection of qualitative and
quantitative elements of medical information and classification.

To address these shortcomings, this study combined the
advanced ML algorithm that includes more relevant features
available during the perioperative management period with
SHapley Additive exPlanations (SHAP) and other techniques for
model interpretation (Linardatos et al., 2020; Lundberg et al., 2020).
What is more, to improve the applicability of our final selected
optimal model, we deployed our model on an online website.

2 Methods

The study cohort included patients who had undergone spine
surgery at our hospital. Records were de-identified for this study,
and informed consent was not required for this retrospective study,
which was approved (K202309-15) by the institutional ethics
committee board of Xinjiang Medical University Affiliated
First Hospital.

2.1 Study population

This was a retrospective study in which we enrolled patients who
underwent open decompression and fusion surgery between January
2019 and November 2022, meeting the inclusion and exclusion
criteria. Decompression surgery is indicated for patients exhibiting
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spinal stenosis refractory to conservative interventions, provided
that comprehensive clinical and radiological assessment has
detected no evidence of spinal instability (Fritsch et al., 2017).
Fusion as a treatment modality for primary disc herniation is
generally rare, except in situations where recurrent herniation
remains unresponsive to decompressive or discectomy
procedures, or in circumstances where other factors such as
spinal stenosis with instability, spinal deformity, or adjacent
segment disease occurring from prior spinal fusion operations are
concomitant with concurrent disc herniation at the identical level
(Wu PH. et al., 2020). We enrolled patients who underwent both
decompression and fusion because they accounted for the vast
majority of patients.

The inclusion criteria were as follows: (Katz et al., 2022):
aged ≥18 years (Won et al., 2022); symptom of neurogenic
claudication (Ravindra et al., 2018); underwent open surgery
(decompression and fusion); and (Paisley et al., 2012) had
radiological (magnetic resonance imaging, MRI) assessment.
Most of the enrolled patients who had been admitted to our
department had severe symptoms of nerve compression and
vertebra instability.

The exclusion criteria were as follows: (Katz et al., 2022): age less
than 18 years (Won et al., 2022); complications with malignant
tumors (Ravindra et al., 2018); complications with lumbar
spondylolisthesis or lumbar spine fractures (Paisley et al., 2012);
complications with spine infectious diseases (Phan et al., 2016); with

spine deformity (Davis et al., 2017); with thrombosis (Cairns et al.,
2019); patients transferred to the intensive care unit (ICU).

2.2 Data collection

To investigate the risk of PLOS after surgery, we extracted all
available factors related to PLOS in the perioperative management
period, including basic information (age, gender, ethnicity, body
mass index [BMI], smoking, and alcohol), preoperative stage factors
(symptom durations, affected limb, muscle strength, erythrocyte
sedimentation rate [ESR], C-reactive protein [CRP], white blood cell
[WBC], hemoglobin, preoperative albumin [ALb], gamma-glutamyl
transferase [GGT], alanine aminotransferase [ALT], aspartate
aminotransferase [AST], and alkaline phosphatase [ALP]), and
preexisting conditions (hypertension, diabetes mellitus [DM],
cerebrovascular, cardiovascular, hepatic, kidney, thyroid, and
respiratory diseases). Information related to the procedure was
also included, such as the extent of involvement, how the surgery
went on that day, how many vertebrae were affected, how long the
surgery took, how much fluid was administered, the amount of
blood transfused, and the amount of blood lost. Postoperative
details, including the amount of drainage on day one, were also
recorded. 70% of the study participants were assigned at random to
the training set, while the remaining participants were split into the
testing set (Figure 1).

FIGURE 1
Workflow of this study.
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2.3 PLOS after surgery

The number of days a patient stays in the hospital following
spine surgery, from the day of the procedure until they are released,
is referred to as the hospital length of stay. The target classes were
classified as prolonged when the hospital length of stay was higher
than the 75% percentile and normal when lower than the 75%
percentile (binary classification task).

2.4 Dimension reduction and data
preprocessing

Once the feature vectors from each data source have been
combined, we can either use them directly as input to the
classification algorithms or use a feature selection algorithm to
remove redundant or correlated features while keeping a more
useful subset. This also helps with classification tasks,
visualization, and web application development. We choose to
utilize univariate analysis and the least absolute shrinkage and
selection operator (LASSO) to choose variables to reduce the
dimension of features. LASSO will punish some unimportant
feature coefficients to zero (Vasquez et al., 2016). Besides,
permutation feature importance calculated by random forest (RF)
was also taken into consideration when screening the features
(Orlenko and Moore, 2021). Permutation feature importance
overcomes the limitations of impurity-based feature importance
(Gini importance), which has a bias toward high-cardinality features
and can be computed on a left-out test set. Furthermore, the
impurity-based feature importance for trees is strongly biased
and favors high cardinality features (typically numerical features)
over low cardinality features such as binary features or categorical
variables with a small number of possible categories. Missing data
value was imputed via random-forest-based imputation (Hong and
Lynn, 2020).

Since there is an imbalance in the dataset when comparing the
ratio of positive to negative classes, we further investigate data
rebalancing. According to earlier research on the effects of class
imbalance, classifier biases could result from an imbalanced dataset,
which would subsequently increase the rate of misclassification and
degrade the classification model. Based on this, we devised a
synthetic minority oversampling method (SMOTE) to balance
the data by oversampling the minority class (Nakamura et al.,
2013; Exarchos et al., 2012).

2.5 Model development

In this research, eight models were implemented in total.
Supervised machine learning (ML) algorithms utilize training
data to create a function (f) that maps input variables/features
(X) to output/target (Y), with the use of “labeled” training data sets
is a common feature of supervised ML platforms in providing
either a qualitative or quantitative output. The labeled nature of
these data sets during the training phase is essential, as it allows the
ML model to imitate the expert’s input data, permitting the model
to differentiate new inputs based on previously learned training
parameters. Logistic Regression (LR) is a simple and efficient

method that is easy to understand and interpret. It is also
robust and can work well with small datasets using the logistic
function, although it may struggle with high-dimensional data or
variables that are correlated (Ranganathan et al., 2017). Random
Forest (RF) is an ensemble learning method that uses a network of
decision trees to handle high-dimensional data and variables that
are correlated. It is also robust to overfitting and can work well with
missing data. However, RF can be slow and may require high
computational resources for large datasets. It can also be difficult to
interpret the results and explain the decision-making process
because of the majority “vote” approach used for the final
decision (Zhu et al., 2018). A decision tree’s (DT) structure is
presented as a flowchart, comprising a root, internal nodes,
branches, and leaves. The internal nodes are responsible for
evaluating the attributes in question, delegating the resulting
outcome via branching, and eventually deciding on a final class
label for a specific input based on the information gleaned from all
attributes. DT can be prone to overfitting and may not generalize
well to new data (Hailemariam et al., 2011). Extreme Gradient
Boost (XGBoost) and Light Gradient Boost (LGB) are powerful
algorithms that can handle large datasets and complex models.
They are also efficient at handling missing data, although the
results of the model may be hard to explain directly (Ogunleye and
Wang, 2019). Gaussian Naive Bayes (GNB) is simple and efficient,
with low computational resources required. It can work well with
high-dimensional data and may be robust to noise, although it
assumes that the data is normally distributed, which may not
always be the case. It may also be sensitive to outliers and may
struggle with rare events (Malekloo et al., 2022). Support Vector
Machine Classifier (SVC) classifies data by defining a hyperplane
that maximizes differentiation between two groups by increasing
the margin on either side of this hyperplane, employing a kernel
function to find nonlinear relationships and enhance the margin.
Overfitting is a limitation of the method, and it can also be difficult
to tune and interpret the results (Byvatov et al., 2003). K-Nearest
Neighbor (KNN) is a simple and efficient algorithm that can
handle both classification and regression problems. It can work
well with small datasets and can be easily understood and
interpreted but it requires a lot of memory and may not work
well with high-dimensional data as it is sensitive to the values of k
and may be prone to overfitting or underfitting (Song et al., 2017).
In addition, we also developed ensemble models using different
combinations of the classifiers mentioned above using a soft
voting strategy.

Hyperparameters are components of a learning algorithm that
must be predefined before model training and fitting. Hyper-
parameter tuning/optimization is the process of choosing the set
of hyper-parameters that would enhance algorithm performance.
Previous studies have used GridSearchCV (grid search cross-
validation, cv) for hyper-parameter tuning and model selection,
but we found that using the same procedure and dataset for both
optimization and evaluation of model performance could lead to
data leakage (Hall and Matz, 2020). To address this issue, we used
nested cross-validation in our study, applying a distinct routine with
two loops: an inner loop (cv = 3) for optimizing model parameters
and an outer loop for measuring the optimized model performance
on a held-out test set (cv = 5). We believe this approach can reduce
the bias compared to GridSearchCV.
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After configuring the parameters of each classifier, we evaluated the
model performance using various metrics. Specifically, we plotted the
Receiver Operating Characteristic (ROC) curve and Calibration plot to
assess the discrimination and agreement between the actual observed and
predicted values, respectively. In addition, we performed Decision Curve
Analysis to examine the clinical usefulness of the model. The ROC curve
measures the ability of a classifier to distinguish between positive and
negative classes, with the area under the curve (AUC) providing a
measure of the classifier’s performance. The calibration plot assesses
the agreement between the predicted and observed probabilities across
different ranges of predicted probabilities. The Decision Curve Analysis
(DCA) evaluates the clinical net benefit of the model by comparing its
decision-making performance against alternative strategies.

2.6 Model interpretation

The development of machine learning (ML) models for clinical
applications should aim to provide interpretable and transparent
models to aid in clinical practice. One critical challenge is the so-
called “black-box problem,” where models are difficult to interpret, and
the reason behind a specific model’s precise prediction for a given
patient cohort is unclear. To improve the interpretability of the model,
we utilized two methods: SHapley Additive exPlanations (SHAP) and
Local Interpretable Model-agnostic Explanations (LIME) (Linardatos
et al., 2020; Lundberg et al., 2020). According to SHAP’s computation of
feature importance scores, each feature’s average marginal contribution
to each prediction—wheremarginal refers to the difference between the
actual predicted value and a base value used as a reference—is
calculated. This method was inspired by coalitional game theory (Di
Martino and Delmastro, 2022). With a more straightforward
interpretable model, LIME approximates a single prediction of a
black box model (e.g., decision tree, linear model). However, the
simpler model will likely function well locally despite not
performing a globally accurate approximation of the complicated
model. The prediction is then explained using a simpler model that
was learned using the weighted data points (Dindorf et al., 2020).

2.7 Web application deployment

To facilitate the utilization of our final selected optimal model,
we developed a user-friendly web application using the Python Flask
web application development framework and popular frontend
techniques (Vogel et al., 2017). The web-based interface allows
clinical practitioners and researchers to access and interact with
the model straightforwardly and seamlessly. By providing a free and
user-friendly interface, we aim to promote the adoption and use of
the model in real-world clinical settings. Additionally, the web
application includes appropriate security measures to ensure
confidential patient data is protected and data privacy is maintained.

2.8 Statistical analysis

First, we assessed the normality of the data using the Shapiro-Wilks
test. Continuous normal variables were reported as mean values with
standard deviation (SD), whereas continuous non-normal variables

were reported as median values (interquartile range). Statistical analyses
were performed using R Version 4.2.1 (http://www.r-project.org). The
ML models were developed and analyzed using Python 3.9.5 and the
Scikit-learn package (https://scikit-learn.org). Model performance was
assessed using a range of evaluation metrics, including sensitivity,
specificity, F1-score, and area under the receiver operating
characteristic curve (AUC), which measures the classifier’s ability to
distinguish between positive and negative classes. These metrics were
selected to provide a thorough assessment of themodels’ discrimination
and predictive accuracy.

3 Results

3.1 Patient characteristics

The present study included a total of 540 recipients, with an
average age of 59.3 ± 13.5 years 258 people were male and 282 were
female. Among the enrolled individuals, prolonged length of stay
(PLOS) was defined as P75 of LOS (8 days). The PLOS after surgery
were 196 which accounted for 36.3% of the whole cohort. Further
details can be found in Table 1.

3.2 Variable selection

First, all features were applied to univariate analysis. Then, utilizing
the LASSO approach, we eliminated 18 nonzero coefficients from
36 variables. (Figures 2A, B). Meanwhile, we calculated the
permutation importance by RF (Figure 2C). Then, after
comprehensive consideration of the result of the abovementioned
three procedures, we decide to choose: are age, BMI, ESR, ALB,
operation duration, infusion volume, blood loss, transfusion, and
segments. This feature selection process aimed to reduce the risk of
overfitting and improve themodel’s generalizability and interpretability.

3.3 Model construction

To analyze the bias between the two tuning strategies, we evaluated
the performance of classifiers using both grid search with cross-
validation and nested cross-validation. We compared several
evaluation metrics, including accuracy, precision, F1 score, and recall
(Figure 3). Our results indicated that some classifiers showed a higher
value for certain metrics (e.g., accuracy) using grid search with cross-
validation, but lower values with nested cross-validation. This finding
suggests that the grid search approachmay result in an overly optimistic
score due to data leakage. Consequently, we adopted nested cross-
validation for further analysis in this study. Nested cross-validation is a
fundamental element of machine learning algorithms, wherein the
training data is used to develop a model (f) that maps specific input
variables/features (X) to an output/target (Y).

3.4 Model performance evaluation

Receiver operation curves (ROC) of all distinct models were
shown in Figures 4A, B, and major evaluation metrics of the
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TABLE 1 Baseline of patients’ characteristics.

Characteristics All (N = 540) Testing Set (N = 154) Training Set (N = 386) P

Age (year) 59.3 ± 13.5 59.3 ± 14.2 59.3 ± 13.2 0.970

Gender (n%) 0.187

Female 282 (52.2%) 73 (47.4%) 209 (54.1%)

Male 258 (47.8%) 81 (52.6%) 177 (45.9%)

Symptoms Duration 38.5 ± 55.6 35.1 ± 52.2 39.9 ± 57.0 0.341

Affected Limb (n%) 0.358

Both 196 (36.3%) 49 (31.8%) 147 (38.1%)

Left 173 (32.0%) 51 (33.1%) 122 (31.6%)

Right 171 (31.7%) 54 (35.1%) 117 (30.3%)

Muscle Strength (n%) 0.464

3 125 (23.1%) 35 (22.7%) 90 (23.3%)

4 346 (64.1%) 95 (61.7%) 251 (65.0%)

5 69 (12.8%) 24 (15.6%) 45 (11.7%)

Pain (n%) 0.393

Moderate 343 (63.5%) 93 (60.4%) 250 (64.8%)

Severe 197 (36.5%) 61 (39.6%) 136 (35.2%)

Hypertension (n%) 1.000

No 295 (54.6%) 84 (54.5%) 211 (54.7%)

Yes 245 (45.4%) 70 (45.5%) 175 (45.3%)

DM (n%) 0.143

No 410 (75.9%) 124 (80.5%) 286 (74.1%)

Yes 130 (24.1%) 30 (19.5%) 100 (25.9%)

Cardiovascular (n%) 0.423

No 461 (85.4%) 128 (83.1%) 333 (86.3%)

Yes 79 (14.6%) 26 (16.9%) 53 (13.7%)

Cerebrovascular (n%) 0.108

No 498 (92.2%) 137 (89.0%) 361 (93.5%)

Yes 42 (7.78%) 17 (11.0%) 25 (6.48%)

Hepatic (n%) 0.906

No 480 (88.9%) 136 (88.3%) 344 (89.1%)

Yes 60 (11.1%) 18 (11.7%) 42 (10.9%)

Respiratory (n%) 0.406

No 507 (93.9%) 142 (92.2%) 365 (94.6%)

Yes 33 (6.11%) 12 (7.79%) 21 (5.44%)

Previous Surgery (n%) 0.692

No 314 (58.1%) 87 (56.5%) 227 (58.8%)

Yes 226 (41.9%) 67 (43.5%) 159 (41.2%)

Kidney (n%) 0.694

(Continued on following page)
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TABLE 1 (Continued) Baseline of patients’ characteristics.

Characteristics All (N = 540) Testing Set (N = 154) Training Set (N = 386) P

No 510 (94.4%) 144 (93.5%) 366 (94.8%)

Yes 30 (5.56%) 10 (6.49%) 20 (5.18%)

BMI (Kg/m2) 25.4 ± 3.70 25.1 ± 3.74 25.5 ± 3.69 0.228

Smoker (n%) 0.774

No 451 (83.5%) 127 (82.5%) 324 (83.9%)

Yes 89 (16.5%) 27 (17.5%) 62 (16.1%)

Alcohol (n%) 0.883

No 463 (85.7%) 131 (85.1%) 332 (86.0%)

Yes 77 (14.3%) 23 (14.9%) 54 (14.0%)

WBC (10̂9/L) 6.63 ± 2.13 6.77 ± 2.61 6.57 ± 1.90 0.372

HB (g/L) 138 ± 16.2 137 ± 16.4 138 ± 16.1 0.910

Platelet (10̂9/L) 237 ± 66.7 233 ± 63.1 239 ± 68.0 0.345

ESR (mm/h) 20.3 ± 15.3 20.6 ± 14.7 20.3 ± 15.5 0.832

CRP (mg/L) 6.93 ± 15.2 6.66 ± 13.6 7.03 ± 15.9 0.787

K (mm/h) 3.86 ± 0.35 3.87 ± 0.35 3.86 ± 0.35 0.850

Na (mmol/L) 141 ± 6.03 142 ± 2.30 141 ± 6.99 0.316

Creatinine (μmol/L) 67.4 ± 28.0 65.6 ± 17.1 68.2 ± 31.3 0.219

eGFR (mL/min/1.73m2) 94.0 ± 18.0 95.2 ± 18.3 93.5 ± 17.9 0.336

ALB (g/L) 42.2 ± 3.92 41.8 ± 4.18 42.4 ± 3.81 0.159

AST (U/L) 20.6 ± 10.3 20.5 ± 7.75 20.7 ± 11.1 0.818

ALT (U/L 23.8 ± 19.6 24.8 ± 17.4 23.3 ± 20.4 0.417

Day (n%) 0.923

Friday 70 (13.0%) 17 (11.0%) 53 (13.7%)

Monday 100 (18.5%) 27 (17.5%) 73 (18.9%)

Saturday 18 (3.33%) 5 (3.25%) 13 (3.37%)

Sunday 10 (1.85%) 4 (2.60%) 6 (1.55%)

Thursday 115 (21.3%) 32 (20.8%) 83 (21.5%)

Tuesday 122 (22.6%) 38 (24.7%) 84 (21.8%)

Wednesday 105 (19.4%) 31 (20.1%) 74 (19.2%)

Postoperative drainage 1stDay (mL) 133 ± 163 137 ± 162 131 ± 164 0.685

Operation Duration (n%) 0.529

<150 181 (33.5%) 48 (31.2%) 133 (34.5%)

≥150 359 (66.5%) 106 (68.8%) 253 (65.5%)

Infusion volume (mL) 1493 ± 538 1482 ± 530 1498 ± 541 0.759

Blood Loss (mL) 0.702

<200 174 (32.2%) 52 (33.8%) 122 (31.6%)

≥200 366 (67.8%) 102 (66.2%) 264 (68.4%)

Segment(s) (n%) 0.479

(Continued on following page)
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testing are displayed in Table 2. LR, RF, DT, XGBoost, LGB, SVC,
NB, and KNN achieved AUC in training (testing) set: 0.82 (0.83),
0.96 (0.83), 0.98 (0.82), 0.89 (0.81), 0.98 (0.78), 0.92 (0.63), 0.80
(0.84) and 1.0 (0.52). Besides, the agreement between predicted
and observed outcomes was visualized with a calibration plot
(Figures 4C, D). The RF model achieved a Brier score of 0.152, a
log loss of 0.480, and an accuracy value of 0.784, indicating better
agreement between actual and predicted labels while maintaining
high accuracy compared to other models or voting strategies. The
best hyperparameters combination for the RF included
100 estimators for a balanced number of trees, a maximum
depth of six to prevent overfitting, a minimum samples split
of five for internal node splitting, the square root of features for
classification, and a limit of nine leaf nodes to control complexity
(Wang et al., 2021). Therefore, the RF model was chosen for
model interpretability analysis. Additionally, we generated a
decision curve to display the clinical efficiency of the selected
model in practice (Figures 5A, B).

3.5 Model interpretation

To illustrate the factors that contribute to PLOS in our model,
we employed SHAP to identify the most important variables.
Figure 6A depicts the top variables ranked by their average
absolute SHAP value. The top 20 features of our model are listed
in Figure 6B, with the feature rating (i.e., the relevance of the model
to the outcome) shown on the y-axis and the SHAP value (i.e., the
impact of a specific model component) on the x-axis. The
contribution of each feature to the overall prediction is
represented by the dots in each feature-important row, with red
dots denoting high-risk values and blue dots representing low-risk
values. The use of SHAP enables us to better understand the relative
importance of different features to the prediction model and how
they contribute to the model’s output.

To further enhance the interpretability of our model, we present
two standard examples utilizing LIME (Figure 7A) and SHAP
(Figures 7B, C) respectively. The LIME and SHAP explainers are

TABLE 1 (Continued) Baseline of patients’ characteristics.

Characteristics All (N = 540) Testing Set (N = 154) Training Set (N = 386) P

1 313 (58.0%) 85 (55.2%) 228 (59.1%)

2 186 (34.4%) 58 (37.7%) 128 (33.2%)

3 37 (6.85%) 9 (5.84%) 28 (7.25%)

4 4 (0.74%) 2 (1.30%) 2 (0.52%)

Transfusion (n%) 0.270

No 484 (89.6%) 134 (87.0%) 350 (90.7%)

Yes 56 (10.4%) 20 (13.0%) 36 (9.33%)

LOS (n%) 0.191

Normal 344 (63.7%) 91 (59.1%) 253 (65.5%)

Prolonged 196 (36.3%) 63 (40.9%) 133 (34.5%)

BMI, Body mass index (BMI, kg/m2); WBC, preoperative white blood cell (WBC, ×109/L); ESR, preoperative erythrocyte sedimentation rate (ESR, mm/h); CRP, preoperative C-reactive protein

(CRP, mg/L); Hb, preoperative hemoglobin (Hb, g/L); estimated glomerular filtration rate (eGFR, ml/min/1.73 m2) ALB, pre-operative operative albumin (ALB, g/L); AST, preoperative

aspartate aminotransferase (AST, U/L); ALT, preoperative alanine aminotransferase (ALT, U/L); LOS, length of stay after surgery.

FIGURE 2
Feature selection. (A). Choosing the best lambda; (B). Features coefficients selected through LASSO; (C). Variables permutations obtained by
Random Forest. The random forest permutation importance bar plot assesses the relative significance of input features by calculating the decrease in
accuracy caused by randomly rearranging feature values with themost influential feature at the top of the ranking; a bar plotted to represent the impact of
each feature shows that the higher the bar corresponding to a feature, the more influential it is in the model.
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both popular tools for interpreting machine learning models,
allowing for the identification of input features that have the
greatest impact on the model’s output for individual instances.
These tools can help to identify the key factors driving model
predictions and provide more insight into the decision-making
process. For example, we demonstrate a case of a 72-year-old
male who underwent spine surgery and experienced a prolonged
length of stay (Figures 7A–C).

3.6 Web application development

We developed a web-based tool to facilitate further research and
clinical application of our random forest (RF) model for predicting
prolonged length of stay (PLOS) after surgery. The web tool is free and
user-friendly and can be accessed at http://43.143.217.126:8090/pplos.
The user interface (UI) of the web application is shown in Figure 8 and
requires the user to input their age, bodymass index (BMI), erythrocyte
sedimentation rate (ESR), albumin (ALB) level, operation duration,
infusion volume, blood loss, transfusion, and surgical segments. After
entering the required information, the user can select the “Predictor”
button to obtain a probability estimate of PLOS after surgery and the
corresponding interpretation of the result. The web tool can serve as a
valuable resource for clinical decision-making and personalized patient
care by helping to identify patients at high risk of PLOS and providing
guidance for appropriate interventions.

4 Discussion

One of the most prevalent orthopedic conditions, lumbar spinal
stenosis is also a major health issue and a prevalent ailment in the

aging population, with an incidence rate of more than 5% in the aged
population globally (Peng et al., 2019). Lower back discomfort,
neurogenic nerve impingement, lower limb pain, and impaired
walking capacity are among the typical clinical signs. The illness
has a substantial influence on both everyday functioning and overall
life satisfaction. There is a chance that LSS can cause moderate to
severe pain, which can reduce patient quality of life and increase
healthcare costs. When it comes to treating individuals with lumbar
spinal stenosis, traditional open lumbar decompressive surgery has
always been considered the gold standard (Chen et al., 2020; Ulrich
et al., 2015). It was reported that adding a fusion procedure based on
decompression surgery will increase the risk of the major length of
hospitalization complications and resource (Machado et al., 2017).
Furthermore, considering the main population of lumbar spinal
stenosis are aging people, it is essential to reduce the length of stay
(LOS) to reduce the complication risk of pneumonia, thrombolysis,
impairment of motor function, etc., where LOS is largely depending
on the LOS after surgery.

Recent scholarly research has demonstrated that the adoption of
ML techniques has yielded a significant improvement in the
performance or predictive accuracy of prognostic models,
particularly when compared to conventional statistical or expert-
based systems. Specifically, ML methods are a valuable and
efficacious tool for classification tasks as they possess the
potential to generate prediction models with performances that
are comparable to those obtained through conventional statistical
methods (Mezher et al., 2022), (Park et al., 2021). The main
difference between machine learning (ML) methods and
conventional statistical methods is that ML methods can handle
a large number of variables and their interactions simultaneously,
whereas conventional statistical methods typically focus on a few
variables at a time. ML methods also can learn and improve as they

FIGURE 3
Model Evaluation comparison.
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are exposed to more data, whereas conventional statistical methods
often require assumptions to be made about the data before analysis.
The clinical significance of using ML methods over conventional
statistical methods is that ML can identify patterns and relationships
in complex and large datasets that may not be easily detected using
conventional statistical methods. This can lead to more accurate and
personalized diagnoses, treatment plans, and patient outcomes.
Additionally, ML methods can be used for prediction and risk
stratification, which can enable early intervention and prevention
of certain conditions. Overall, ML methods offer the potential to
improve clinical decision-making and patient outcomes by utilizing
all available data and identifying complex relationships and patterns
that may be missed by conventional statistical methods.

Definitions, descriptions, and a framework consisting of four
main indispensable steps for the development of ML applications
have been provided. Step 1 entails an appraisal of the data’s quality
and accessibility; Step 2 necessitates method validation to determine
the most effective ML model(s); Upon identification of the optimal
ML models, step 3 involves an assessment of their capacity to
function collaboratively with other datasets to evaluate
generalizability; Finally, step 4 entails real-world evaluations of
the data to ascertain performance and generalizability (Rashidi

et al., 2019). In brief, upon completion of data collection,
cleaning, feature engineering, and selection of an appropriate
machine learning approach, the subsequent stage entails the
development and validation of models, culminating in the
deployment of the final model. However, each step
aforementioned above can be divided into several sub-steps. For
example, model validation can also be accomplished using multiple
methods from simple to complex: “train-test” splitting, general “k-
fold” cross-validation, nested cross-validation “leave-one-out”
cross-validation, and bootstrapping. In this research, we utilized a
nested cross-validation technique.

While several studies have focused on identifying the risk factors
and developing models to predict the prolonged length of stay
(PLOS) after surgery, few have explored their practical
application in clinical practice. With this study, we aim to
highlight and visualize the current applicability of machine
learning (ML) in predicting PLOS after surgery for lumbar spinal
stenosis (LSS) patients. Accurate prediction of PLOS following spine
surgery for such patients is crucial for clinical management and
optimizing healthcare resource allocation. Our Random Forest (RF)
model, identified as the best performer, had an area under the curve
(AUC) of 0.83. Furthermore, we offered an extensive interpretation

FIGURE 4
The ROC curves and calibration curves of the training set (A, C) and testing set (B, D).
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of the decision-making processes and impact of several variables
using SHAP values and plots, demonstrating that ML can provide
reliable predictions and explanations for LSS patients. We believe
that our model, now available as a web application, has the potential
to provide useful suggestions and references for orthopedic surgeons
managing LSS patients.

Features from electronic healthcare records have been extracted
using data mining, and prediction models have been created using
machine learning techniques in different subjects (Obermeyer and
Emanuel, 2016; Rajkomar et al., 2019; Patel et al., 2018; Hung et al.,
2018). Our findings show that the ensemble technique, which
employs several single learners to make decisions by voting, is
more predictable than a single model such as SVM, KNN, or LR.
This suggests that the ensemble technique, as compared to previous
models, has greater generalization capabilities for predictions of the
occurrence of PLOS following open lumbar spine surgery.
Additionally, a mechanism is required that chooses the best

machine learning models and improves the ensemble method’s
structure using techniques including boosting, bagging, stacking
several models, soft voting, etc. (Ribeiro and Coelho, 2020). The
ensemble model’s computing and interpretation complexity must
also be considered while using a tiny device. Regarding the
agreement between the predicted labels and observed labels, in
terms of brier loss and log-loss, we selected RF as our final
model to predict the occurrence of PLOS after open lumbar
spinal surgery.

High dimensional features will add the complexity of model
interpretation and may lead to over-fitting in machine learning
analysis and it is advantageous to reduce the number of features. In
this study, we screened variables via univariate analysis, LASSO, and
permutation importance. Feature selection can be divided into three
categories, filter method, wrapping method, and embedding method
(Bolon-Canedo et al., 2013). In this research, we implemented
univariate analysis and LASSO which belong to the filter method

TABLE 2 Model performance for predicting PLOS after surgery.

Classifiers Brier loss Log loss Acc Recall F1 Sen Spe Npv Ppv

RF 0.152 0.480 0.784 0.531 0.660 0.531 0.949 0.756 0.872

XGB 0.161 0.498 0.772 0.609 0.678 0.609 0.878 0.775 0.765

LGB 0.181 0.545 0.722 0.578 0.622 0.578 0.816 0.748 0.673

LR 0.167 0.500 0.753 0.813 0.722 0.812 0.714 0.854 0.650

SVC 0.243 0.689 0.648 0.563 0.558 0.562 0.704 0.711 0.554

KNN 0.451 15.564 0.549 0.391 0.407 0.391 0.653 0.621 0.424

NB 0.175 0.749 0.759 0.719 0.702 0.719 0.786 0.811 0.687

DT 0.163 1.666 0.747 0.750 0.701 0.750 0.745 0.820 0.658

LR + DT + NB 0.153 0.468 0.747 0.734 0.696 0.734 0.755 0.813 0.662

SVC + KNN + NB 0.214 0.623 0.654 0.531 0.548 0.531 0.735 0.706 0.567

XGB + RF + DT 0.155 0.477 0.747 0.500 0.610 0.500 0.908 0.736 0.780

LGB + NB + LR 0.156 0.476 0.759 0.688 0.693 0.688 0.806 0.798 0.698

LGB + NB + LR + DT 0.152 0.465 0.759 0.609 0.667 0.609 0.857 0.771 0.736

Sen, sensitivity; Spe, specificity; Acc, accuracy; Ppv, positive predictive value; Npv, negative predictive value.

FIGURE 5
Decision curve analysis on the training set (A) and testing set (B).
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and embedding method respectively. Besides, we also considered
feature importance. There are two commonly used methods for
calculating feature significance scores: permutation importance and
Gini importance (also known as mean decrease impurity or built-in
feature important). The main benefit of this approach is the speed at
which the necessary values are computed during the Radom Forest
training. The inherent feature significance technique has the

propensity to favor (select as significant) numerical features and
high-cardinality categorical characteristics. We overcame the
shortcomings of the impurity-based feature importance by using
permutation importance, which does not favor high-cardinality
features and may be computed on a test set that is excluded.

The selected features using the abovementioned methods, are
age, BMI, ESR, ALB, operation duration, infusion volume, blood

FIGURE 6
Model interpretation based on Random Forest. (A). The importance of selected variables according to the mean SHAP value; A presentation of
variance importance lays out the variables in descending order, with the top variables being the most noteworthy and contributing heavily to the model
while displaying greater predictive ability than those placed lower on the list. (B). The selected factors with stability and interpretation. The probability of a
patient having a lengthy hospital stay following surgery increases as a feature’s SHAP score rises. A higher value is indicated by the red portion of the
feature value. In a summary plot of a final model, the impacts of features on decision-making are depicted alongside feature interactions, where positive
SHAP values suggest augmented risks of prolonged length of stay (PLOS) in each prediction, with negative ones pointing towards lowered risks, and
higher values reflecting even greater associated risks; colors on the plot represent original feature values, with blue being indicative of lower and red of
higher values, and each point corresponding to a patient prediction.

FIGURE 7
The interpretation using a differentmethod of prediction results fromRF. (A) LIMEmethod; (B, C) SHAPmethod. An interpretive force plot featuring a
specific case from the test set where PLOS was observed, depicts local interpretation, revealing that the model’s predictive capacity was significantly
influenced by the blood loss feature, with its effect predominantly contributing towards increasing the model prediction score beyond the base value.
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loss, transfusion, and segments. Age and BMI have been
demonstrated to be independent risk factors for an extended
length of stay in our result, which is in line with previous reports
(Yang et al., 2012; Barina et al., 2020; Linder et al., 2022). ESR is a
useful laboratory technique for diagnosing inflammatory,
neoplastic, and viral disorders. However, it was also found to be
a risk factor of PLOS in our study. Kim et al. reported that the length
of hospitalization was affected by ESR when regarding infected
diabetic foot ulcer patients, which was consistent with our result
(Kim et al., 2016). The most prevalent protein in plasma, known as
serum albumin (ALB), serves as the primary regulator of both fluid
kinds of transport within and across bodily compartments as well as
the primary determinant of plasma oncotic pressure. In our result,
the lower ALB was associated with longer PLOS. This result has been
proved in previous studies (Zhou et al., 2015). Additionally,
operation time and intraoperative blood loss were risk factors for
a prolonged length of stay connected to surgery (Wu S. et al., 2020).
Bian et al. discovered additional risk variables for transfusion,
including longer operation time, higher projected intraoperative
blood loss, and increased postoperative drainage volume (Bian et al.,
2023). This shows that these surgical-related factors are risk factors
of each other.

For clinical practitioners to understand the findings and
recommendations generated by artificial intelligence (AI) models,
interpretability is crucial. One algorithm can never outperform the
super learning strategy, which chooses the best regression algorithm
from all weighted combinations of a group of candidate algorithms.
However, it also complicated the model’s training process and the
explanation of the forecast. In this work, SHAP and LIME were used
to transform black-box models into understandable visual
explanations. This method describes feature contributions at
instance levels in addition to feature levels. Orthopedic surgeons
will get practical information about how to reduce the avoidable risk
of PLOS after surgery at a particular level in practice from the

feature-level explanation as well as an understanding of the feature
itself. The chances ratio given by conventional logistic regression is
unable to produce such knowledge directly. When presented with
particular real situations that do not always match the population’s
average outcomes, the instance-level explanation will aid physicians
in making decisions. An accurate risk management strategy may be
possible with such a customized prediction. In our investigation, we
also found that our method outperformed conventional statistical
analysis in identifying risk factors by uncovering more meaningful
characteristics, enabling clinicians to evaluate their plausibility
through an explainable approach based on their experience
and expertise.

Both SHAP and LIME analyses showed that intraoperative blood
loss is the most significant contributor to the patient outcome. To
address this, we propose several clinical protocol changes aimed at
minimizing blood loss and enhancing patient outcomes. First, adopting
minimally invasive surgical techniques can significantly reduce tissue
trauma and associated blood loss (Rampersaud et al., 2006).
Additionally, the use of advanced hemostatic devices and agents can
improve bleeding control during procedures (Hikata et al., 2017).
Preoperatively, managing anemia and optimizing fluid protocols can
enhance blood volume and maintain hemodynamic stability, further
mitigating blood loss (Warner et al., 2020). Intraoperatively, real-time
blood loss monitoring technologies can facilitate immediate
interventions, such as fluid resuscitation or transfusions, to address
excessive bleeding (Rinehart et al., 2012). A multidisciplinary approach,
particularly collaboration with anesthesiologists, is crucial for
optimizing blood pressure and coagulation status during surgery.
Implementing these changes is expected to reduce intraoperative
blood loss, potentially leading to shorter recovery times and
decreased lengths of stay. Consequently, recalibrating our predictive
model will be necessary to reflect these improvements accurately.

Web applications bring convenience for AI spread and daily
practicality. Apart from the interpretation of clinical-relevant

FIGURE 8
Web application screenshot upper (A) and lower (B) panel.
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machine learning models, partibility is meaningful. Thus, we also
developed a web application based on the final RF model, where we
still focus on the explanation of the result calculated by our model.
Noteworthy, to improve the user experience, we deployed AJAX
techniques (Marchetto et al., 2008), where web pages are updated
asynchronously by exchanging data with a web server behind the
scenes. This will allow you to update parts of a web page, without
reloading the whole page.

Our web-based machine learning application for PLOS following
lumbar spinal stenosis surgery offers valuable clinical benefits. By
providing spine surgeons with the ability to assess PLOS risk before
surgery, this tool improves decision-making, optimizes surgical
planning, and enables more efficient resource allocation. With
interpretability features powered by SHAP and LIME, it offers
personalized insights into the specific factors influencing a patient’s
risk, enabling more precise preoperative counseling and postoperative
care strategies. By accurately PLOS in lumbar spinal stenosis surgery,
our model enables early identification of high-risk patients. This
facilitates targeted interventions, reducing hospital stays and costs
while optimizing resource utilization, ultimately enhancing patient
outcomes and satisfaction. The insights derived from our model also
contribute to continuous quality improvement efforts in surgical
departments, allowing surgeons to analyze PLOS trends and
outcomes, ultimately identifying opportunities to refine surgical
techniques and improve patient education.

5 Limitations

This study has several limitations that should be acknowledged.
Firstly, Our study was based on electronic medical records from a single
medical center, which limits the ability to generalize our findings to
broader healthcare settings. Additionally, the absence of external
validation using an independent cohort means we cannot fully
confirm the robustness and superiority of our model’s performance.
To enhance the validity of our conclusions, we recognize the need for
larger, prospective trials that evaluate our results across diverse clinical
environments and patient populations. Moreover, with the
advancement of artificial intelligence, deep learning has shown great
potential for improving medical prediction models. Therefore, future
research will focus on the development of a deep learning model to
predict the risk factors of prolonged length of stay after surgery for
patients with lumbar spinal stenosis. Finally, we recognize the potential
for overfitting given the single-center design of our study. To address
this limitation and reduce any biases in the dataset, our upcoming
multi-center research will include a broader and more diverse patient
population, enhancing the generalizability and robustness of our
findings. We will also aim to incorporate more extensive data and
information from various sources to increase the accuracy of our
predictions and facilitate clinical decision-making.

6 Conclusion

The LSS in patients who underwent open surgery could be
accurately assessed and classified in this study using the ML-based
risk classification method. Combining ML, SHAP, LIME, and web
application may be able to provide an explicit explanation of

personalized risk prediction, enabling doctors to comprehend
intuitively how important model components affect outcomes. This
would assist orthopedic surgeons tomake bettermanagement decisions.
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