Check for updates

OPEN ACCESS

EDITED AND REVIEWED BY Raimond L. Winslow, Northeastern University, United States

*CORRESPONDENCE Liang Guo, ☑ doctorgl@126.com ShengZhang Wang, ☑ szwang@fudan.edu.cn

RECEIVED 07 December 2024 ACCEPTED 07 January 2025 PUBLISHED 22 January 2025

CITATION

Meng Z, Zhang H, Cai Y, Gao Y, Liang C, Wang J, Chen X, Guo L and Wang S (2025) Corrigendum: Computational study of transcatheter aortic valve replacement based on patient-specific models—rapid surgical planning for selfexpanding valves. *Front. Physiol.* 16:1541483. doi: 10.3389/fphys.2025.1541483

COPYRIGHT

© 2025 Meng, Zhang, Cai, Gao, Liang, Wang, Chen, Guo and Wang. This is an open-access article distributed under the terms of the **Creative Commons Attribution License (CC BY)**. The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Corrigendum: Computational study of transcatheter aortic valve replacement based on patient-specific models—rapid surgical planning for self-expanding valves

Zhuangyuan Meng¹, Haishan Zhang², Yunhan Cai¹, Yuan Gao², Changbin Liang², Jun Wang³, Xin Chen⁴, Liang Guo^{2*} and ShengZhang Wang^{1.5*}

¹Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China, ²Department of Cardiology, First Hospital of China Medical University, Shenyang, China, ³Department of Anesthesia, First Hospital of China Medical University, Shenyang, China, ⁴Department of Cardiovascular Ultrasound, First Hospital of China Medical University, Shenyang, China, ⁵Academy for Engineering and Technology, Institute of Biomedical Engineering Technology, Fudan University, Shanghai, China

KEYWORDS

finite element analysis, transcatheter aortic valve replacement, structural simulation, self-expanding valve, computational fluid dynamics

A Corrigendum on

Computational study of transcatheter aortic valve replacement based on patient-specific models—rapid surgical planning for self-expanding valves

by Meng Z, Zhang H, Cai Y, Gao Y, Liang C, Wang J, Chen X, Guo L and Wang S (2024). Front. Physiol. 15:1407215. doi: 10.3389/fphys.2024.1407215

In the published article, there was an error in Table 2 as published. It does not match the data included in our initial submission. The corrected Table 2 and its caption appear below.

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

TABLE 2 Material parameters for self-expandable stent.

Parameter	Description	Value
E_A	Austenite elastic modulus	55,000 MPa
ν_A	Austenite Poisson's ratio	0.33
E_M	Martensite elastic modulus	30,000 MPa
ν_M	Martensite Poisson's ratio	0.33
ε^{L}	Transformation strain	0.045
σ_L^s	Start of transformation loading	260 MPa
σ_L^E	End of transformation loading	550 MPa
σ_U^s	Start of transformation unloading	80 MPa
σ^E_U	End of transformation unloading	30 MPa
ρ	Material density	6,300 kg/m ³