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Human spaceflight subjects the body to numerous and unique challenges.
Astronauts frequently report a sense of sinonasal congestion upon entering
microgravity for which the exact pathomechanisms are unknown. However,
cephalad fluid shift seems to be its primary cause, with CO2 levels and
environmental irritants playing ancillary roles. Current management focuses
on pharmacotherapy comprising oral and nasal decongestants and
antihistamines. These are among the most commonly used treatments in
astronauts. With longer and more distant space missions on the horizon, there
is a need for efficacious and payload-sparing non-pharmacological interventions.
Neurostimulation is a promising countermeasure technology for many ailments
on Earth. In this paper, we explore the risk factors and current treatment
modalities for sinonasal congestion in astronauts, highlight the limitations of
existing approaches, and argue for why neurostimulation should be considered.
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1 Introduction

The sinonasal system consists of the air-filled nasal cavity, including the turbinates, and
the adjacent sinuses, separated by the nasal septum. Its mucosal lining, rich in blood vessels,
glands, and nerve endings, supports functions such as smelling, humidifying, cleaning, and
warming inhaled air, while also providing immune defense (Elad et al., 2008; Sahin-Yilmaz
and Naclerio, 2011). The nasal cycle, alternating congestion and decongestion between
sides, helps maintain nasal functions but can be disrupted by nasal congestion, which also
affects adjacent organs such as the eyes and ears (Pendolino et al., 2018; Susaman
et al., 2021).
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In-flight nasal congestion and sinonasal symptoms (facial
pressure and pain or “sinus pain”) were reported by 62% of
space shuttle crew members during postflight medical debriefings
(Clément, 2011; Khan et al., 2024). Congestion was the most
common otorhinolaryngological complaint among ISS astronauts
and one of the most frequent complaints in general (Alexander,
2021). Thus, NASA considers nasal congestion highly likely to occur
during any space mission (NASA, 2016).

Sinonasal congestion, like dry eye disease, is more of a nuisance
than an immediate medical risk (Ax et al., 2023). However, it can
interfere with mission tasks, thereby compromising productivity,
cause fluid loss from the body through mouth breathing, and change
smell and taste (Rudmik et al., 2014; Lane et al., 2016; Hummel et al.,
2017; Marshburn et al., 2019). Nasal congestion increases the
likelihood of barotrauma in situations of environmental pressure
changes such as during extravehicular activity (Iannella et al., 2017;
Pilmanis and Clark, 2019; Chen et al., 2023). Moreover, it can
exacerbate the already highly prevalent sleep issues in orbit
(Albornoz-Miranda et al., 2023). Over time, mucosal edema
might impair the nasal cycle, cause eustachian tube dysfunction
and reduce ventilation of the paranasal sinuses, thereby increasing
infection risk (Marshburn et al., 2019; Macias et al., 2020; Susaman
et al., 2021). An unexpected but likely consequence of mucosal
swelling could be tear dysfunction through decreased nasal tear
drainage and tear production; nasal breathing contributes around
30% to basal tear secretion (Gupta et al., 1997; Ax et al., 2023). Nasal
congestion in combination with elevated CO2 levels may also
contribute to the frequent headaches observed during spaceflight
(Law et al., 2014; Kazaz et al., 2021).

2 Potential mechanisms and risk factors

2.1 Cephalad fluid shift

Microgravity causes ~2L of fluid to move towards the upper
body and head of astronauts within the first 6–10 h (Thornton et al.,
1987). This phenomenon is called cephalad fluid shift (CFS), typified
by facial puffiness and bird legs (Thornton et al., 1974). CFS is the
major contributing factor to sinonasal congestion in astronauts
(Hargens and Richardson, 2009; Marshall-Goebel et al., 2019;
Stenger and Macias, 2020). CFS-related congestion is likely to
occur in the abundant spongy tissue filled with venous sinusoids
in the nasal mucosa (Burnham, 1941; Ng et al., 1999). These tissues
have limited ways of regulating their microcirculation during CFS
and therefore experience fluid extravasation (Aratow et al., 1991;
Parazynski et al., 1991). On-orbit examination shows increased
erythema and edema of the nasal mucosa (Harris et al., 1997).
Periorbital puffiness, facial edema and thickening of the eyelids last
to varying degrees for the entire duration of microgravity exposure
making persistent intranasal swelling likely (Schneider et al., 2016;
Hamilton, 2019; Karlin et al., 2021).

The effects of CFS are difficult to study upon return to Earth
because they disappear. Nevertheless, magnetic resonance imaging
showed increased mastoid effusions after ISS missions although
there were no changes in the paranasal sinuses (Inglesby et al., 2020).
Asymptomatic mastoid effusions are also known to occur in supine
patients (head-down bed rest, intensive care unit patients) making a

strong case for CFS being their primary cause (Huyett et al., 2017;
Lecheler et al., 2021). Remarkably, facial tissue thickness was below
control values immediately on return to Earth reaching baseline
values after 4 days (Kirsch et al., 1993).

2.2 CO2 levels

CO2 levels are at least 10 times higher on the ISS than on Earth
(Law et al., 2014; Lee et al., 2020). CO2 is a potent vasodilator and
may lead to further engorgement of the nasal mucosal vessels (Ito
et al., 2003).

This factor might partially explain why sinonasal symptoms
persist over many months even though facial puffiness redistributes
a few days after entering microgravity (Kirsch et al., 1993; Cole et al.,
2019). CO2 has also been implicated in dry eye disease and
headaches in astronauts (Law et al., 2014; Sampige et al., 2024).

However, while similarly high CO2 levels are found in
submarines, decongestant use in submariners is ~150 times lower
than in astronauts suggesting that CO2 might just be a minor
contributor to sinonasal congestion in microgravity (Wotring, 2015).

Enigmatically, CO2 applied directly to the nasal mucosa is used
to treat both nasal congestion and migraine headaches likely by
suppressing neuropeptide release from the trigeminal nerves (Hurst,
1931; Casale et al., 2008; Spierings, 2024).

2.3 Environmental irritants

Despite extensive screening of astronauts for allergies, allergic
symptoms are prevalent and contribute to sinonasal congestion
(Wotring, 2015). Most likely, this is caused by increased exposure
to bioaerosols as dust does not settle in microgravity and spacecraft
are closed environments in which allergens and irritants accumulate,
and microbe growth is promoted (Oubre et al., 2016; Jahn
et al., 2021).

Even in the absence of a specific allergy, nasal mucosa might
become hyperreactive to irritants and allergens in space because of
immune system alterations (Crucian et al., 2013; Torun et al., 2021).
Changes to the nasal microbiome might further contribute to
mucosal inflammation (Salzano et al., 2018). Nasal toxicity of
extraterrestrial dust should also be considered for upcoming
Moon and Mars missions (Miranda et al., 2023). Lunar dust has
already demonstrated its irritative properties during the Apollo
missions (Hardison et al., 2023), and Martian dust contains dust
contains irritant, reactive perchlorates (Davila et al., 2013;
Crotts, 2014).

3 Countermeasures

3.1 Pharmacological countermeasures

Astronauts take decongestant medication and antihistamines to
combat sinonasal symptoms. The use of antibiotics is uncommon
since acute respiratory infection and consequent bacterial sinusitis
are very rare due to strict preflight screening and quarantine
regimens (Alexander, 2021; Vernikos, 2022). Decongestants
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mimic sympathetic activation leading to vasoconstriction and
reduced mucosal swelling (Johnson and Hricik, 1993), while
antihistamines block the vasodilative effect of histamine at the
H1 receptor (Ashina et al., 2015).

Decongestants are the most common medication used
chronically (>7 days) by ISS astronauts, and the third most used
in the acute context. Overall, 55% of astronauts reported use of
decongestant medication with 2.4 medication uses per crew member
for ISS missions (Wotring, 2015). Monitoring medication use relies
on astronauts self-reporting during postflight debriefings or flight
physician notes from private medical conferences. Thus, actual
decongestant use is likely to be higher due to underreporting
(Wotring, 2015; Blue et al., 2019).

Pharmacotherapy during spaceflight has assumed that
pharmacokinetics and pharmacodynamics are comparable to
those on Earth (Grover and Pathak, 2020; Barchetti et al., 2024).
This may not be completely true, given the different outcomes
reported by astronauts. Regarding decongestants, 21% of astronauts
report them being very effective with the remainder stating
“somewhat effective” (39%), “ineffective” (2%) or “unknown”
(37%) due to lack of information (Blue et al., 2019).

Topical decongestants come in the form of drops and sprays.
Nasal drop application in microgravity is problematic because a
globule of fluid must be wicked into the nose instead of “dropping”
it. These globules risk resource waste and overdose because they are
three to six times the size of a regular drop (Mader et al., 2019).
Long-term use could lead to dependency and drug-induced rhinitis
inherent with topical decongestants (Varghese et al., 2010).

Contact of the dropper bottle with the mucosa prohibits sharing
among crew members due to contamination (Aydin et al., 2007).
Nasal sprays have the additional risk of (bio)aerosol generation.

Systemic drugs are easier to use but more likely than topical ones
to have side effects that involve other organs, such as exacerbating
dry eye symptoms through their anticholinergic effects (Gomes
et al., 2017; Unsal et al., 2018). Payload requirements, finite
supplies and use-by dates limit medication availability in space.
Despite the presence of a pharmacy onboard the ISS, the awareness
by astronauts that medications are a scarce resource leads to a
reluctance to use them even when potentially beneficial (Barchetti
et al., 2024).

3.2 Non-pharmacological and
environmental countermeasures

Non-pharmacological solutions remove the restrictions
associated with medication use. To counter CFS, a low-tech
solution such as Braslet occlusion cuffs sequesters fluid in the
lower extremities and reduces facial puffiness (Hamilton et al.,
2012). Whether this also ameliorates symptoms is unclear
(Schneider et al., 2016). Lower body negative pressure and
artificial gravity are other alternatives but are technically more
challenging (Clement et al., 2015; Hamilton, 2019).

CO2-related symptoms might be reduced by more effective
approaches to monitor and scrub the cabin atmosphere of excess
CO2 (Georgescu et al., 2020; Georgescu et al., 2021). Similarly, better
air filtration and cabin hygiene could reduce bioaerosols, leading to
fewer allergic symptoms (Haines et al., 2019; Marshburn et al., 2019).

3.3 Neurostimulation

Engorgement of the nasal vasculature through CFS and other
factors (CO2, environmental irritants) is the main cause of sinonasal
symptoms in astronauts (Stenger and Macias, 2020). Nasal vessels
are modulated by nerve fibers of the autonomic nervous system
(ANS) (Baraniuk and Merck, 2009; Kahana-Zweig et al., 2016)
whereby sympathetic vasoconstriction chiefly determines nasal
patency on Earth (Lung, 1995; Susaman et al., 2021). The ANS
also partly mediates mucociliary clearance, a process essential for the
removal of mucus and irritants, which is potentially impaired in
space (Beule, 2010; Prisk, 2019; Smith et al., 2024). Thus,
dysfunction of the ANS contributes causally to sinonasal
congestion (Yao et al., 2018).

In astronauts, targeted sympathetic activation might
counteract both CFS and CO2-related vasodilation in the nasal
mucosa (Shusterman et al., 2023). Neurostimulation is a technique
that offers therapy by targeted modulation of neural activity. It is
widely used in treating conditions as diverse as epilepsy, diabetes,
and chronic pain (Errico, 2018; Mehta et al., 2018; Stanton-
Hicks, 2018).

On Earth, several neurostimulation methods have been
introduced to relieve nasal congestion in allergic and chronic
rhinosinusitis patients (Phillips et al., 2022; Shusterman et al.,
2023). Similar methods are being explored for treating dry eye
disease (Mittal et al., 2021). In both cases, the target nerve is the
anterior branch of the ethmoidal nerve, itself part of the trigeminal
nerve (Dieckmann et al., 2019; Li et al., 2020). This nerve can be
accessed intra-nasally through electrical, mechanical, and
pharmaceutical stimulation as well as extra-nasally through
mechanical and magnetic stimulation (Table 1).

Proven terrestrial efficacy does not automatically deem an
approach suitable for use in space. Some neurostimulation
devices are too bulky whereas others need consumables to
function (Table 1). Extra-nasal devices have a smaller injury
risk compared to intra-nasal (invasive) devices. Additionally,
intra-nasal devices trigger sneezing as a side effect more
frequently which might expedite the spread of disease vectors
throughout the spacecraft cabin (Mermel, 2013; Wirta
et al., 2022).

Pharmacological neurostimulation comes with all described
constraints associated with pharmacotherapy in space and thus
offers no clear advantages over drugs already in use.

In our view, there are currently three devices which can be
considered for use in astronauts (Table 1).

1. iTear100 is an extranasal mechanical neurostimulator
that has proven effective for treating both ocular and
sinonasal symptoms.

2. SONU is a vibrational headband that gets programmed to
match the natural resonant frequency of the sinonasal cavity of
the individual.

3. ClearUp uses extranasal electrical stimulation and is
specifically approved to treat sinonasal symptoms.

The advantages of these devices are that they are small
in size, rechargeable, lack consumables, and have minimal side
effects. A single device can be utilized by multiple crewmembers
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and use can be logged automatically to provide accurate data on
use frequency (Wotring and Smith, 2020). However, there are still
many unknowns associated with their appropriate application:
ideal modality (electrical versus mechanical), intensity and
frequency of application, duration and size of treatment effect
as well as possible adaptation to the stimulus remain to be
determined in astronauts. Device settings may also be tailored
to the individual astronaut by developing treatment protocols
(e.g., duration, intensity, frequency of stimulation) based on
crewmembers’ specific physiology and needs (Denison and
Morrell, 2022).

4 Discussion and conclusion

Sinonasal congestion is very common in astronauts. Mild cases
may impact astronaut wellbeing and productivity, while severe cases
could substantially hinder the execution of mission-critical tasks.
Nasal neurostimulation has the potential to provide a safe and
effective non-pharmacological treatment option for sinonasal
congestion in astronauts, thus overcoming the limitations of
using pharmaceuticals in space. The apparently common practice
among astronauts of long-term decongestant use is of particular
concern (Wotring, 2015) and could in itself be a significant factor for

TABLE 1 Comparison of Nasal Neurostimulation modalities/types (Blue: ocular; grey: nasal; violet: both).

Modality Device/Drug Advantages Disadvantages References

Mechanical/
Percussive

iTear100 (Olympic Ophthalmic,
United States)

-Effective for both sinonasal
symptoms and dry eye
-Can be shared
-Rechargeable
-Small
-No consumables
-Quick (30 s)
-Activity is logged in
companion app

-Feels tickly upon first application
-Local skin irritation

Ji et al. (2020), Shusterman et al.
(2023)

Chordate System S101 (Chordate
Medical AB, Sweden)

-Possible long-term effect (up to
1 year post-treatment)

-Bulky device
-Consumables (catheter-connected
latex balloon)
-Sneezing is a common side effect
-Long treatment duration (10 min in
each nasal cavity)

Juto and Axelsson (2014), Sainio
et al. (2023)

SONU (Sound Health Systems,
United States)

-Personalized through
smartphone app
-Can be shared
-No consumables
-Rechargeable
-Hands-free operation

-Long treatment duration (20 min) Khanwalkar et al. (2022), Luong et al.
(2024)

SinuSonic (Healthy Humming,
United States)

-Small
-Rechargeable
-Relatively short treatment
duration (3 min)

-Consumables (silicone nosepiece)
-Hygiene concerns (aerosol
generation)

Cairns and Bogan (2019), Soler et al.
(2020)

Electrical TrueTear (Allergan, United States)a -Proven efficacy in dry eye disease
-Rechargeable
-Small

-Consumables (hydrogel tips)
-Risk of injury b/c invasive
-Effect on sinonasal symptoms
unknown

Gumus et al. (2017), Watson et al.
(2017), Farhangi et al. (2019),
Pondelis et al. (2020)

ClearUp (Tivic Health, USA) -Specifically designed to treat
sinonasal discomfort
-External device
-No consumables
-Small
-Rechargeable
-Can be shared

-Relatively long treatment duration
(5 min)

Goldsobel et al. (2019), Maul et al.
(2019)

Magnetic Viveye OMN (EpiTech, Israel) -External device
-Painless procedure

-Bulky device
-Few human data
-Effect on sinonasal symptoms
unknown

Ben-Eli et al. (2024)

Pharmacological Tyrvaya nasal spray (Varenicline;
Oyster Point Pharma,
United States)

-Effective for dry eye disease
-Quick application (seconds)

-Sneezing is a very common side
effect
-Bioaerosol generation
-Cannot be shared
-Limited shelf life
-Effect on sinonasal symptoms
unknown

Wirta et al. (2022)

aNo longer commercially available.
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long-term nasal congestion since continued use decreases
responsiveness to subsequent decongestion efforts (Varghese
et al., 2010). Neurostimulation is attractive because it offers an
avenue to reduce or even replace decongestant use and may also be
used to treat different medical conditions such as dry eye disease and
thus reducing the number of devices needed on a flight.

With the projected increase in private spaceflight, less stringent
astronaut selection criteria will likely become more common (Griko
et al., 2022). This could include candidates with preexisting allergic
and chronic rhinosinusitis. These astronauts might require more
aggressive treatment in orbit (oral medication, etc.) or even surgery
prior to the mission to reduce risks of infections (Fokkens et al., 2020).

While there are multiple neurostimulators commercially
available, few seem suitable for human spaceflight. Unlimited shelf
life, rechargeability, lack of consumables and potential to be used by
multiple users are crucial characteristics to be met. Despite these
attractive features, they must be tested in space to develop protocols
regarding duration, intensity, and use frequency because these might
differ from those that are established on Earth. Chiefly, it must be
determined whether neurostimulation alone is able to overcome the
CFS-related increased fluid pressures. Preliminary studies during
parabolic flights and short-duration spaceflights will provide insights.
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