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Introduction: Cardiotocography (CTG) is used to monitor and evaluate fetal
health by recording the fetal heart rate (FHR) and uterine contractions (UC) over
time. Among these, the detection of late deceleration (LD), the early marker of
fetal mild hypoxemia, is important, and the temporal relationship between FHR
and UC is an essential factor in deciphering it. However, there is a problem with
UC signals generally tending to have poor signal quality due to defects in
installation or obesity in pregnant women. Since obstetricians evaluate
potential LD signals only from the FHR signal when the UC signal quality is
poor, we hypothesized that LD could be detected by capturing themorphological
features of the FHR signal using Artificial Intelligence (AI). Therefore, this study
compares models using FHR only (FHR-only model) and FHR with UC (FHR + UC
model) constructed using a Convolutional Neural Network (CNN) to examine
whether LD could be detected using only the FHR signal.

Methods: The data used to construct the CNN model were obtained from the
publicly available CTU-UHB database. We used 86 cases with LDs and 440 cases
without LDs from the database, confirmed by expert obstetricians.

Results: The results showed high accuracy with an area under the curve (AUC) of
0.896 for the FHR-only model and 0.928 for the FHR + UC model. Furthermore,
in a validation using 23 cases in which obstetricians judged that the UC signals
were poor and the FHR signal had an LD-like morphology, the FHR-only model
achieved an AUC of 0.867.

Conclusion: This indicates that using only the FHR signal as input to the CNN
could detect LDs and potential LDs with high accuracy. These results are
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expected to improve fetal outcomes by promptly alerting obstetric healthcare
providers to signs of nonreassuring fetal status, even when the UC signal quality is
poor, and encouraging them to monitor closely and prepare for emergency
delivery.

KEYWORDS

cardiotocography, fetal heart rate, late deceleration, nonreassuring fetal status,
convolutional neural network

1 Introduction

Cardiotocography (CTG) is the most common technique used
to noninvasively record fetal heart rate (FHR) and uterine
contraction (UC) over time to monitor and assess fetal health
(Pinas and Chandraharan, 2016; Santo et al., 2017). CTG is used
to determine the presence or absence of fetal heart deceleration and
its type based on the temporal characteristics of the FHR and UC
(Lear et al., 2016). One of the critical clinical prognostic signs of fetal
outcome is late deceleration (LD), which is caused by a decrease in
uteroplacental blood flow associated with uterine contraction,
resulting in reduced gas exchange in the placenta. LD has been
shown to represent a chemoreceptor-mediated response to fetal
hypoxemia. In other words, LD occurs when fetal oxygenation
becomes inadequate and the chemoreceptor threshold is
exceeded. Consequently, the fetal heart rate gradually decreases
and then gradually recovers (Itskovitz et al., 1982; Pinas and
Chandraharan, 2016). Occasional LD occurring at less than 50%
of uterine contractions has been previously described as an “early
marker of fetal mild hypoxemia” (Sameshima et al., 2004),
obstetricians should be informed as soon as possible about the
occurrence of LD. Early detection of LD is critical because it can
prompt close monitoring and preparation for emergency delivery.
LD is evaluated visually by obstetricians according to guidelines such
as the International Federation of Gynecology and Obstetrics
(FIGO) and the Japanese Society of Obstetrics and Gynecology.
While the FIGO defines LD as an amplitude of ≥15 bpm, the
guidelines for obstetric practice in Japan define mild LD as an
amplitude of <15 bpm and severe LD as an amplitude of ≥15 bpm;
there are slight differences in the definitions between the guidelines.

The temporal relationship between FHR and UC is an important
factor in determining LD; however, the signal quality of UC tends to be
lower than that of FHR. External tocodynamometry measures uterine
contraction using pressure changes obtained from a sensor attached to
thematernal abdominal wall, and studies have indicated that the quality
of UC is degraded when there is a large amount of abdominal fat or
when the sensor is displaced by the mother’s bodymovements (Euliano
et al., 2013; Vlemminx et al., 2017; Petrozziello et al., 2018). When the
quality of UC signals is degraded owing to these causes, a situation arises
in which the temporal relationship between FHR andUC, an important
factor in determining LD, cannot be determined.

It is crucial that healthcare professionals identify the onset of LD
as early as possible. Therefore, in clinical settings, when the quality
of the UC signal is poor, attention is paid to the FHR signal pattern,
and LD is evaluated based on the FHR signal alone. The
morphological characteristics of LD include deceleration with a
gradual onset, gradual return to baseline, and/or reduced
variability within the deceleration (Ayres-de-Campos et al.,

2015). Therefore, obstetricians may extract possible LD signals by
capturing the morphological features of the FHR.

To detect the occurrence of LD more quickly without missing it,
several efforts are underway to detect LD by automatically analyzing
CTGs. Products using signal analysis to assist obstetricians in visual
assessment include Omniview-SisPortoⓇ 3.5 (Speculum, Lisbon,
Portugal) and Trium CTG OnlineⓇ (GE HealthcareVR, Little
Chalfont, UK) (Magawa et al., 2021; Bernardes, 2023). Omniview-
SisPortoⓇ 3.5 is built on signal analysis algorithms compliant with
FIGO guidelines, while Trium CTG Online®, which is available in
Japan, is designed based on the guidelines from the Japanese Society of
Obstetrics and Gynecology. In a study comparing the analysis results of
each product with visual evaluation by obstetricians, Costa MA et al.
evaluated Omniview-SisPortoⓇ 3.5 and reported a 68% agreement rate
for decelerations (Costa et al., 2010). Contrastingly, Magawa S et al.
evaluated Trium CTG OnlineⓇ and reported a sensitivity of 0.93 and
specificity of 0.99 for Severe LD (Magawa et al., 2021). A recent study
examined the use of machine learning (ML) and deep learning (DL) to
detect LD and compared the ML and DL methods (Das et al., 2023).
This study reported an improved accuracy when labels determined
using fuzzy logic were used as the gold standard. However, when the
labels determined by the obstetricians were used as inputs for DL, the
receiver operating characteristic (ROC) for LD detection was <0.60.

Although studies using signal analysis, ML, and DL have achieved
notable results because both FHR and UC signals were used for
analysis, it is thought that if the quality of the UC signal deteriorates, it
would not be possible to determine the LD accurately. If LD can be
detected when the UC signal is poor, it would be of great clinical
significance because it would allow the early detection of LD without
missing its onset. We also believe that more advanced signal analysis
methods are needed to distinguish between LD and other conditions
assessed using only FHR signals. Therefore, we constructed a method
for detecting LD using convolutional neural networks (CNNs), which
is one of the DLmethods that has attracted attention in recent years in
the field of obstetrics for research on evaluating the health of fetuses
fromCTG signals (Arain et al., 2023; Cömert et al., 2019; Hirono et al.,
2024a; Ogasawara et al., 2021). Therefore, the objective of this study
was to construct a robust model for detecting LD, even when the
quality of the UC signal is poor, using a CNN to detect LD from the
FHR signal only. The developed Artificial Intelligence (AI) model will
enable faster and more accurate detection of LD and improve
fetal prognosis.

2 Materials and methods

This study was approved by The Institutional Review Board
of the Niigata University of Health and Welfare (Approval No.
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19397-241014). This section describes the experimental
environment, data details, artificial intelligence (AI) models,
and evaluation methods.

2.1 Materials

The experimental environment was a computer with 128 GB of
main memory and an NVIDIA GeForce RTX 4090 GPU (NVIDIA
Corporation, Santa Clara, California, U.S.A.).

2.1.1 Database used to detect LD
This study used CTU-UHB data obtained from PhysioNet

(Chudáček et al., 2014). CTU-UHB consisted of 552 intrapartum
CTG data acquired from 2010 to 2012 in the maternity ward of
the University Hospital in Brno, Czech Republic. These data were
acquired using STAN S21/S31 (Neoventa Medical, Mölndal,
Sweden) and Avalon FM40/FM50 (Philips Healthcare,
Amsterdam, Netherlands) electronic fetal monitoring devices;
CTG recording started 90 min before delivery, with each data
point being up to 90 min long. Each CTG dataset contained FHR
and UC signals sampled at 4 Hz. Table 1 lists the
statistical properties of the CTU-UHB database, including
demographic information and high-risk indicators of the
patient population.

2.1.2 Ground truth labeling and data selection
As the LDs of interest in this study were the early marker of

fetal mild hypoxemia (Sameshima et al., 2004), we focused on the
first LDs that occurred during recording because we considered it
necessary to detect LDs that occurred at earlier stages. LD was
determined according to the FIGO guidelines for fetal
monitoring during delivery (Ayres-de-Campos et al., 2015).
For the primary judgment, possible LDs were selected from a
total of 552 cases by a midwife with 3 years of clinical experience
under the supervision of expert obstetricians. As a final decision,
cases of LD were extracted through agreement between two
expert obstetricians (with 15 and 6 years of clinical
experience, respectively). The data were classified with LD,
without LD (hereafter referred to as non-LD), and LD-like
signals (hereinafter referred to as LD-like). We defined LD
based on FIGO guidelines, which are as follows, 1) A
deceleration with an amplitude of 15 bpm or more that takes
30 s or longer to reach its nadir, 2) When uterine contractions are
adequately recorded, LD is characterized by a decrease in heart
rate that begins more than 20 s after the onset of a uterine
contraction and returns to the baseline after the contraction ends,
and 3) The morphological characteristics of FHR include a
“deceleration with a gradual onset, gradual return to baseline,
and/or reduced variability within the deceleration.” However,
Some LDs are challenging to distinguish from prolonged
deceleration (PD); however, PD is defined by the FIGO
guidelines as a deceleration that lasts longer than 3 min. Thus,
the duration of deceleration was also considered in the
determination process. We defined the LD-like pattern as the
signal in which the quality of the UC signal is poor and
unreadable, but the FHR signal shows a gradual decline and

recovery with a decrease in variability. Hence, LD-like patterns
were positioned as possible LD signals. The data length used for
analysis was 3 min per case (LD and LD-like: 1.5 min before and
after the nadir point of FHR as the base point; non-LD: 3 min
randomly selected from the total recording time, avoiding the
interval where the signal loss was 100%).

2.2 Methods

We used a CNNs to construct an FHR-only model to identify
LD from FHR-only and an FHR + UC model to identify LD from
FHR and UC. In the present study, we examined two LD
classifications: LD and non-LD. A Neural network console was
used to construct the AI models (Sony Neural Network, 2024).
Figure 1 shows the basic structure of each model. The
architecture of each model consisted of a convolutional layer,
Batch Normalization, and a Rectified Linear Unit (ReLU) for the
activation function. The output layer used a loss function with a
softmax activation function (softmax cross entropy), and the
class probabilities were generated by the classification task.

We used cross-validation to analyze the database because of a
lack of LD data.

The FHR-only and FHR + UC models were evaluated for the
binary classification of LD and non-LD. For the overall model
accuracy, a receiver operating characteristic (ROC) curve was
generated, and the area under the curve (AUC) was calculated.
The results are classified into four categories: true negative (TN),
false negative (FN), true positive (TP), and false positive (FP). Using
these categories, the F-measure calculated from the precision
and recall of LD, was used to compare the accuracy of the
LD detection.

TABLE 1 Statistical properties of the CTU-UHB database.

Information Mean Min Max

Mother’s age (years) 29.6 18 46

Gravidity 1.4 1 11

Parity 0.4 0 7

Diabetes, n No = 515, Yes = 37

Hypertension, n No = 508, Yes = 44

Gestational age (weeks) 40 37 43

Neonate’s weight (g) 3,400 1,970 4,750

PH 7.23 6.85 7.47

BE −6.38 −26.8 −0.20

BDecf (mmol/L) 4.6 −3.40 26.11

Apgar 1 min 8.26 1 10

Apgar 5 min 9.06 4 10

Neonate’s sex, n Male = 286, Female = 266

Delivery type, n Vaginal = 506, Cesarean section = 46

Abbreviations: BE, base excess; BDecf, base deficit extracellular fluid.
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Precision (Equation 1) represents the percentage of samples that
the model predicted to be LD that were actually LD, and it assesses
the impact of false positives.

Precision � TP
TP + FP

(1)

Recall (Equation 2) indicates the percentage of samples for
which the model correctly predicted LD and assessed the impact
of false negatives.

Recall � TP
TP + FN

(2)

The F-measure (Equation 3) is an evaluation measure for binary
classification tasks and an important indicator for assessing the
ability to detect LD. In this study, we explored the architecture that
would provide the highest F- measure in the case of LD by varying
the number of convolutional layers, kernel parameters, batch size,
and learning rate in the construction of the AI model.

F −Measure � 2 × Precision × Recall
Precision + Recall

(3)

Additionally, the output values of the AI were defined as the
value representing the certainty of LD, and the paired-sample t-test
was performed to calculate the 95% confidence intervals.

In clinical practice, obstetricians focus on changes in the FHR
signal patterns to assess the condition of the fetus when the quality of
the UC signal is poor. Previous studies have pointed out that UC
signals were not of sufficient quality in the database used in previous
studies (Xiao et al., 2022; Zeng et al., 2021). Therefore, we used the
model with the highest accuracy (with or without UC) to infer cases
from this database that were judged as LD-like by two obstetricians
and gynecologists and confirmed the model’s judgment.

3 Results

Figure 2 shows a flowchart for the ground-truth labeling and data
selection. Two cases were excluded because the time from the start of
recording to the onset of LD was too short to allow for data length, and
one case was excluded because it was difficult to determine the LD
within the data length determined in this study. As a result of the
labeling and data selection, the final data used for analysis included
86 cases of LD, 440 cases of non-LD, and 23 cases of LD-like. To
evaluate the generalization performance of the model, a 10-fold cross-
validation was performed. For each dataset, the cross-validation,
training, and validation datasets had a 9:1 ratio. Table 2 shows the
numbers of LD and non-LD cases per fold. Due to a lack of the number
of LD data, the data were augmented five times by shifting the data 30 s
before and after the nadir point of the FHR and 15 s each. Thismade the
number of LD and non-LD cases almost equal. By adjusting the
detection accuracy to the highest value for each model, the FHR-
only model showed the highest accuracy with four convolutional layers,
and the FHR + UC model showed the highest accuracy with six
convolutional layers. The kernel size was 1 × 13 for the FHR-only
model and 1 × 17 for the FHR + UC model. The learning rate and the
batch size for both models were 0.01 and 32, respectively.

Figure 3 summarizes the LD and non-LD classification
accuracies in the FHR-only and FHR + UC models. Table 3
shows the F-measure for the LD and AUC for each model. The
AUC and F-measure for LD were 0.896 and 0.613, respectively, for
the FHR-only model and 0.928 and 0.711, respectively, for the FHR
+ UC model. Figure 4 shows the average output values of each
model, with no statistically significant differences in the paired-
samples t-test and overlapping error bars in the 95% confidence
intervals of both models. Therefore, although the FHR-only model

FIGURE 1
The basic structure of each AI model. The convolution and fully connected layer in each AI model is shown. (A) The FHR-only model employs a 1D-
CNN, and (B) the FHR + UC model is constructed by concatenating FHR and UC, which are 1D signals, into a 2D signal to form a CNN model.
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was less accurate than the FHR + UCmodel, there was no significant
difference in the accuracy of LD detection, indicating that the FHR-
only model also showed good results.

FIGURE 4
Comparing the probability of LD judgments. The vertical axis
shows the average value of the AI output, and the error bar shows the
95% confidence interval. The average value test did not reveal any
statistically significant differences.

TABLE 2 Number of cases with LD and non-LD in 10-fold. In each data set, the same cases were not included in the training and validation sets.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

LD 9 9 9 9 9 9 8 8 8 8

non-LD 44 44 44 44 44 44 44 44 44 44

FIGURE 3
Comparison of ROC curves for the models with and without UC.
We compared the classification accuracy of the LD and non-LD
categories. The FHR-only model was also able to classify the LD and
non-LD.

FIGURE 2
Flowchart of ground-truth labeling and data selection from the database. The process throughwhich the 552 cases were classified into three classes
is shown.

TABLE 3 Comparison of F-measure for AUC and LD for each model. Even
with the FHR-only model, the detection accuracy of LD is high.

AUC F-measure

FHR 0.896 0.613

FHR + UC 0.928 0.711
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In the present ground-truth labeling, two expert obstetricians
judged 4.2% (23/552 cases) of cases as LD-like. An example of a CTG
waveform determined as an LD-like signal is shown in Figure 5.
Table 4 and Figure 6 show the results of the validation using LD-like
and non-LD cases. The FHR-only model yielded AUC and
F-measures of 0.833 and 0.726, respectively, both of which were
more accurate than the FHR + UC model. The 95% confidence
interval error bars of the two models did not overlap in terms of the
likelihood of LD, and the paired-sample t-test results showed that
the FHR-only model was statistically superior in detecting LD-like
cases (p < 0.001). Table 5 and Figure 7 present the validation results
when LD-like was assumed to be LD and added to the LD cases. The
FHR-only model yielded AUC and F-measure values of 0.867 and

FIGURE 6
Comparing the probability of LD-like judgments. The vertical axis
shows the average value of the AI output, and the error bar shows the
95% confidence interval. In the test of the average value, the FHR-only
model had a statistically significant higher detection accuracy for
LD-like than the FHR + UC model.

TABLE 5 Comparison of F-measure for AUC and LD (including LD-like) for
each model. The FHR-only model has a higher detection accuracy for LD
(including LD-like).

AUC F-measure

FHR 0.867 0.747

FHR + UC 0.851 0.713

FIGURE 5
An example of an LD-like waveform is where UC is defective, but
FHR takes the form of LD. This deceleration resembled PD, but was
determined to be LD-like by a specialist obstetrician because the
duration of the deceleration was less than 3 min and the UC
signal was poor. The fetal heart rate is shown in red, and uterine
contractions are shown in black.

TABLE 4Comparison of AUC and F-measure for LD-like for eachmodel. The
FHR-only model has a higher detection accuracy for LD-like.

AUC F-measure

FHR 0.833 0.726

FHR + UC 0.823 0.641

FIGURE 7
Comparing the probability of LD (including LD-like) judgments.
The vertical axis shows the average value of the AI output, and the
error bar shows the 95% confidence interval. In the test of the average
value, the FHR-only model had a higher detection accuracy for
LD (including LD-like) than the FHR + UC model.
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0.747, respectively, both of which were more accurate than those of
the FHR + UC model. The 95% confidence interval error bars of the
two models did not overlap with the likelihood of LD, and the
paired-sample t-test results showed that the FHR-only model was
statistically superior in detecting LD-like cases (p < 0.001). Figure 8
shows case (A), which was most reliably detected as LD among the
LD-like cases in the FHR-only model, which was highly accurate in
detecting LD and LD-like cases, and case (B), in which a non-LD
case was incorrectly detected as LD. Case (A) was highly accurate in
detecting LD, and the morphological features of the FHR indicated
that it could detect potential LD.

4 Discussion

In this study, LDs were detected with high accuracy even in a
model that used only the FHR signal. Therefore, the CNN
constructed in this study could detect LD by capturing the
baseline level of the FHR signal and its variability in acceleration
or deceleration (Czabanski et al., 2012). The detection of LD using
only the FHR signal may aid early, unmissable capture of signs of
nonreassuring fetal status, even when the UC signal quality is poor.

Additionally, inter- and intra-observer decipherment errors have
been noted in the visual evaluation of CTG (Hernandez Engelhart
et al., 2023; Rei et al., 2016); if the quality of the UC signal is poor, the
difficulty in deciphering UC may lead to greater decipherment
errors. Therefore, detecting LD with high accuracy and providing
alerts based on FHR signals alone better supports CTG
decipherment. Furthermore, alerting obstetric healthcare
providers to signs of nonreassuring fetal status may encourage
them to reattach sensors that measure pressure changes during
uterine contractions. Reattachment of the sensor is of great clinical
significance because it enables subsequent CTG readings to evaluate
fetal health status in consideration of the temporal relationship
between FHR and UC.

The results of the inference using the LD-like case showed that
the FHR-only model could detect potential LD signals with high
accuracy. Since it is important not to miss an LD, an LD-like signal
should be detected as a potential LD signal. Thus, assuming that LD-
like cases are indeed signs of LD and UC could not be detected,
alerting them using the FHR-only model may lead to earlier
detection of LD, the early marker of fetal mild hypoxemia.

In this study, we tested whether LD, the early marker of fetal
mild hypoxemia, could be detected from only the FHR signal.

FIGURE 8
Comparison of correct answers for LD-like cases and incorrect answers for non-LD cases in the FHR-only model. (A) LD-like can be detected as a
possible LD based on the morphological characteristics of FHR. (B) This is an example of a non-LD being mistakenly detected as an LD. This case is a PD
case that did not recover to baseline within 3 min.
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However, specificity needs to be considered for clinical use.
Particularly, since it is important to discriminate cases of variable
deceleration (VD) (Japan Council for Quality Health Care, 2018),
which is considered difficult to discriminate from LD and other
decelerations, we conducted an evaluation using cases with VD. Of
the non-LD cases in the database, 4.8% (21/440) were determined to
have VD by the consensus of expert obstetricians at the time of final
determination. The F-measure and percentage of correct answers for
VD cases in each model were 0.822% and 66.6% (14/21),
respectively, for the FHR-only model and 0.680% and 47.6% (10/
21), respectively, for the FHR + UC model. The FHR-only model
achieved higher accuracy in terms of both F-value and correct
response rate. This suggests that the LD and VD could be
detected with high accuracy using only the FHR signal. The
differences in the morphological characteristics of the FHR in
cases of the LD and VD are that the VD shows a rapid drop
(onset to nadir in less than 30 s), good variability within the
deceleration, and rapid recovery to baseline (Ayres-de-Campos
et al., 2015). This suggests that the LD and VD could be
correctly distinguished by capturing the morphological
characteristics of the FHR. VD also accounts for the majority of
bradycardia that occurs during labor and is considered a
baroreceptor-mediated response to elevated arterial pressure, such
as that occurring with cord compression (Ball and Parer, 1992). In
other words, since VD is often a physiological response of the fetus
during the delivery period, it is beneficial to distinguish it from LD,
which is a sign of fetal hypoxemia.

Subsequently, 440 non-LD cases were analyzed. In 14.7% (65/
440) of false positive cases, non-LD cases were misclassified as LD.
Typically, 33 cases of intermittent interruption of the FHR signal
were included. Additionally, three false positive cases were very close
to the signal pattern of LDs. Specifically, in the case (B) shown in
Figure 8, two expert obstetricians determined that the patient had
PD because the recovery from the heart rate drop to baseline was
only slightly longer than 3 min. Since PD is also a sign of fetal
hypoxemia (Chandraharan and Arulkumaran, 2007), we believe that
it is worthwhile to alert the observer in the same manner as that in
LD; therefore, we do not see a major problem with false positives in
these cases.

This study has three limitations. First, we used a simple CNN
configuration model because the dataset was relatively small. After
increasing the amount of data, we expect to obtain better results
using the latest models. Second, we used fragmented data. It is
necessary to evaluate this by constructing a system that can
discriminate LD in real-time using continuous data. Third, we
limited the target of detection to the first LD; however, we
believe that it is important to detect LD as early as possible to
ensure early medical intervention. However, it is possible to improve
the detection accuracy of LDs if we use all the LDs in the dataset, not
just the first.

This comparison and verification of the accuracy of LD
detection with and without UC signals using a CNN showed that
LD could be detected with high accuracy from the FHR signal only.
This result suggests that the LD could be detected using the FHR
signal, even when the quality of the UC signal is poor. Alerting
obstetric healthcare providers to signs of nonreassuring fetal status
will encourage them to closely monitor and prepare for rapid
delivery, which is expected to improve fetal outcomes.
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