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Breeding success and survival in colonial seabirds are influenced by nest location,
physical surroundings, and external disturbances. Nest location may also directly
or indirectly affect individual foraging behavior and physiological conditions,
shaping reproductive success and survival. Despite these influences, few
studies have integrated the analysis of nest location, behavior, and
physiological status. In this study, we analyzed 20 black-tailed gulls (Larus
crassirostris) nesting in the center of a colony within a protected area (Central
Group, CG) and five gulls on the periphery outside the protected area, where
human disturbance is frequent (Peripheral Group, PG). Using GPS movement
trajectories and physiological indicators, we found that although clutch sizes
were similar between the CG and PG, the PG exhibited shorter foraging trip
durations, maximum distances from the nest, and a lower daily frequency of
foraging trips. Antioxidant capacity did not differ between the groups; however,
oxidation levels were lower in the PG. These behavioral and physiological
differences associated with nest location may partly result from the incubation
period influenced by human activity. The PG individuals remained in the
peripheral group for at least 2 years (some for over 15 years), with all
reproductive attempts failing, suggesting consistently low reproductive
success. However, reduced foraging activity and lower oxidative stress levels
reflect an energy-saving strategy that may mitigate the costs of repeated
breeding failures. These findings suggest a potential life-history trade-off, in
which individuals prioritize survival over reproductive success. This highlights
how external disturbances and nest location can shape energy allocation
strategies within a colony’s peripheral-central distribution.
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1 Introduction

In colony-forming seabirds, individuals nesting at the center of a colony generally
exhibit higher parental survival and reproductive success than those nesting at the
periphery, a pattern known as the peripheral-central distribution (Coulson, 1968;
Tenaza, 1971; Aebischer and Coulson, 1990; Piro and Schmitz Ornés, 2021). Variations
in fitness-related traits across nesting locations may be influenced by internal parental
factors, such as age (Aubry et al., 2009), breeding experience (Vergara and Aguirre, 2006),
and foraging ability (Spurr, 1975), as well as external factors, including predation risk (Vine,
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1971; Brodin, 2001; Brown and Kotler, 2004; Piro and Schmitz
Ornés, 2021), physical environmental conditions (Montevecchi,
1978; Rounds et al., 2004; Minias, 2014; Pagenaud et al., 2022),
and social interaction levels (Birkhead, 1977; Kokko et al., 2004).

Seabirds may select nesting sites according to these factors, often
shifting from subcolonies or peripheral areas to more significant
central sites (Serrano and Tella, 2007). As a result, older, more
experienced, and reproductively successful individuals are more
likely to occupy the central regions, whereas less experienced
individuals tend to nest peripherally (Aebischer and Coulson,
1990; Bosch and Sol, 1998; Kim and Monaghan, 2005;
Indykiewicz et al., 2019). However, some seabird species exhibit
strong nesting site fidelity, returning to the same location in each
breeding season (Pearce, 2007; Piro and Schmitz Ornés, 2021),
potentially because of their genetic preferences for specific
habitats (Rodway and Regehr, 1999).

Although colony position and associated factors can influence
reproductive outcomes (but not always; see Ryder and Ryder (1981),
Shaw (1985)), the long-term strategies of iteroparous seabirds may
buffer against the negative impacts of occasional breeding failures.
Temporary breeding failures in peripheral nests may not
substantially reduce overall fitness because skipping a breeding
attempt allows individuals to conserve resources, including
physiological conditions, that can be allocated to future breeding
opportunities. To further clarify the peripheral-central nest-site
distribution, comparing the physiological loads of parental
seabirds, in conjunction with their behavior, between the
peripheral and central nests is essential.

One promising approach involves examining oxidative stress,
which has become a key indicator of the physiological costs
associated with wildlife behavior (Koyama et al., 2021). It arises
from an imbalance between pro-oxidants, particularly reactive
oxygen species (ROS), and antioxidant defenses (Monaghan
et al., 2008). While ROS plays a crucial role in pathogen
elimination, their excessive accumulation can damage DNA,
proteins, and lipids, leading to fatigue due to impaired
mitochondrial function and a shift toward anaerobic metabolism.
Conversely, antioxidants mitigate oxidative damage through
endogenous enzymes and dietary compounds (Dröge, 2002).
Elevated ROS levels are generally associated with physiological
strains, whereas antioxidant levels indicate the capacity for
recovery and resilience (Ahmadi et al., 2006). In avian studies,
female European starlings (Sturnus vulgaris) experimentally
subjected to increased breeding costs exhibit reduced
physiological functions, including increased oxidative stress
(Fowler and Williams, 2017). Furthermore, individuals may
adjust their antioxidant mechanisms in response to anticipated
conditions, potentially balancing endogenous and dietary
antioxidant activities based on past environmental experiences
and expected intake (Noguera et al., 2015). Oxidative stress has
also been observed to exert delayed effects on life-history traits
linked to survival (Noguera et al., 2012) and is often positively
correlated with reproductive effort (Christe et al., 2012; Fletcher
et al., 2013); however, some studies have reported no such
correlation (Nussey et al., 2009; Markó et al., 2011).

In this study, we compared the physiological loads and foraging
movements of black-tailed gulls (Larus crassirostris) incubating on
Kabushima Island, where a fenced, sea-surrounded protected center

(Central Group, CG) was contrasted with a more exposed periphery
accessible to humans and predators (Peripheral Group, PG)
(Figure 1). Although defining clear boundaries between the
central and peripheral areas is challenging, the fenced structure
of this colony allowed us to identify distinct groups consistent with
the peripheral-central distribution. We recorded foraging
movements using biologging and measured physiological loads
based on oxidation levels and antioxidant capacity. Given that
sexual differences in foraging behavior (Kazama et al., 2018) and/
or antioxidant capacity (Lin et al., 2022) may reflect differences in
breeding investment or physical condition, we also compared clutch
size and body size, traits often correlated with and indicative of
reproductive effort, between the CG and PG. Clutch size, which
represents reproductive demand, may also influence oxidative stress
because it is related to the heat requirements of seabirds (Biebach,
1984; Moreno et al., 1991; Moreno and Sanz, 1994), including black-
tailed gulls (Niizuma et al., 2005). Because black-tailed gulls on
Kabushima Island are known to exhibit strong nest site fidelity
(Narita and Narita, 2004), we hypothesized that PG individuals may
consistently experience lower reproductive success due to
interrupted breeding or reduced reproductive investment while
simultaneously gaining physiological benefits that enhance self-
maintenance and future breeding potential.

2 Methods

2.1 Ethical note

All fieldwork was conducted by highly skilled personnel who
had completed comprehensive training in animal experimentation
ethics as required by the Animal Experimental Committee of
Nagoya University. All procedures used in this study were
approved by the Animal Experimental Committee of Nagoya
University (V230001-003). Additionally, protocols for capturing
birds on Kabushima Island, a national natural monument, were
approved by the Hachinohe City Board of Education (permit
number 2023-294) and the Aomori Prefectural Government
(permit number 2023-3045) under the Ministry of the
Environment approval for equipment installation (2404111).

2.2 Field work

This study was conducted at the black-tailed gull breeding site
on Kabushima Island, Japan (40°32′20°N, 141°33′26 E) from April to
June 2023, coinciding with the breeding season of the species.
Intermittent marking surveys have been conducted at the site
since 1922. Since 1973, approximately 2,000 chicks have been
banded annually with metal rings by the Ministry of the
Environment before fledging (Narita and Narita, 2004), allowing
for precise age determination and individual identification of many
parent birds in the colony. Kabushima Island has been designated a
protected natural monument since 1922 and was connected to the
mainland in 1943 through land reclamation. The island’s perimeter,
shrine precincts, and approach roads are open to visitors. In
contrast, the remaining areas, from the midsection to the coast,
are fenced and designated as protected zones inaccessible to the
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public (Figure 1). Approximately 30,000 black-tailed gulls inhabit
protected and unprotected areas on and around the island
(Biodiversity Center of Japan, 2019). In May 2023, 52 dead
individuals were found on and around Kabushima Island. The
cause of death was unknown in 50 cases; one case was attributed
to predation by a cat, and the other to predation by a bird
(FY2024 Kabushima black-tailed gull monitoring report).

The Peripheral Group (PG) consisted of five adult birds marked
with metal or numbered plastic rings in 2007 and 2008, nested in
unfenced areas or immediately below the fenced region. Individuals
were selected based on their rings to ensure a history of consistent
nesting in the area. In recent years, no chicks have survived in these
areas, and no successful nestlings have been recorded since 2021
(Figure 1C). Observations began during the pre-nesting period, and
egg-laying dates, egg measurements, and clutch sizes were recorded
upon confirmation of nesting. Parent birds were captured manually
during the incubation period. Daily patrols were conducted until all
eggs were hatched or 5 days after the expected hatching date.
Unhatched eggs were recorded for each nest, and nests with dead
chicks or eggshells following the anticipated hatching date were
classified as unsuccessful. In 2023, breeding began approximately
2 weeks earlier than in previous years, complicating the

determination of exact egg-laying dates for some individuals. For
eggs with uncertain laying dates, the incubation periods were
estimated based on data from the 2021 and 2022 surveys, in
which the laying and hatching dates were confirmed. The
incubation period for the first egg was calculated as 28.6 days
and standardized to 29 days, whereas that for the second and
third eggs was calculated as 26.9 days and standardized to 27 days.

Captured adult birds were weighed, and morphometric
measurements were collected. Approximately 700 µL of blood
was drawn from the brachial vein, with the area disinfected using
a cotton pad soaked in 70% ethanol. Blood was collected using a 25G
or 29G syringe (NIPRO, Japan) preloaded with liquid heparin
(5,000°units/5 mL; Mochida Pharmaceutical Co., Ltd., Tokyo,
Japan) and stored in microtubes for transport to the laboratory.
Subsequent experimental procedures were conducted after ensuring
hemostasis at the puncture site. Previous studies have indicated that
the volume of blood collected has negligible effects on the behavior,
reproductive success, and survival of adult black-tailed gulls
(Mizutani et al., 2013).

After blood collection, FLEX II Max devices (15.5 g, Druid
Technology, China) were attached to the birds using the harness
method (Thaxter et al., 2014; Koyama et al., 2024). A Teflon ribbon

FIGURE 1
Photographs of Kabushima Island and its surroundings (A, B) and an aerial view (C) (modified from the “Kabushima Island Black-tailed Gull Breeding
Ground”Natural Monument Environmental Survey Report). (A) The nesting area is located directly outside the fence and is accessible to visitors. (B) View
from Kabushima Shrine at the island’s summit (located on the right hill in (a)), showing the protected zone in the foreground and the unprotected area
beyond the fence in the background. (C) The pink-outlined area marks the protected zone, fenced on the land side and facing the sea, while the
blue-outlined area indicates the accessible, unfenced zone used for the peripheral group survey. The nesting locations within the protected area (Central
Group, CG) are shown as circles based on GPS-measured coordinates. In contrast, those outside the protected area (Peripheral Group, PG) are shown as
triangles, mapped relative to the fence and fence posts. GPS data were unavailable for one CG individual, and one pair was included, resulting in 18 nests
displayed for CG.
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(TH-25; 6 mm width; BallyRibbonMills, Bally, PA, United States)
secured the device on the bird’s back. This method, previously
employed in black-tailed gulls at this site, has been shown to have
minimal effects on survival, reproduction, and behavior over periods
exceeding 1 year (Hibiki Sugiyama in prep.).

The FLEX II device, powered by solar energy, transmits data via
mobile radio, eliminating the need for recapture. Behavioral data
were collected continuously, even after breeding efforts ceased. The
device was set to the standard mode with a GNSS positioning
interval of one point per hour and a communication interval of
8 hours. For comparison, the same behavioral and physiological
surveys were conducted on 20 black-tailed gulls nested in a protected
area (CG), with blood samples collected for oxidative stress analysis.
For the CG birds, a VHF/GPS logger (PinPoint VHF/GPS with solar
panels, 82mm× 25mm× 27mm, 18 g; LotekWireless Inc., Canada)
was used for biologging using the harness method. GPS data for the
CG were collected at 5-minute intervals, allowing for detailed multi-
year tracking of individual behavior. Because birds that lose their
eggs often abandon their nests, communication devices are attached
to PG birds to ensure continuous data collection. For the CG birds,
we used individuals equipped with a VHF/GPS logger that our
research group had deployed for long-term monitoring over
multiple years.

2.3 Laboratory procedures: blood
processing and oxidative stress assays

The blood samples were transported from the study site to the
laboratory in light-protected containers. Within a few hours of
collection, samples were centrifuged to separate plasma and
hemocyte fractions, which were then stored at −20°C for later
oxidative stress assays. DNA was extracted from blood cells

obtained after centrifugation using the DNeasy Kit, and sex
was determined using a PCR-based method (Fridolfsson and
Ellegren, 2000; Mizutani et al., 2016). For oxidative stress
measurements, plasma samples were thawed for 1 h before
analysis and centrifuged at 14,000 rpm at 4°C for 10 min. A
middle plasma layer was used to avoid the contamination of the
upper and lower layers. Oxidative stress levels were measured
using the Free Carrio Duo system (Diacron International,
Grosseto, Italy) with d-ROMs and BAP test reagents,
following established protocols to assess oxidative status
(d-ROMs in U. CARR) and antioxidant capacity (BAP in µM)
(Koyama et al., 2021). To maintain sample integrity, all assays
were conducted with samples kept below 10°C. Plasma samples
that appeared turbid during measurement were excluded from
subsequent analyses and treated as missing values. This affected
four individuals in the CG (d-ROM and BAP measurements) and
one in the PG (BAP only).

2.4 Laboratory procedures: analysis of
biologging data

All behavioral and statistical analyses were conducted using R
version 4.3.2 (R Development Core Team, 2023). Only high-
accuracy biologging data (GNSS accuracy below 7 HDOP or
VDOP) were retained for analysis, and missing values were
removed. Because two different devices were used, movement
data from the FLEX II and VHF/GPS loggers were standardized
and resampled at 30-minute intervals using the adehabitatLT
package (version 0.3.28; Calenge, 2006). Data points with speeds
exceeding 90 km/h, considered errors, were removed using the
ddfilter function of the SDLfilter package (version 2.3.3;
Shimada, 2023).

FIGURE 2
Foraging trip tracks of black-tailed gulls on Kabushima Island during the incubation period. Tracks for the Central Group (red; 20 birds: 5 females,
15 males) and the Peripheral Group (green; 5 birds: 3 females, 2 males) are shown. The asterisk marks the location of Kabushima Island.
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As black-tailed gulls engage in central-place foraging during the
breeding season, a foraging trip (hereafter “trip”) was defined as any
excursion of at least 500 m from the nest that lasted 30 min or more.
We defined the distance as the straight-line path between the GPS
positioning points recorded by the device and the border between
the colony and a nearby location (fishing port) where the birds were
expected to stay. The duration, maximum distance from the
breeding site, and total distance traveled were calculated as the
primary trip parameters for each trip. To ensure consistency within
the incubation period, analyses were limited to data collected from
May 1st or the device deployment date. This allowed for a more
extended period, until the emergence of the first hatchling. As a
result, the average analysis periods were 25.4 days (range:
18–31 days) for CG and 21 days (range: 19–23 days) for PG (see
supplementary materials).

This study examined whether behavioral and physiological
variables differed by nest location and investigated the influence
of behavioral parameters (trip duration, maximum distance from
the colony, and total trip distance as indicators of foraging effort)
and clutch size on oxidative stress markers (d-ROMs and BAP).
However, the maximum distance from the colony and the total
distance were highly correlated (Pearson correlation coefficients:
trip duration and maximum distance, r = −0.214; trip duration and
total distance, r = 0.373; maximum distance and total distance, r =
0.747). Because of the wide sampling interval (1 point per 30 min)
even after interpolation, the maximum distance from the colony was
used as the primary trip distance indicator in subsequent analyses.
Bayesian t-test was used to evaluate the impact of each variable on
oxidative stress levels (d-ROM and BAP). To examine group
differences in oxidative stress markers, foraging behaviors during
the incubation period (trip duration, maximum reach, total distance,
total number of trips during the period, number of days measured,
and average number of trips per day based on these figures), and
clutch size between the PG and CG, we used Bayes Factor analysis
with the BayesFactor package in R (version 0.9.12–4.7; Morey et al.,
2024). A Bayes Factor (BF) value greater than one supports the
alternative hypothesis, indicating a difference between groups,
whereas a value less than one is evidence for the null hypothesis,
indicating no difference. In addition, we used BF to confirm the
absence of differences between the CG and PG in terms of body
mass, and each external measurement was analyzed separately for
males and females (see supplementary materials). Moreover, the
relationship between clutch size and female body mass was
evaluated using a Bayesian linear model, which did not detect a
significant relationship between these variables (detailed methods
and results are provided in the Supplementary Materials).

3 Results

The average clutch size for the five PG gulls (3 females and
2 males) was 2.4 ± 0.54 SD (range: 2–3). No chicks hatched in four of
these nests, whereas in one nest, two chicks hatched; however, the
first chick disappeared at 5 days post-hatching, and the second chick
died at 4 days of age. Although PG parents remained near the nest
after these losses, no additional eggs were laid. For the CG, 20 gulls
(5 females and 15 males) were caught during the incubation period,
with an average clutch size of 2.25 ± 0.79 SD (range: 1–4), an average

of 1.86 ± 0.91 SD (range: 0–3) hatched chicks per clutch, and an
average of 1.00 ± 0.77 SD (range: 0–3) fledglings (chicks that
survived to 30 days of age). In two CG nests, all eggs failed to hatch.

The PG birds were at least 10 years old, including one born in
2006 and another in 2013 (both identified by metal rings). The other
three were captured in 2007 and 2008 and identified using plastic
rings. The age of the CG birds ranged from 5 to 24.

The average trip duration and maximum distance traveled were
1.48 ± 3.20 h and 15.72 ± 15.70 km for PG, and 3.26 ± 2.89 h and
24.28 ± 18.89 km for CG (Figures 2, 3). The mean number of daily
foraging trips was 3.79 ± 1.24 for CG and 2.75 ± 1.18 for PG,
respectively. The mean oxidation levels (d-ROMs) and antioxidant
capacity (BAP) were 41.8 ± 25.7 U. CARR and 1,431.0 ± 435.0 µM
for PG, and 69.6 ± 25.2 U. CARR and 1,293.0 ± 326.0 µM for CG
(Figure 3). In addition, behavioral and oxidative stress
measurements of the two CG gulls whose eggs failed to hatch did
not deviate from the range observed in the CG group.

The Bayesian t-test results showed significant differences in trip
duration between the PG and CG, with a Bayes Factor (BF) of 20.97,
indicating a strong effect. BF = 4.60 suggested a moderate difference
between the groups for the maximum distance traveled. The
oxidation level showed weak evidence for a difference with BF =
1.82, whereas the antioxidant capacity (BF = 0.54) showed no
difference between the groups. The clutch size also showed no
evidence for a difference, with a BF of 0.45. Additionally, the
Bayesian t-test results for the number of measurement days, the
total number of trips, and the average number of trips per day
yielded the following BF values: 2.52 for the number of measurement
days, providing weak evidence for a difference between the groups,
148.30 for the total number of trips, providing strong evidence for a
difference; and 21.90 for the average number of trips per day, also
providing strong evidence for a difference.

4 Discussion

The PGs could not raise chicks because of several factors,
including non-hatching, egg loss, and chick mortality, a pattern
similar to that observed in previous years for most parents in
peripheral areas. It is unclear whether non-hatching results from
unfertilized eggs or inadequate embryonic development. This is
because the PG area was easily accessible to tourists and feral cats,
frequent disturbances caused parents to leave their nests. These
disturbances are likely to reduce hatching success, either through
direct nest attacks or lowered nest temperatures linked to shortened
incubation periods (Di Giovanni et al., 2022; Clemencin et al., 2024),
as well as increased stress resulting from proximity to disturbances
(Ellenberg et al., 2007).

Regardless of hatching success, the antioxidant capacity was
similar between the PG and CG, indicating that the intra-species
variation in antioxidant capacity was slight. This finding suggests
that black-tailed gulls maintain comparable levels of non-
enzymatic endogenous antioxidants (e.g., vitamins A and E,
uric acid; Sharma et al., 2018) and exogenous antioxidants
(e.g., coenzyme Q10; Zozina et al., 2018) and carotenoids
(Milani et al., 2017). In contrast, differences in foraging
movements and oxidative stress levels suggest that the primary
defense against oxidative stress during the breeding season likely
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depends on endogenous enzymes such as glutathione peroxidase.
Similar to other bird species (McWilliams et al., 2021),
glutathione peroxidase may serve as the first line of defense
against ROS. Consequently, if the observed levels of foraging
and breeding efforts remain within the capacity of endogenous
enzymatic systems, the immediate need for additional exogenous
antioxidants may be minimal.

Compared to the CG, the PG exhibited significantly shorter trip
durations, a smaller maximum distance reached (strongly correlated
with the total distance), and a lower frequency of foraging trips.

Black-tailed gulls on Kabushima Island utilize a variety of feeding
grounds and consume a broad diet beyond fish and shellfish (Yoda
et al., 2012; Mizutani et al., 2021). Their regurgitated food items
include freshwater fish and insects (Narita and Narita, 2004).
Although the exact types and quantities of food consumed in this
study remain unknown, the foraging range of PG overlapped
substantially with that of CG, and no differences in antioxidant
levels were observed between the groups. This suggests that both the
PG and CG consumed similar types and amounts of food. However,
the observed differences in foraging behavior likely influenced

FIGURE 3
Distribution of trip duration, maximum distance reached from the colony, oxidation levels, and antioxidant capacity for the Peripheral Group (PG)
and Central Group (CG). The CG is further divided into groups based on whether egg hatching was successful or not.
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energy expenditure, leading to slight differences in ROS production
and oxidation levels.

Although antioxidant levels were similar between individuals,
PG exhibited lower oxidation levels, possibly due to nearby, shorter
foraging trips and a lower daily foraging frequency. Gull species
spend much of their flying time flapping their wings, a highly
energy-intensive activity (Bishop, 2005; Mizrahy-Rewald et al.,
2022) that likely increases energy consumption and ROS
production. Additionally, the incubation period imposes
significant physiological costs on the parent birds. For example,
in common eiders (Somateria mollissima), high incubation demands
lead to weight loss and decreased immune function due to reduced
food intake, resulting in decreased fertility in the following year and
long-term fitness costs (Hanssen et al., 2005). In contrast, the failed
hatching observed in PG suggests inadequate incubation, which
would have led to lower incubation costs. Although breeding costs
are generally buffered during the non-breeding season (Senner et al.,
2014; Briedis et al., 2018; Gow et al., 2019), consistently reduced
breeding investment may minimize negative carryover effects in
subsequent seasons.

PG individuals experienced consistently low reproductive
success over multiple years; however, it is intriguing that they
do not change their nesting locations. They may lack the
competitive ability to secure favorable nest sites. Instead, the
low oxidative stress associated with less demanding foraging
trips may offset the high reproductive costs borne by CG
individuals, reflecting an underlying life-history trade-off. Our
results indicate that a peripheral-central distribution generates
heterogeneity in reproductive success within a colony. However,
the peripheral groups may gain fitness benefits by occasionally
foregoing reproduction. Future research should investigate
behavioral differences during the incubation, chick-rearing, and
non-breeding periods, as well as their long-term physiological
costs. Such investigations would enable a more comprehensive
evaluation of rearing costs within the broader framework of life-
history trade-offs. From a conservation perspective, completely
fencing off all black-tailed gull nesting areas to protect PG groups
from predators and human disturbances may be impractical.
Instead, phased measures, such as deterrents against easily
accessible small terrestrial mammals and visitor restrictions,
combined with countermeasures such as fencing, which are
considered critical to success, are expected to improve the
hatching success rate of PGs.

One limitation of this study is the absence of continuously
recorded physiological data. Blood, a vital biomarker source, is
widely used in diagnostics and research (Toner and Irimia,
2005), underscoring the significant demand for real-time blood
sampling loggers. Wearable automatic blood-sampling devices
designed to minimize pain and distress are being developed for
use in captivity settings (Li et al., 2009; Li et al., 2015; Hopper, 2016).
While the long-term collection of blood from wild flying animals
remains challenging, advances in non-invasive techniques, such as
continuous glucose monitoring via interstitial fluid (Mathew et al.,
2024), offer promising alternatives. Deploying such technologies in
seabirds could revolutionize biologging, enabling researchers to
explore how species balance reproduction and survival, respond
to environmental disturbances, and allocate energy across life-
history stages.
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