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Introduction: Compartment based models of muscle fatigue have been
particularly successful in accurately modeling isometric (static) tasks or
actions. However, dynamic actions, which make up most everyday
movements, are governed by different central and peripheral processes, and
must therefore be modeled in a manner accounting for the differences in the
responsible mechanisms. In the literature, a three-component controller (3CC)
muscle fatigue model (MFM) has been proposed and validated for static tasks. A
recent study reported a four-compartment muscle fatigue model considering
both short- and long-term fatigued states. However, neither has been validated
for both static and dynamic tasks.

Methods: In this workwe proposed a new four-compartment controllermodel of
muscle fatigue with enhanced recovery (4CCr) that allows the modeling of
central and peripheral fatigue separately and estimates strength decline for
static and dynamic tasks. Joint velocity was used as an indicator of the degree
of contribution of eithermechanism.Model parameters were estimated frompart
of the experimental data and finally, the model was validated through the rest of
experimental data that were not used for parameter estimation.

Results: The 3CC model cannot capture the fatigue phenomenon that the
velocity of contraction would affect isometric strength measurements as
shown in experimental data. The new 4CCr model maintains the predictions
of the extensively validated 3CC model for static tasks but provides divergent
predictions for isokinetic activities (increasing fatigue with increasing velocity) in
line with experimentally observed trends. This new 4CCr model can be extended
to various domains such as individual muscle fatigue, motor units’ fatigue, and
joint-based fatigue.
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1 Introduction

Localized muscular fatigue (LMF) is an exercise-induced reduction in the ability of a
muscle to generate force or power (Bigland-Ritchie and Woods, 1984) and is an important
consideration in obtaining accurate estimates of strength. While LMF is complex in its
origins, all causative mechanisms can be classified as either central or peripheral. Central
mechanisms originate in the central nervous system (CNS) and result in the impaired
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voluntary activation of motor units (MU), while peripheral
mechanisms involve any and all effects distal to the
neuromuscular joint, including muscle action potential
propagation, excitation-contraction coupling (ECC), and chemical
changes within the contractile elements in muscle. Numerous
studies have investigated the relation between muscle shortening
velocity, strength decline, and the mechanism(s) responsible with
varied results.

1.1 Velocity influences strength

Increasing peak torque loss with increasing joint velocity has
previously been observed (Bogdanis et al., 2007; Mathiassen,
1989; Matsuura et al., 2011; Morel et al., 2015; Perry-Rana
et al., 2002), although Dalton et al. (2012) reported greater
decline at a lower shortening velocity. The apparently
anomalous result may be attributed to the difference in the
protocols parameters used as the number of contractions
(Tomas et al., 2010) and varied duty cycle and cycle time
between the studies. The weight of evidence supports the
notion that increasing velocities leads to increased fatigue,
although a definitive assertion has yet to be made regarding
the exact manner in which this occurs. For instance, a greater
change has been observed in the contractile properties of muscle
after concentric contraction than after isometric contractions,
indicating a tendency for concentric tasks to be dominated by
peripheral fatigue (Babault et al., 2006; Lanza et al., 2004).
Isometric tasks have been found to be predominantly
influenced by central mechanisms (Babault et al., 2006), yet
others noted no decrease in voluntary activation (Callahan
et al., 2009; Lanza et al., 2004). Again, the difference in duty
cycle and cycle time between the protocols may have been
responsible for the different observations. Babault et al. (2002)
observed a decrease in neural drive for slower contractions of the
knee extensors, likely attributed to an inhibition of the
Ib afferents.

The high sensitivity of fatigue mechanisms to differences in
protocol poses a challenge to deriving a precise relationship
between the relative contributions of the causative
mechanisms at any given velocity without standardized
experiments. The majority of the studies do indicate, however,
that one or more central mechanisms are likely dominant at
lower shortening velocities and isometric actions, and that as the
muscle shortening velocity increases, so does the contribution of
peripheral mechanisms.

1.2 Fatigue mechanisms influence recovery

Rates of recovery from fatigue also vary depending on etiology.
A rapid restitution of voluntary force after brief, high-intensity
exercise has been observed and may be attributable to a recovery
of central mechanisms within 2 min and certain peripheral aspects
such as excitation-contraction coupling and muscle reperfusion
within 5 min. Complete recovery, however, was found to take
hours due to the prolonged peripheral impairment in
intracellular Ca2+ release or sensitivity (Carroll et al., 2017).

1.3 Modeling fatigue

Mathematical models of LMF have sought to predict the decline
in peak force/torque under various task conditions using many
approaches. While a review of all the modeling techniques is beyond
the scope of this paper, it may be mentioned that the most
occupationally relevant models are computationally simple,
require as input only data that is readily available, and can
realistically depict the processes of fatigue and recovery under
specified task conditions (Rashedi and Nussbaum, 2015).

1.3.1 Compartment theory
Compartment theory, often used to model transport

phenomena (Chladná et al., 2021; Görtz and Krug, 2022), has
proved to be a particularly useful technique for modeling LMF
using only the time varying target load (TL) as input. In an
occupational setting, the simplicity of this method has the unique
advantage of being able to generate predictions without using any
biological measurements such as surface electromyography (sEMG),
oxygen consumption, or carbon dioxide production. It was first used
to model LMF by dividing muscles into three states: resting, active,
and fatigued (Liu et al., 2002). In their approach, resting/recovered
MUs could be recruited into the active state, which could then move
into the fatigued state. Fatigued MUs were allowed to be directly
activated when needed, but never allowed to return to the resting
state. Complete recovery was precluded by this approach, but was
addressed in the three compartment controller (3CC) model (Xia
and Frey-Law, 2008).

1.3.2 3CC model
The 3CC model rearranged the flow between the same

3 compartments so all MUs could return to the recovered state
once the activation drive was switched off. Critically, it was also
proposed that dynamic loads could be modeled by expressing the
instantaneous desired torque as a fraction of the peak achievable
torque at a given combination of joint angle and joint velocity. This
would allow the model input (TL) to remain a fractional value, but
would be calculated by looking up a 3-dimensional peak torque-
velocity-angle (TVA) surfaces (Frey-Law et al., 2012a) using torque-
velocity-angle data triplets from the activity. To our knowledge, this
capability has not so far been validated.

In an update to the 3CCmodel, recovery during rest periods was
enhanced in the 3CCr model to improve prediction accuracy for
intermittent isometric tasks (Looft et al., 2018). A recently reported
four-compartment muscle fatigue model (MFM) also distinguishes
between the short-term and long-term fatigued states in isometric
tasks (Michaud et al., 2024), but it stops short of extending to
dynamic exertions.

The 3CCr model based on compartment theory has been
validated against an extensive dataset of various isometric tasks
(Frey-Law et al., 2012b; Looft et al., 2018; Looft and Frey-Law, 2020;
Rakshit et al., 2022; Rakshit et al., 2021) and provides reasonable
predictions for strength decline in short term isometric tasks
(Michaud et al., 2024), both sustained and intermittent. However,
it cannot distinguish between isometric and dynamic tasks and
predicts identical torque declines for both as long as TL profiles are
equal in both. This assumptionmay not always hold true. It also does
not distinguish between the responsible fatigue/recovery
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mechanisms, which has the advantage of avoiding complexity so
long as it only deals with one activity type. However, if it is to be
applied to tasks with varying contraction velocities (such as through
the use of TVA surfaces), the etiology of fatigue under each
condition must be carefully considered and accounted for.

1.3.3 Extending the 3CC model
With very few exceptions (Dalton et al., 2012), most studies have

observed higher velocities to be correlated to lower fatigue (Bogdanis
et al., 2007; Mathiassen, 1989; Matsuura et al., 2011; Morel et al.,
2015; Perry-Rana et al., 2002; Tomas et al., 2010) albeit under varied
task conditions (duty cycle (DC) and cycle time (CT)). Accordingly,
it was hypothesized that joint velocity would affect joint strength
while experimentally validating the 3CCr MFM.

In this paper, we will first investigate the relationship between
joint velocity and fatigue through experimental data and compare it
to 3CCr prediction results. Then a four-compartment controller
model of muscle fatigue with enhanced recovery (4CCr) considering
central and peripheral fatigue separately based on the original 3CCr
will be developed for both static and dynamic tasks (Rakshit, 2023).

2 Materials and methods

2.1 Experimental data collection

2.1.1 Participants
A total of 32 individuals (23 male, 9 female) participated this study

(Table 1). Due to scheduling constraints, not all participants were able to
contribute to the data for every joint. It was required that participants be
healthy and have a BMI less than 30 but not less than 18.5. Participants
were also screened to exclude professional athletes as training for a
particular activity can skew the distribution of fiber types (Plotkin et al.,
2021). Individuals with a history of neurological impairments or surgery
in the tissue surrounding the respective joints were also excluded to
prevent adverse outcomes in these potentially vulnerable populations.
All participants were prohibited from participating in intense activity
for the entire duration that they were enrolled in the study. The study
was approved by the Institutional Review Board of Texas Tech
University and participants signed informed consent forms that
provided details of the study.

2.1.2 Protocol
Torque, velocity, and angle data were collected using a Biodex

System 4 Pro Dynamometer (Biodex Medical Systems Inc., Shirley,
NY, United States) (Figure 1) at 100 Hz and stored within a custom

MATLAB (The MathWorks Inc., Natick, MA, United States) data
structure for further processing. Each participant completed the
experiment in 1 training session and 5 test sessions. A minimum of
48 h separated consecutive test sessions, but training and test
sessions were allowed to be on consecutive days. During the
training session they were familiarized with the equipment and
protocol and trained to perform timed maximal voluntary isometric
contractions (MVIC) at the experimenter’s instruction. In the test
sessions that followed, they performed the test protocol at a
predetermined isokinetic velocity. The order of velocities used
was randomized between participants to minimize order effects.

A test session consisted of alternating bouts of isometric and
isokinetic activity over the same predetermined ROM (Figure 2).
During the isometric phase, the participant’s dominant limb was
positioned sequentially at multiple joint angles (ROM stops), and
they were instructed to perform a 3-s MVIC in the flexion (or
extension) direction, followed by 2 s of rest and then a 3-s MVIC in
the opposite direction, after which the dynamometer arm moved
their limb to the next ROM stop. After the final MVIC at the last
stop, the dynamometer switched to isokinetic mode for 60 s,
restricting the maximum joint velocity to a predetermined value.
The participant was instructed to exert maximum effort in this phase
as well while flexing and extending the limb between the limits of the
ROM (Figure 3). The dynamometer would then again switch to the
isometric mode to measure MVICs. Electromyography was omitted
as it would have been impossible to ensure the same motor units

TABLE 1 Participant data by joint for the experiment.

Joint Number of participants of each sex Height (cm)
Mean (SD)

Weight (kg)
Mean (SD)

Age (years)
Mean (SD)

Elbow 13M, 7F 170 (10) 70 (12) 24 (3)

Shoulder 14M, 4F 170 (10) 70 (10) 25 (5)

Hip 13M, 5F 171 (10) 70 (13) 23 (3)

Knee 14M, 4F 170 (10) 70 (10) 25 (5)

Height, weight, and age are noted as mean (standard deviation).

FIGURE 1
Experimental setup.
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were consistently in the detection volume of the sensors while the
participants’ limbs moved through the range of motion (De Luca,
1997). Five isometric measurement phases (ISOM1 through ISOM5)
and four isokinetic fatiguing phases (ISOK1 through ISOK4) were
conducted for every participant.

ROM limits and velocities used for all subjects during the
experiment (Table 2) were determined from a pilot study with
4 participants. The values chosen from the pilot study were expected
to be achieved by all members of the target population, and all
participants of the main study were ultimately able to achieve the
selected ROM limits and velocities. The number of ROM stops for
each joint were chosen to minimize the time spent in the isometric
phase while still obtaining readings over the entire ROM.

2.2 Data processing

Peak isometric torque values over time, measured before and
after every minute of isokinetic activity, were used to estimate the

extent of fatigue. For each functional muscle group (FMG) tested
by a single participant in each session, the raw peak torque values
in each isometric phase were normalized by the maximum value
across all joint angles in that iteration, yielding 5 sets
(corresponding to 5 isometric measurement phases) of n
values each (corresponding to MVICs measured at n ROM
stops) between 0 and 1. As each set was normalized by its
own maximum, every set represented the variation in
normalized strength over joint angle. The 5 curves thus
obtained for a single subject during one session were averaged
to obtain one subject-specific normalized torque-angle plot for
that session. To obtain a single representative value of strength
for each iteration, the normalized torque-angle curve was
subsequently scaled to fit a simple majority of points of each
raw isometric measurement using a linear least-squares method.
For a joint in which MVICs were measured at n ROM stops, all
combinations of �n+1�2 data points were used to evaluate a scaled fit,
and the scale factor corresponding to the combination producing
the lowest summed residuals was chosen to represent that

FIGURE 2
Schematic of the fatiguing protocol. Green boxes represent isometric measurement phases, and pink boxes represent isokinetic fatiguing phases. n
MVICs are performed within each isometric phase: αi denotes the i-th ROM stop, and dj denotes the j-th rotation direction where j ∈ 1, 2{ }.
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iteration. The difference between the representative scale factors
for consecutive isometric iterations was used as a measure of
strength decline during the intervening 60-s isokinetic task. The
amount of recovery during the isometric phases was assumed to
be negligible, so any decreases in strength could be attributed to
the isokinetic activity alone.

2.3 Statistical analysis

The Shapiro-Wilk test was used to assess the normality of the
torque decline data. The results for 24 of the 200 distributions (8
functional muscle groups × 5 velocities × 5 iterations) were
significant, indicating non-normality for those 24 distributions.

FIGURE 3
The initial (blue) and final (orange) ROM stops for the (A) elbow, (B) shoulder, (C) hip, and (D) knee joints. All poses depicted here using the right limbs
of a generic skeletal model; the corresponding ROM stops for the left limbs are symmetric about the sagittal plane.

TABLE 2 Isometric ROM stops and velocities tested in the main experimental protocol. The minimum andmaximum values of the ROM stop demarcate the
mechanical ROM limits tested for each joint.

Joint ROM (°) Isometric ROM stops (°) Isokinetic velocities (°/s)

Elbow 75 15, 30, 45, 60, 75, 90 20, 30, 45, 60, 90

Shoulder 120 60, 90, 120, 150, 180 20, 30, 45, 60, 75

Hip 90 0, 15, 30, 60, 75, 90 30, 45, 60, 90, 120

Knee 75 90, 75, 60, 45, 30, 15 30, 60, 90, 120, 150
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The remaining data, comprising 88% of the dataset, were found to be
normally distributed.

Flexor and extensor peak torques were measured separately for
each joint, so each participant generated two sets of fatigue data for
each joint that they exercised. The fatigue rate for each FMG ×
velocity × iteration combination was averaged across all participants
and the standard deviation was calculated in each case. A two-way
ANOVA with a type I error level of 0.05 was run on the resulting
dataset to determine whether any differences observed were
statistically significant. Within each FMG × iteration
combination, the effect of velocity was determined by performing
a simple linear regression.

2.4 Simulation

The experimental fatiguing protocol described above was
modeled in SIMULINK (The Mathworks, Inc., Natick,
Massachusetts. United States) as alternating sets of activities, with
task parameters (TL, DC, CT) for the isometric phase coded as (1,
0.2, 15 s), and for the isokinetic phase coded as (1, 0.5, 2 × ROM

V ) with a
total simulation time of 690 s. The 3CCr model was also
implemented in SIMULINK with model parameters for the
generalized elbow, shoulder, and knee joints drawn from (Frey-
Law et al., 2012b; Looft et al., 2018). As hip-specific parameters are
not yet available, generalized fatigue parameters were used for
simulations.

2.4.1 Four-compartment controller with enhanced
recovery (4CCr) model of fatigue

In the 3CCr model, active MUs would be allowed to pass into a
single fatigued state. In our 4CCr model, we divide the fatigued

compartment of 3CCr into two: peripherally fatigued, and centrally
fatigued. Accordingly, the governing equations for the four
compartments depicted in Figure 4 are adapted from those
describing the 3CCr model (Looft et al., 2018; Xia and Frey-Law,
2008) as Equations 1–4:

dMA

dt
� −FPMA − FCMA + C t( ) (1)

dMR

dt
� RPMFP + RCMFC − C t( ) (2)

dMFP

dt
� −RPMFP + FPMA (3)

dMFC

dt
� −RCMFC + FCMA (4)

where MA, MR, MFC, and MFP are the sizes of the active, resting,
centrally fatigued, and peripherally fatigued compartments,
respectively, expressed as the fraction of all MUs occupying that
particular state at a given time. The size of each compartment
represents the fraction of the total force capacity of the muscle that is
either in use (active), available for immediate use (resting), or
unavailable for use (centrally fatigued, peripherally fatigued).

C(t) retains its definition from 3CCr as a bidirectional
activation/deactivation drive that serves to transition MUs
between the active and resting states depending on the
instantaneous requirement of the task as in Equation 5:

C t( ) � L × min TL −MA,MR( ) (5)
where L is a force development/relaxation factor that ensures the
developed force quickly and closely tracks TL. Extremely small
values can cause poor tracking, but any value greater than ~10 is
sufficient to ensure that the model responds to changes in TL
quickly. As the predictions have a very low sensitivity to L, it
was arbitrarily set to 20 for all subsequent simulations.

Each of the new fatigued compartments has its unique set of
associated F and R values corresponding to the expected relative
rates of fatigue and recovery due to peripheral and central
mechanisms, respectively. The recovery rate constant for
peripheral fatigue RP is assumed to have a constant value RP0

throughout as in Equation 6:

RP � RP0 (6)

In accordance with 3CCr, RC assumes one of two discrete values
depending on whether TL is non-zero or not as described by
Equation 7:

RC � RC0 if TL � 0
rRC0 if TL> 0

{ (7)

where RC0 is the baseline recovery rate constant for central fatigue,
and r is the recovery rate multiplier for rest. FP and FC vary
continuously with velocity V. During an isometric task (V � 0),
FC � FC0 and FP � 0.With increasing velocity FP increases while FC

decreases according to Equations 8, 9:

FP � FP0 1 − e−kV( ) (8)
FC � FC0e

−kV (9)
where k is the velocity coefficient having the units s/°.

FIGURE 4
Schematic diagram of the 4CCr model depicting the flow of MUs
between the 4 states.

Frontiers in Physiology frontiersin.org06

Yang et al. 10.3389/fphys.2025.1518847

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2025.1518847


2.4.2 Parameter estimation
The introduction of a peripherally fatigued compartment into

the 3CCr model requires the evaluation of three additional variables:
FP, RP, and k. The first two variables control the baseline rate of flow
of MUs into and out of the peripherally fatigued compartment, and
k determines how the velocity of contractions modifies the base rate
of flow of MUs. To determine the values of the new parameters that
best described the experimental dataset collected and post processed
in Section 2.2, the 4CCr model was recreated in Simulink with the
three new parameters as base workspace variables. Values for these
parameters were iteratively generated by a MATLAB genetic
algorithm and were, in turn, used to generate model predictions.
The solver was constrained to look for a solution within a maximum
of 24 h on clusters at Texas Tech University High Performance
Computer Center and to terminate if the average change in the
fitness function over 300 generations was less than or equal to the
default FunctionTolerance. In each case, the optimization completed
well within 24 h when the function tolerance stopping criterion was
met. The optimized parameter values are obtained based on
14 subjects and listed in Table 3.

3 Validation and results

3.1 Results for fatigue rate depending on
joint velocity

Isometric strength is observed to decline after every isokinetic
phase (Figure 5) in the experimental data. These experimental
results are qualitatively in accordance with the 3CCr model
predictions till ISOM2 (Figure 6) which also predicts a lower
strength for ISOM2 as compared to ISOM1. The experimental
and predicted trends diverge thereafter, with ISOM3 through
ISOM 5 showing consecutive losses within the experimental data,
while the predicted strengths at the end of each of those phases
remain nearly unchanged due to extensive recovery during large rest
periods afforded within each isometric phase. The loss in strength
during consecutive isokinetic phases grows smaller as the activity
progresses but is predicted to be negligible by the 3CCr model
after ISOM2.

Isometric strength is also affected by the velocity of isokinetic
phase, with higher velocities resulting in correspondingly greater
losses of strength (Figure 7; Table 4) for all muscle groups except the
elbow flexors. In contrast, the 3CCr model predicts no difference in
isometric strength due to differences in isokinetic testing velocity

alone for any joint, with the strength curves overlapping almost
entirely (Figure 6).

3.2 4CCr model validation

When the velocity is 0, the 4CCr equations collapse into those
describing 3CCr and the resulting outputs are identical. 4CCr,
therefore, generates the same predictions for isometric tasks
(whether sustained or intermittent) as its predecessor.

When the velocity is not zero, the model predictions are
compared against the experimental data from the 4 participants
whose data was not used to develop themodel parameters in Table 3.
Data from 4 subjects were set aside for validation, and the remaining
were used for model fitting with no crossover. Torque decline values
are compared against both the 4CCr and 3CCrmodel predictions for
all joints except the elbow in Figure 8 and Supplementary Figures
S1–S5 in the Supplemental Material. The availability of torque data
at multiple known sample times throughout the duration of the
fatiguing task enables the calculation of Pearson’s correlation
coefficients, reported in Tabs. 5 and Supplementary Tables S1–S5
in the Supplemental Material.

In the data processing pipeline, torque values throughout the
ROM were used to determine strength during an isometric
measurement phase, and, as a result, a single value of strength is
obtained for each ISOM phase. For comparison with model
predictions at each time an isometric measurement was
performed, the same constant value of strength is used for 6
(hip, knee) or 5 (shoulder) times within an isometric phase.

Pearson’s correlation coefficients are calculated for both sets of
predictions against data from each of the four participants: Table 5 is
for the shoulder flexors and Supplementary Tables S1–S5 in the
Supplemental Material are for other joints.

4 Discussion

The hypothesis that velocity of contraction would affect isometric
strength measurements was successfully confirmed for 7 of the 8 muscle
groups studied, with only negligible velocity effects noted for the elbow
flexors (Figure 7). Fatigue was noted to increase nearly linearly with
increasing velocity (Table 4), indicating that the greater power expenditure
associated with higher velocities may have been responsible for increasing
strength losses. A relatively narrow range of velocities chosen for the
experiment may explain why no effects were observed for the elbow
flexors, and it may well be the case that the increase in fatigue rates is non-
linear if higher velocities are also considered.

The trend of increasing fatigue rate with higher velocities has a
few possible explanations. Velocity within a fixed ROM is inversely
proportional to the CT, resulting in successively shorter CTs for
higher velocities. Shorter CTs allow decreased time for muscle
excitation and relaxation, and this has been proposed to be a
responsible mechanism for reduced strength at higher velocities
(Tomas et al., 2010). Peak torque may also have decreased with
increasing velocities due to a shift in the relative contributions to
torque production from both Type I and Type II fibers at low
velocities to predominantly Type II fibers at higher velocities (Perry-
Rana et al., 2002).

TABLE 3 Optimized parameter values for the 4CCr model.

Muscle group k RP
FP
RP

Shoulder flexors −0.0086 1.2E-5 1,211

Shoulder extensors −0.0233 8.2E-6 884

Hip flexors −0.0254 1.0E-5 848

Hip extensors −0.0319 3.2E-5 552

Knee flexors −0.0182 1.0E-5 927

Knee extensors −0.0147 2.2E-5 223
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FIGURE 5
Fatigue rates as experimentally measured by decline in normalized peak isometric strength per minute of isokinetic activity for (A) elbow flexors, (B)
elbow extensors, (C) shoulder flexors, (D) shoulder extensors, (E) hip flexors, (F) hip extensors, (G) knee flexors, and (H) knee extensors. Data points
represent mean normalized fatigue rates, and error bars indicate the standard deviation. A different set of velocities was used during the isokinetic phase
for each joint, given by the legend in °/s.
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EMG was not measured for this study, but since the model itself
deals with contributions of central and peripheral fatigue, a
discussion of potential observations is warranted. Peripheral
fatigue typically manifests in decreased conduction velocities and
as larger, fast-twitch motor units dropping out, resulting in a shift to
lower frequencies in the power spectrum. The markers for central
fatigue are distinct: As recruitment and firing rates increase to
compensate for declining force output, an increase in the
amplitude of the signal may be observed. Provided a suitable
method is agreed upon for measuring EMG from the same set of
motor units throughout isokinetic and isometric tasks, these key
observations may be used to further calibrate the model parameters
or validate its predictions.

The 3CCr model, owing to its ease of use, may still be employed
unaltered in conjunction with appropriate TVA surfaces to model
fatigue for dynamic tasks (including isokinetic tasks), but will not
predict velocity effects. If the distinction between possible
contraction velocities that an activity may be performed at is
important, the model will likely require modification to account
for those differences.

The 4CC model of LMF described here uses joint angular
velocity along with target load to determine the relative
contributions of central and peripheral mechanisms. Low
velocities are dominated by central mechanisms, and higher

velocities allow peripheral mechanisms to assume a greater role.
In its present formulation, all muscle properties are noted for an
agonist muscle group in concentric actions, and the velocities
referred to are the joint angular velocities resulting in concentric
action (muscle shortening) of the agonists.

In maximal voluntary concentric contractions, the
shortening agonistic group would be responsible for the bulk
of the motive force (Hirono et al., 2022). TL for the antagonistic
group is therefore considered 0 for simplicity, and that for the
agonistic group is non-zero. In reality, antagonistic muscles
provide stability and fine motor control in concentric actions of
the agonists, so their contribution to the total torque output may
not be exactly nil. As the model allows low intensity activities to
continue almost indefinitely, the low TL stabilizing activity of
the antagonists would not serve as a bottleneck and predict
earlier fatigue for the activity as a whole. RC predictions would
thus not be significantly altered. However, for fine-grained
modeling of the contributions of both agonistic and
antagonistic groups for a certain activity, experimental data
on antagonistic force production in response to synergist
contraction or co-contraction indices (Li et al., 2021) may be
used to simultaneously drive two simulations—one for each
muscle group. Such an approach would be particularly well-
suited for incorporation in a joint-based musculoskeletal model.

FIGURE 6
Predictions of residual capacity during alternating intermittent isometric and intermittent isokinetic tasks at different velocities according to the
3CCr model: (A) elbow, (B) shoulder, (C) hip, and (D) knee joints. Joint-specific model parameters are used for the elbow, shoulder, and knee joints, and
generalized parameters are used for the hip joint (Frey-Law et al., 2012b; Looft et al., 2018). All parameters are for a general population.
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Being an extension of the 3CCmodel, the newmodel reproduces
its predictions exactly given the same task parameters and boundary
conditions for isometric actions. This is important to ensure that in
attempting to model more complex tasks with non-zero velocities, it

does not lose its ability to accurately predict fatigue in zero-velocity
tasks. It also ensures that the new model does not need to be
revalidated for the trivial case as the 3CC model has already been
validated against extensive experimental data.

FIGURE 7
Decline in peak isometric strength per minute of isokinetic activity performed as a function of isokinetic task velocity for (A) elbow flexors, (B) elbow
extensors, (C) shoulder flexors, (D) shoulder extensors, (E) hip flexors, (F) hip extensors, (G) knee flexors, and (H) knee extensors. Data points represent
mean normalized fatigue rates, and error bars indicate the standard deviation. Each solid line depicts the strength decline in a different phase of the
fatiguing protocol (ISOK1-ISOK4) by the change in velocity.
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The 3CC model was originally presumed to be exclusively
representative of peripheral fatigue (Xia and Frey-Law, 2008), but
later studies (Carroll et al., 2017; Morel et al., 2015) have indicated
that central processes may contribute much more to isometric tasks
than peripheral ones alone. Additionally, the extremely rapid
recovery observed in the predictions of 3CC, especially during
rest, is more characteristic of central mechanisms than peripheral
ones, suggesting that it may in fact be predicting central fatigue at
least for intermittent isometric tasks. This does not detract from its
general accuracy for the conditions it was validated against, and in
borrowing from its general structure, 4CC retains the same accuracy
while renaming the only fatigued compartment in the previous
model as the centrally fatigued compartment in the new model. The
4CC model’s key contribution lies in the provision of a second
fatigued state that allows a more nuanced consideration of the
underlying fatigue/recovery phenomena while still requiring no
physiological measurements. As more organized data from
fundamental research into the dependence of fatigue mechanisms
on tasks parameters is available, Equations 6–9 can easily be updated
within the framework of this model to reflect the latest
understanding of the physiology of fatigue.

Correlation coefficients for the 4CCr model are consistently
higher than those for the 3CCr model across all velocities and
participants. Except for 3 cases with R-values between 0.9 and 0.8
(out of 120), R-values for 4CCr are >0.90 in all cases. Referring to
Figure 8 and Supplementary Figures S1–S5 in the Supplemental
Material, it is clear that these high correlation coefficients do not
necessarily imply accurate predictions for the fatigued strength for
every individual. Correlation coefficients are consistently >0.97 for
both hip flexors and extensors, and this can be attributed to the

negligible recovery predicted during the isometric phase being a
much closer reflection of the same assumption during data
processing. Indeed, since general parameters derived from a
homogeneous sample are used, predictions are representative of
the sample and not necessarily of any particular individual.
However, a strong linear correlation is implied between 4CC
predictions and experimental data, likely a result of the model’s
ability to restrict recovery during periods of rest immediately
following intense dynamic activity. While subject-specific
parameters hold the promise of increased personalized prediction
accuracy, deriving those parameters may prove to be a significant
challenge using the processes outlined in this work. Nevertheless,
these generalized parameters for the new model depict an improved
ability to chart the progress of fatigue for alternating dynamic and
isometric tasks.

It must be noted that validation for the 4CCr model need not be
limited to isokinetic tasks. Activities in which the joint velocity
follows a known pattern, such as isotonic contractions performed on
a dynamometer, or bike ergometry (Bini et al., 2023; Trumbower
and Faghri, 2005), can also be used to drive parameter estimation in
conjunction with load cells or custom force-measurement
apparatus. Once parameters for isokinetic activities have been
reasonably well established, they may be further tuned to
accommodate dynamic activities in which velocity changes
continuously.

Though the 4CCr model provides a flexible framework to
predict fatigue for a variety of commonplace tasks, it is not
without its limitations. It approximates the effects of velocity on
muscular function as currently understood but does not account for
joint angle. Whereas extrafusal fibers in mammalian muscles are

TABLE 4 Linear regression results for fatigue rate in each isokinetic phase. Values for slope are the change in normalized fatigue rate (%MVC/min) divided by
the change in angular velocity (°/s), with the values in parentheses indicating the 95% confidence interval bounds.

Functional
muscle group

ISOK1 ISOK2 ISOK3 ISOK4

Slope (%MVC
s/° min)

p-value Slope (%
MVC s/° min)

p-value Slope (%
MVC s/° min)

p-value Slope (%
MVC s/° min)

p-value

Elbow flexors 0.04514 (−0.002074
0.09235)

0.061 0.03793
(−0.000854
0.07671)

0.055 0.02422 (−0.01068
0.05911)

0.172 0.07004 (0.03494
0.1051)

<0.001*

Elbow extensors 0.07383 (0.03448
0.1132)

<0.001* 0.03937 (0.001944
0.07679)

0.039* 0.04905 (0.01115
0.08695)

0.012* 0.02241 (−0.01148
0.05631)

0.192

Shoulder flexors 0.05142 (0.01064
0.09219)

0.014* 0.1744 (0.1286
0.2201)

<0.001* 0.5265 (−0.001729
0.1070)

0.058 0.07012 (0.03213
0.1081)

<0.001*

Shoulder extensors −0.08559
(−0.1293–0.04184)

<0.001* 0.07661 (0.1113
0.2136)

<0.001* 0.07661 (0.03731
0.1159)

<0.001* 0.1117 (0.07940
0.1441)

<0.001*

Hip flexors 0.009609 (−0.01277
0.03199)

0.396 0.05328 (0.02652
0.08005)

<0.001* 0.03682 (0.01801
0.05562)

<0.001* 0.02328
(0.0004920
0.04606)

0.045*

Hip extensors 0.07307 (0.03735
0.1088)

<0.001* 0.05474 (0.01800
0.09147)

0.004* 0.01847 (−0.01069
0.04762)

0.212 −0.002305
(−0.02638 0.02177)

0.850

Knee flexors −0.002833 (−0.01860
0.01293)

0.722 0.06983 (0.05531
0.08436)

<0.001* 0.06063 (0.04613
0.07513)

<0.001* 0.02900 (0.01328
0.04472)

<0.001*

Knee extensors 0.04143 (0.02573
0.05714)

<0.001* 0.07847 (0.06327
0.09367)

<0.001* 0.04217 (0.02425
0.06008)

<0.001* 0.01153
(−0.002398
0.02546)

0.104

Significantly non-zero slopes are denoted by a * next to the corresponding p-value.
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responsible for force production, intrafusal fibers provide the motor
system continuous feedback about the length of the muscle through
nuclear chain and static nuclear bag fibers, and about the rate of
change of muscle length through dynamic nuclear bag fibers. Only
the latter feedback is currently incorporated as the rate of muscle
shortening can be directly correlated to joint angular velocity.
Muscle length itself is indicative of joint angle, and the model is
not capable of reproducing any angle-specific data, such as the
influence of different ROM limits on fatigue rates if all other task
parameters are kept the same. Further investigation may determine

if integration of joint angle data into the model significantly
improves predictions beyond simply referring to the appropriate
TVA surface.

Some important limitations in the methods employed in this
work must be noted. First, a small sample size of 14 was used to
estimate all fatigue rates and velocity effects, while a larger one could
have strengthened the findings. Moreover, female participants
formed only 22%–35% of the study population for each joint,
leading to an underrepresentation of women in the data. Given
sufficiently large sample sizes, the influence of sex on fatiguability

FIGURE 8
3CCr (blue) and 4CCr (red) predictions of fatigue for the shoulder flexors compared to experimental data from four participants (grey triangles) at
angular velocities ranging from 20 °/s to 75 °/s (A–E). Vertical dotted lines mark sample times.

TABLE 5 Pearson’s correlation coefficients of 3CCr and 4CCr predictions for shoulder flexors to experimental data from four participants.

Joint velocity (°/s) 20 30 45 60 75

Participant 3CC 4CC 3CC 4CC 3CC 4CC 3CC 4CC 3CC 4CC

1 0.69 0.91 0.68 0.94 0.71 0.96 0.69 0.97 0.68 0.98

2 0.73 0.90 0.65 0.94 0.70 0.95 0.71 0.95 0.69 0.97

3 0.71 0.83 0.72 0.91 0.69 0.96 0.65 0.98 0.67 0.98

4 0.68 0.92 0.64 0.93 0.72 0.93 0.72 0.93 0.71 0.97
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may be inferred from collected data (Avin et al., 2010; Rakshit et al.,
2022; Rakshit et al., 2021), but given the limited number of
participants in the cohort, the decision was made to combine
data from male and female participants to maintain statistical
power. Although the safe physical joint angle limits of the
human body are typically greater than the ROM limits used here,
smaller limits for high intensity and high velocity exercise can
protect joints from overextension injury. Real world tasks are less
likely to have externally imposed constraints on ROM, but to
compensate the performer of the task may tend to self-regulate
ROM to avoid injury. Therefore, while the full ROM has not been
studied here, the results should still be applicable to most situations
requiring near maximal effort at high velocity. Additional work may
be required tomodel the progress of fatigue during isokinetic tasks at
submaximal efforts and/or higher velocities. Furthermore, although
the new 4CCr model was derived based on the data collected from a
limited number of subjects, it could be further extended to certain
specific populations for use in specialized applications.
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