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Multimodal diagnostic methods for Alzheimer’s disease (AD) have demonstrated
remarkable performance. However, the inclusion of electroencephalography
(EEG) in such multimodal studies has been relatively limited. Moreover, most
multimodal studies on AD use convolutional neural networks (CNNs) to
extract features from different modalities and perform fusion classification.
Regrettably, this approach often lacks collaboration and fails to effectively
enhance the representation ability of features. To address this issue and
explore the collaborative relationship among multimodal EEG, this paper
proposes a multimodal AD diagnosis model based on resting-state EEG and
structural magnetic resonance imaging (sMRI). Specifically, this work designs
corresponding feature extraction models for EEG and sMRI modalities to
enhance the capability of extracting modality-specific features. Additionally, a
multimodal joint attention mechanism (MJA) is developed to address the issue
of independent modalities. The MJA promotes cooperation and collaboration
between the two modalities, thereby enhancing the representation ability of
multimodal fusion. Furthermore, a random forest classifier is introduced to
enhance the classification ability. The diagnostic accuracy of the proposed
model can achieve 94.7%,marking a noteworthy accomplishment. This research
stands as the inaugural exploration into the amalgamation of deep learning and
EEG multimodality for AD diagnosis. Concurrently, this work strives to bolster
the use of EEG in multimodal AD research, thereby positioning itself as a hopeful
prospect for future advancements in AD diagnosis.

KEYWORDS

Alzheimer’s disease, electroencephalography, magnetic resonance imaging,
multimodal, joint attention mechanism

Frontiers in Physiology 01 frontiersin.org

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2025.1515881
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2025.1515881&domain=pdf&date_stamp=2025-03-11
mailto:qiangfu@gxnu.edu.cn
mailto:qiangfu@gxnu.edu.cn
mailto:yuling0616@gxnu.edu.cn
mailto:yuling0616@gxnu.edu.cn
mailto:lxwrenai@163.com
mailto:lxwrenai@163.com
https://doi.org/10.3389/fphys.2025.1515881
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphys.2025.1515881/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1515881/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1515881/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1515881/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1515881/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1515881/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Liu et al. 10.3389/fphys.2025.1515881

1 Introduction

AD is a neurodegenerative disease with a high incidence
rate, currently affecting about 51.6 million people worldwide
Schlachetzki et al. (2013), which brings a heavy burden to society.
According to reports, 6.7 million Americans aged 65 and older
are currently living with Alzheimer’s dementia. This number is
likely to grow to 13.8 million by 2060. Meanwhile, the total cost
of healthcare, long-term care, and hospice services for people with
dementia aged 65 and over will reach an estimated $345 billion
in 2023 Saykin et al. (2010). So far, many markers of AD have
been discovered. Many studies have focused on various aspects
such as biomarker discovery, diagnosis methods, and therapeutic
strategies. For example, studies with the Zong et al. (2024) proposed
innovative approaches in analyzing neuroimaging data for AD
diagnosis by integrating advanced image processing algorithms
and machine learning techniques, aiming to improve the accuracy
and efficiency of diagnosis. Another study with Zuo et al. (2024)
focused on using multimodal data fusion methods to extract more
comprehensive features from different sources of AD-related data
for better understanding the disease progression. Moreover, the
research with Pan et al. (2024) explored the potential of using
specific neural network architectures to enhance the performance
of AD diagnosis based on neuroimaging data. And the work
with Zuo et al. (2023) investigated how to utilize time-series
information in different modalities to capture the dynamic changes
of AD, which is also quite inspiring for the field. The Alzheimer’s
Disease Neuroimaging Initiative (ADNI) has played a significant
role in biomarker research, serving as a milestone in the field.
Its primary objective is to the development of AD research by
collecting various candidate biomarkers. ADNI combines magnetic
resonance imaging (MRI) Elshafey et al. (2014) and positron
emission tomography (PET) scans to study AD. It encompasses a
vast amount of information related to the genetics, cerebrospinal
fluid, and other biomarkers associated with AD a. Illán et al.
(2011). But these modalities lack temporal resolution, and their
analysis is only focused on traditional visual inspection. In recent
years, some studies related to AD have been exploring the use of
electroencephalography (EEG) to detect AD Darves-Bornoz et al.
(2023). At the same time, studies have also shown that EEG patterns
are also one of the biomarkers of AD. In recent years, there has
been a growing interest in AD diagnosis research using medical
neuroimaging. Both machine learning (Peng et al., 2022; Uysal and
Ozturk, 2020; Franciotti et al., 2023) and deep learning methods
Alorf and Khan (2022); Leela et al. (2023); EL-Geneedy et al. (2022);
Yao et al. (2023a) have been widely explored in this field. However,
medical neuroimaging lacks time resolution in the resting state, and
it is difficult to form a continuous onset period time. To address
this issue, researchers have turned to EEG as a potential marker
for AD diagnosis, as EEG patterns provide temporal resolution.
However, extracting meaningful representations from EEG patterns
remains a significant challenge. Fortunately, deep learning models
have also been applied to automatic feature extraction of EEG
modalities Bi and Wang (2019); Xia et al. (2023), which can
reduce the problems caused by the feature extraction process.
The AD EEG data of the corresponding channel is selected, the
corresponding channel data features are extracted and learned and
finally classified by deep learning or machine learning classifier.

Both medical neuroimaging and EEG data possess distinct modal
characteristics. Medical neuroimaging captures changes in blood
oxygen levels and changes in the hippocampus, while EEG provides
high temporal resolution information. Integrating these two modes
has been a challenging task for researchers. In recent years,
there has been rapid development in multimodal AD diagnosis
(Velazquez and Lee, 2022; Eslami et al., 2023; Chen et al., 2023;
Leng et al., 2023), with most studies focusing on combining medical
neuroimaging with clinical data. However, mostmultimodalmodels
are trained independently for each modality, failing to capture the
correlation and dependence between modalities. Only a few studies
Jesus et al. (2021); Colloby et al. (2016) have explored multimodal
approaches using EEG data, employing machine learning methods
for AD prediction. However, these studies rely on manual feature
extraction, which is time-consuming, lacks interactivity, and is
subject to subjective bias. Furthermore, identify and incorporate
hidden features between the data.This study addresses the following
issues. First, the absence of automatic feature extraction capabilities,
compounded by the subjective nature of feature extraction, poses
significant hurdles in identifying and extracting latent features
from the data. Second, the current practice of training each
modality model independently overlooks the interdependence and
correlation between modalities. To overcome these obstacles, our
work proposes a novel multimodal model that integrates sMRI and
EEG patterns. Leveraging the unique characteristics of sMRI and
EEGmodalities, sMRI-based convolutional neural network (sCNN-
sMRI) and EEG-based convolutional neural network (sCNN-EEG)
are designed to extract features from respective modal data and
promote the interdependence and correlation between different
features. Furthermore, this work introduces an attentionmechanism
to bridge the semantic gap between models, thereby enhancing
the learning capacity of the overall model. The main contributions
of this paper are as follows. a. A multimodal AD diagnosis
model based on the convolutional neural network (MCNNRF) is
proposed. b. This work devises dedicated network architectures,
namely sCNN-EEG and sCNN-sMRI, tailored for processing EEG
and sMRI data, respectively. c. To handle the complexity of feature
mapping and unveil latent features, stacked Random Forests (RF)
is used for classification tasks d. A groundbreaking multimodal
joint attention mechanism (MJA) is introduced to address the
intricacies of feature extraction across different modalities. This
mechanism fosters synergistic feature extraction while facilitating
collaboration between modalities, thereby enhancing the model’s
ability to represent features effectively.

The rest of this work is organized as follows. The related work
is discussed in Section II. The model used and constructed are
provided in Section III. The model evaluation and experiments are
presented in Section IV, and Section V concludes this paper.

2 Related Works

Currently, there are several studies focusing on AD diagnosis
using unimodal data, primarily focusing on medical neuroimaging
techniques. In Liu et al. (2023), a diagnostic method using two
- sample t - tests to detect AD is proposed. First, it uses two
- sample t - tests to detect AD - related regions in MRI, then
extracts the features of related regions through an unsupervised
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learning neural network, and finally classifies AD using a clustering
algorithm. In Mehmood et al. (2021), a layer - by - layer transfer
learning model for AD diagnosis is developed.

However, the above-mentioned studies are all unimodal studies,
lacking the interaction between modes and not considering the
complementarity between multi-modalities. Multimodality has
gained significant popularity in recent years, and a plethora of
studies explore the potential of combining multiple modalities
to enhance analysis and understanding. In Colloby et al. (2016),
multimodal EEG - MRI in the differential diagnosis of AD and
dementia with Lewy bodies is proposed. The MRI index in this
work is derived from the medial temporal lobe atrophy (MTA)
score. Logistic regression analysis identified EEG predictors for AD
and DLB. A joint EEG - MRI model is then generated to examine
whether there is an improvement in classification compared to the
individual patterns. In Jesus et al. (2021), a multimodal prediction
of Alzheimer’s disease severity based on resting - state EEG and
structural MRI is proposed. This work investigates the multimodal
prediction of Mini - Mental State Examination (MMSE) scores
using resting - state electroencephalography (EEG) and structural
magnetic resonance imaging (MRI) scans. Evaluation is performed
by three feature selection algorithms and four machine learning
algorithms. Compared with Colloby et al. (2016), this study is not
only focused on the differential diagnosis between AD and other
diseases but also aims to build a general multimodal diagnosis
model for AD. In terms of methods, Colloby et al. (2016) relies
on manually extracted MRI indicators and logistic regression
analysis, while this study automatically extracts features from EEG
and sMRI through deep learning, improving the accuracy and
efficiency of diagnosis. Compared with Jesus et al. (2021), this
study innovatively proposes the Multimodal MJA, which effectively
promotes the collaboration between different modalities. The MJA
is more efficient in feature extraction and fusion, thus improving the
diagnostic performance. In summary, previousADdiagnosis studies
have achieved certain results in both unimodal and multimodal
fields. However, most studies suffer from insufficient collaboration
between modalities and less intelligent feature extraction methods.
This study addresses these issues by designing dedicated feature
- extraction models sCNN - EEG and sCNN - sMRI, combined
with the innovative MJA, providing a more effective method for
AD diagnosis.

3 Methods

In this section, the dataset is described in Section A.The feature
selection method is provided in Section B. The sCNN-EEG model
is proposed in Section C. The sCNN-sMRI model is proposed in
Section D. The MJA module is described in Section E, and finally,
the MCNNRF model is proposed in Section F.

3.1 Dataset

The data set used in this work was provided by
Chen et al. (2023). The acquired data underwent text
data processing using the Statistical Package for Social
Sciences software (SPSS ver. 22.0, http://www01.ibm.

com/software/analytics/spss/products/statistics/). During the
data processing process, unknown and null values in MRI
and EEG were estimated and filled using the weighted nearest
neighbor algorithm Troyanskaya et al. (2001). Subsequently,
min-max normalization was applied to all data within the
range [0,1].

3.2 Feature selection

Given that both modes contain hidden features in addition
to observed features, utilizing too many features could lead
to significant overfitting problems in the model. Therefore,
this work uses two feature selection methods to address this
concern. MRMR Zhao et al. (2019) feature selection is used
for dimensionality reduction of the MRI and EEG datasets. By
examining the score values of different subsets of the data set, the
highest and most optimal feature set is selected. To streamline the
process, a grading strategy of 10 is used for feature selection. The
MRMR algorithm is run for each grading label, and N optimal
features are chosen within the range of 10 500 through evaluating
the score value. Following the selection of the N best features, a
feature importance algorithm is employed to verify and further
optimize these selected features.

3.3 Model for unimodal EEG data

In this work, the sCNN-EEG is designed to extract the important
and hidden feature extraction from AD EEG data. In Figure 1, the
input undergoes convolution two kernels of size of 2, resulting in
the generation of matrix X1. X1 is then processed through two
different branches, where stacked convolutions with kernel sizes
of 3 and 4 are applied, producing X2 and X3, respectively. Next,
matrix multiplication is performed between X1 and X2, yielding a
matrix graph S1 that contains both important and hidden features.
A similar approach is used to combine X1 and X3, resulting in
the formation of S2. The matrix graph S1 can be calculated by
Equation 1

S1 = X1 ×X2. (1)

The convolution kernels of the convolutional layer are all
initialized with constants. A stride value of 1 is used to move the
kernel window and perform the convolution across the entire input
matrix. The sCNN-EEG maintains the size of the convolutional
feature map, akin to the feature map of the previous convolution,
and preserves the shape of the input data by setting the padding
variables to be the same. The same padding variable can ensure that
there will be no matrix problems during subsequent fusion. Since
the second half of the pooling layer has the same structure, take
the part of the model where S1 is an example. The feature map S1 is
taken as two inputs, which are processed by the max pooling layer
and the average pooling layer, respectively. After processing, two
feature maps (M1 andM2) are obtained. BothM1 andM2 subjected
to an identical convolution process, employing a kernel size of 2,
resulting in the creation of two additional feature maps, M3 and
M4. Then, a matrix multiplication operation is performed on M3
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FIGURE 1
Overall Structure Diagram of sCNN-EEG.

and M4 to yield the composite feature map M5. By using pooling
operations such as max pooling and average pooling, important
spatial information from the input feature maps is preserved while
reducing dimensionality. These pooled feature maps, M1 and M2,
are then processed using convolution, which helps in extracting
meaningful features. Finally, matrix multiplication is applied
to combine these features, capturing the relationships between
the different pooled representations and creating a composite
feature map. This process is formally represented by Equation 2,
which describes the mathematical operation involved in
computingM1.

M1 = AVG (S1) ×MAX (S1) , (2)

where AVG here is the average pooling layer, and MAX is the
maximum pooling layer.

The two deep feature maps are matrix multiplied and
concatenated with the original features to form the final feature
map. The purpose of this is to ensure the integrity of feature
information and to dig out deep features. Finally, the final feature
maps are passed to the max pooling and connection layers. At
the same time, the stacked feature maps are flattened using a
flattening layer before the connection layer. This allows the feature
maps to be transformed into a one-dimensional representation.
The connection layer consists of 150, 100, and 50 units, which
the flattened feature maps are connected to. Additionally, there
is a hidden layer with a 50% dropout rate, which helps prevent
overfitting by randomly dropping out half of the units during
training. To ensure that the features are non-linear, the connection
layer uses the hyperbolic tangent function as the activation function
and initializes its weights with the Glorot normal initializer Glorot

and Bengio (2010). Therefore, the cost function can be
obtained by

L(xt,yt) =
−1
N
×

N

∑
i=0
(xt (i) × log(yt − (1− xt (i)))

× log(1− xt)) +
1
2
× ∂×

K

∑
k=0

W2
k,

(3)

where L is cost function is the combination of the binary cross-
entropy and L2 regularization term. ∂ is a hyper-parameter
which represents the regularization coefficient. xt is true class
label. yt is predicted class label. N is batch size. Wk is the
k− th weight parameter of the model. K is the number of
weight matrices.

3.4 Model for unimodal sMRI data

In this work, the sCNN-sMRI is focused on important feature
extraction and hidden feature extraction for sMRI. In Figure 2, the
sMRI data is taken as input, first passing through two identical
convolution processes, using a convolution kernel of size 2. Then
it goes through the feature extraction modules of two different
convolution kernels. One of the paths consists of a set of convolution
kernels 3 and 4. It aims to create two different feature maps
(represented as a1 and a2 respectively). The other path consists
of convolution kernels 4 and 2, which focuses on obtaining two
different feature maps (represented as a3 and a4 respectively).
Multiple feature maps containing different feature information are
created and fused through different feature extractors. Now all
feature map features of the same feature extractor are fused together
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FIGURE 2
Verall Structure Diagram of sCNN-sMRI.

to form new featuremapsQ1 andQ2.TheQ1 andQ2 can be obtained
by Equations 4, 5

Q1 = a1 × a2, (4)

Q2 = a3 × a4. (5)

In this model, multiple feature maps obtained from each branch
are fused through matrix multiplication. Multiple feature maps
Q1 and Q2 are concatenated to obtain the feature map A1. After
cascading,A1 is calculated by themaximumpooling and the average
pooling respectively, and obtains a multi-pooling feature matrix
map. Multi-pooling features are convolved to obtain deep feature
maps (each convolution kernel size of 2). The final feature map A2
is obtained by matrix multiplication of the maximum feature map
and the average feature map. The A1 and A2 can be obtained by
Equations 6, 7

A1 = Q1©Q2, (6)

A2 = AVG (A1) ∗W×MA× (A1) ∗W, (7)

where © is the concatenation symbol, AVG is the average pooling
layer, andMAX is the maximum pooling layer, W is the convolution
kernel size. Finally, the A2 is calculated by the max pooling
and fully connection layers. After the maximum pooling layer,
the structure of the connection layer is consistent with the
connection of sCNN-EEG. Both consist of 200, 150, 50% and 50%
dropout. The training cost function for this model is the same as
Equation 3.

3.5 Multimodal joint attention mechanism

During the experiment, it is found that in the multi-branch
feature extraction process of MCNNRF, the feature extraction
process of the two modalities is independent of each other, and
the lack of relevant cooperation may cause the extracted features
to be independent of each other. At the same time, it may cause
poor representation ability after multimodal fusion. To this end,
this work proposes a fusion module of MJA, which is mainly used
to explore the deep cooperation of two modalities to enhance
the representation ability of extracted features. The structure of
the MJA fusion module is shown in Figure 3. The design of the
module is inspired by the spatial attention mechanism in Fu et al.
(2019). Specifically, the module takes the EEG data branching
model (denoted as A) and the sMRI branching model (denoted as
B) as input sources. To simplify the description, only the spatial
attention unit of branch A is explained in detail in this paper. In
the module, the structure of A and B is similar, and each branch
consists of three convolutional layers and an S-shaped activation
function; the convolutional layers are used to extract the features
of each model, and the S-shaped activation function is used for
nonlinear transformation. Given the input N ∈ R(G×H×W), where
G, H, and W denote the number of channels, height, and width
of the features, respectively, firstly, Aquery, Akey, and Avalue are
generated by three 1× 1 convolution operations, respectively, and
the dimensionality of these outputs are all R(G/8×H×W). In order
to reduce the computational cost, the 1× 1 convolution reduces
the number of channels to 1/8 of the original, thus reducing the
computational effort. Next, the attention score matrix is obtained
by multiplying the transpose of Aquery with Akey. Then, the sigmoid
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FIGURE 3
Chematic diagram of MJA module.

activation function is used to generate the spatial attention graph
Sa ∈ R

(N×N), which reflects the spatial importance of the input
features. Next, for branch B, the same operation is performed to
obtain the corresponding spatial attention map Sb ∈ R(N×N), which
is used to characterize the spatial feature importance of branch B.
Unlike the use of softmax to generate Sa in the original spatial
attention mechanism, this paper employs an S-shaped activation
function, which is designed to capture hidden features over a
wider range and to be consistent with the activation function in
multimodal models. In addition, in the traditional spatial attention
mechanism, Sa is only used to refine A. In this design, Sb is not only
used to refine B, but also achieves a deep fusion of the two modes
by combining it with Sa, which enables the twomodes to work more
closely together, thus improving the overall feature representation
capability. Therefore, the MJA fusion module is able to better
coordinate the feature learning of the twomodalities by introducing
a joint attention mechanism, which not only weights the features of
the respective modalities at the spatial level, but also interactively

fuses between the twomodalities, thus improving themodel’s ability
to comprehend and process multimodal data.This design allows the
model to extract and fuse information more effectively, enhancing
the robustness and accuracy of the final representation.

Specifically, first perform three 1× 1 convolutions to generate
Aquery, Akey and Avalue respectively, and make their dimensions
controlled at R(G×N) Then Avalue, Bvalue, and the corresponding
generated Sa and Sb are matrix multiplied to obtain two attention
feature maps Ca and Cb. The specific formulas of Ca and Cb can be
calculated by Equations 8, 9

Ca = Avalue × Sb, (8)

Cb = Bvalue × Sa. (9)

In the formula, CaϵR
(G×N) is the stacked EEG feature guided

by the sMRI feature, and CbϵR
(G×N) is the stacked sMRI feature

guided by the EEG feature. Finally, this work reshapesCa andCb into
R(G×H×W) and performs feature concatenation on Ca with A, and Cb
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FIGURE 4
Schematic diagram of MCNNRF module.

with B to obtain the final stacked features. It can be calculated by
Equations 10, 11

Arefined = N©Ca, (10)

Brefined =M©Cb, (11)

where ArefinedϵR
(G×H×W) and BrefinedϵR

(G×H×W) represents the final
EEG features and sMRI features, while N andM represent the initial
input EEG features and sMRI features, respectively.

3.6 Multimodal model structure

The final framework of this work is a combination of sCNN-
EEG, sCNN-sMRI models, and fused modality models. The sCNN-
EEG and sCNN-sMRImodels are responsible for extracting features
from the correspondingmodalities.TheMAJmodule is used to solve
the interconnection andmatching betweenmultimodal features and
to fuse multimodal features. MCNNRF is shown in Figure 4. It is
divided into three phases. The first stage is to extract features from
the corresponding modalities using single modality models (i.e.
sCNN-EEGand sCNN-sMRI).The secondphase aims to address the
lack of interconnectivity and fusion in the multimodal information
extraction process. The features extracted from the two single
models are used as the input source of the MAJ module. The third
stage is the stacked features formed after fusion and the stacked RF
is used for classification.

4 Experiments

In this section, the experimental environment and dataset
are presented in Section A. Unimodal feature extraction model
comparison is provided in Section B. Ablation work is provided
in Section C. A Comparison between unimodal and multimodal
model is provided in Section D. robustness analysis is provided in
SectionE. Finally, Comparison with existing researches is provided
in Section F.

4.1 Experimental environment and dataset

This work is implemented by using TensorFlow library on
an NVIDIA RTX A6000 GPU. The dataset used in this work is
provided by the research of Colloby et al. (2016). The dataset
contains electroencephalogram (EEG) data from 99 Alzheimer’s
disease (AD) patients. However, due to the lack of data in 5 cases,
magnetic resonance imaging (MRI) scan images are only available
for 89 patients. Among the available cases, there are 45 females
with an average age of 75.8±7.3 years. The EEG data of CNHCs
(Healthy ControlsCognitively Normal) used is from a public static
EEG dataset for epilepsy, and the MRI data is from the public ADNI
dataset. Despite the data set being small, the model is relatively
intricate, and this often culminates in overfitting of the model.
Therefore, the experiments in this work use 10-fold cross-validation
to deal with these problems. At the same time, the data set will be
divided into 8:2 corresponding to the training set and the test set,
where the training set is used for training the model, and the test set
is used for testing and evaluating the model. The receiver operating
characteristic curve (ROC) Tharwat (2018) is used as the main
metric for hyperparameter tuning and finding the best model. This
work also evaluated some secondary indicators such as sensitivity
(Sn), specificity (Sp), accuracy (Acc), precision (Pre), and Matthew
correlation coefficient (Mcc). These indicators can be calculated by
Equations 12–16

Sn = tp/(tp+ fn) , (12)

Sp = tn/(tn+ fp) , (13)

Pre = tp/(tp+ fp) , (14)

Acc = (tp+ tn)/ (tp+ tn+ fp+ fn) , (15)

Mcc =
tp× tn− fp× fn

√(tp+ fn) × (tp+ fp) × (tn+ fn) × (tn+ fp)
, (16)
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FIGURE 5
OC of sCNN-EEG, sCNN-sMRI, CNN-EEG and CNN-sMRI.

where tp is true positive, tn is true negative, fp is false positive
and fn represents false negative values.They are calculated from the
confusion matrix of the predicted results.

4.2 Unimodal feature extraction model
comparison

This work focuses on the feature extraction of EEG and sMRI
datausing sCNN-EEG and sCNN-sMRI models, respectively. Prior
to determining the sCNN-EEG and sCNN-sMRI models, this work
designed some feature extractionmodel strategies for twomodalities,
named CNN-EEG and CNN-sMRI respectively. Compared with
sCNN-EEG and sCNN-sMRI, CNN-EEG and CNN-sMRI only
lacks different multiple pooling layer modules. In this section, the
performance of different networks (CNN-EEG, sCNN-EEG, CNN-
sMRI, and sCNN-sMRI) is compared. The Receiver Operating
Characteristic (ROC) is shown in Figure 5, and the Area Under
the Curve (AUC) is calculated. The AUC of sCNN-sMRI is 0.33%
higher than that of CNN-sMRI, while the AUC of sCNN-EEG is
2.63% higher than that of CNN-EEG. Other performance indicators
are shown in Table 1. Compared with CNN-sMRI, the precision
sCNN-sMRI improves to 75.97%, an Mcc improves to 51.35%, and
a relatively flat sensitivity. Compared with CNN-EEG, sCNN-EEG
has a relatively flat accuracy and a sensitivity improvement of 18.76%.
Compared with CNN-EEG/CNN-sMRI, sCNN-EEG, and sCNN-
sMRInotonlyhavemoremulti-branchdifferent convolutional kernels
for feature extraction but also strengthen the learning of weak features
and use multi-pooling modules to extract deep-level features. At
the same time, using stacked connections in the connection allows
the extracted features to perform stacked features, which can better
integrate hidden features into it.

4.3 Ablation study

After analyzing the various performance indicators of the
centralized single-mode feature extractor, a model for the

TABLE 1 sCNN-EEG, sCNN-sMRI, various performance indicators of
CNN-EEG and CNN-sMRI.

Model Accuracy
(%)

Precision
(%)

Sensitivity
(%)

Mcc (%)

CNN-sMRI 86.51 71.35 34.07 44.72

sCNN-sMRI 86.84 75.97 36.79 51.35

CNN-EEG 75.80 61.57 22.91 29.37

sCNN-EEG 78.43 61.04 41.67 29.57

TABLE 2 Performance indicators of multimodal models.

Model Accuracy
(%)

Precision
(%)

Sensitivity
(%)

Mcc (%)

MCNNBA 83.73 73.68 41.67 40.14

MCNNcRF 62.93 51.20 51.09 37.64

MCNNBARF 84.43 81.88 72.36 43.10

MCNNRF 94.75 85.12 80.88 75.34

feature extractor is selected. The feature extractor is used to
extract multimodal features, which are then stacked together.
The multimodal features are fused and classified using different
strategies. Initially, a simple concatenation matrix method is used to
fuse the multimodal features, and the performance of the model is
evaluated. However, it is observed that simple splicingmethods does
not directly improve and enhance the performance and classification
ability of multimodal models. For this purpose, this work has
designed several strategies for multimodal fusion. For example,
using a bimodal attention mechanism for fusion. The multimodal
model of EEG and sMRI can solve the correlation and cooperation
between the modalities and can also classify AD well. Table 2 shows
the performance indicators of each strategy, and their ROC curves
are shown in Figure 6.

Figure 6 shows the performance curve of different
multimodality models. Even with RF as the classifier, MCNNcRF
accuracy is only 62.93%. MCNNBA uses dual attention fusion
for multiple modalities, with an accuracy of 83.73%. Compared
with MCNNcRF, the accuracy of MCNNBA is much higher than
that of MCNNcRF. The main reason is that MCNNBA’s dual
attention fusion module is more focused on the connections
between multimodals. When MCNN uses Bi-Attention and adds
RF for classification, the accuracy rate is 84.43%, because RF
enhances its ability to classify stacked features. Finally, when
MCNNBA adds RF, the accuracy rate reaches 94.75%. Compared
with the previous strategies, this model uses the fusion module
to cooperate and deeply fuse the features after extracting the two
modal features. Table 2 shows the MCNNRF strategy outperformed
all other strategy models in this experiment, demonstrating
superior performance in terms of accuracy, precision, sensitivity
and Mcc values. When compared with MCNNcRF, the accuracy
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FIGURE 6
Multimodal strategy ROC

of MCNNRF is elevated by 31.82%, precision is amplified
by 11.44%, and sensitivity is increased by 39.21%. As shown
in Table 2 and Figure 6, among different multimodal fusion
strategies, MCNNRF with the MJA module shows the best
performance in accuracy, precision, sensitivity and Mcc values.
Although both MCNNBA and MCNNBARF use bimodal attention
mechanisms for fusion, MCNNBARF outperforms MCNNBA in
all performance metrics due to its utilization of RF to enhance
classification capabilities. Nevertheless, MCNNBARF still falls short
of MCNNRF’s performance, as the bimodal attention mechanism
only enhances feature extraction capabilities without exploring and
amplifying the intercommunication and complementarity between
modalities.

4.4 Comparison between unimodal and
multimodal model

EEG modalities and sMRI modalities are fed into the model by
themultimodalmodel as output sources. Compared to the unimodal
model, the multimodal model diversifies the input. At the same
time, the multimodal model fuses the characteristic enhancement
features between the different modalities, and obtains a higher
accuracy.Their various performance indicators are shown inTable 3.
It is obvious that the multimodal model is the optimal model, and
the accuracy is increased by 8.91% and 16.32% compared with
the sCNN-sMRI and the sCNN-EEGl, respectively. At the same
time, other parameters have been greatly improved. Overall in this
experiment, MCNNRF is far superior to the unimodal model.

4.5 Robustness analysis

To analyze the robustness of the proposed models, 10
independent experiments are performed on each model. The
experimental results, measured in terms of accuracy, are
presented in Figure 7 The MCNNRF model exhibits obvious

TABLE 3 Performance indicators of multimodal models.

Model Accuracy
(%)

Precision
(%)

Sensitivity
(%)

Mcc (%)

sCNN-sMRI 86.84 75.97 36.79 51.35

sCNN-EEG 78.43 61.04 41.67 29.57

MCNNRF 94.75 85.12 80.88 75.34

FIGURE 7
Performance indicators of sCNN-sMRI, sCNN-EEG, and MCNNRF.

advantages, outperforming both unimodal models (sCNN-EEG
and sCNN-sMRI) consistently. Even the worst-performing MCNN
model surpasses the best-performing sCNN-EEG and sCNN-sMRI
models by 7.07% and 2.02%, respectively. Additionally, the curves of
all three models demonstrate stability and consistency throughout
the experiments.

4.6 Comparison with existing researches

4.6.1 Compared to unimodal
In this section, the performance of MCNNRF is compared with

advanced AD unimodal diagnostic models. The comparison results
are shown in Table 4.The accuracy performance comparison of each
model shows that the MCNNRF is the best performing architecture
with the highest accuracy. However, when considering the single
EEG mode, the accuracy does not show significant differences.
AlthoughMCNNRF achieves approximately 1.75% higher accuracy
than the other models, there is still a gap compared to DPCNN
in terms of accuracy. The reason for this is that their dataset
is relatively small and they chose to build their model using
DPCNN, which is more suitable for one-dimensional data. The
purpose is to increase the convolutional kernel to enhance the
learning ability of one-dimensional data and prevent overfitting
and gradient explosion issues. LMCN achieves an accuracy of 98%,
reaching high levels of precision and sensitivity. The MCNNRF
model achieves an accuracy of only 94.75%. This discrepancy
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TABLE 4 Performance indicators of multimodal models.

Model Modal type Accuracy (%) Precision (%) Sensitivity (%) Mcc (%)

DPCNN Fouad and Labib (2023) EEG 93.0 95.8 - -

LMCN Imani (2023) EEG 98 1.00 97 -

Adazd-Net Khare and Acharya (2023) EEG 98.51 97.29 100 -

Fuzzy-VGG Yao et al. (2023b) MRI 88.7 92.9 91.7 72.5

VGG16 Sharma et al. (2022) MRI 90.4 90.5 - -

MRN Zhang et al. (2023b) MRI 97.64 - 83.33 -

IDA-Net Zhao et al. (2023) MRI 92.7 - 91.9 -

MCNNRF EEG + sMRI 94.75 85.12 80.88 75.34

primarily stems from LMCN’s application of bidirectional long
short-term memory networks to analyze time series predicated on
EEG characteristics. Concurrently, LMCN leverages CNN to probe
into the relationship between different channels and brain signals.
The fusion of these techniques fully harnesses the characteristics of
EEG, leading to high accuracy. Adazd-Net achieves an accuracy of
98.51%, a precision of 97.29%, and a sensitivity of 1.This remarkable
performance is attributed to Adazd-Net using an interpretable
boosting machine as a predictor and employing a designed adaptive
and flexible Analytic Dyadic Zernike (ADZ) wavelet transformation
for processing EEG data. The adaptive and flexible ADZ wavelet
transformation automatically adapts to EEGvariations and identifies
the most discriminative channels. Compared to LMCN and Adazd-
Net, this work significantly differs in EEG data processing. They
focus more on the impact of the relationship between channels
and EEG on AD, while this work emphasizes the relationships
between multiple modalities and does not delve into a detailed
analysis of EEG channels. The accuracy of MCNNRF is 6.05% and
4.35% higher than Fuzzy-VGG and VGG16 respectively. However,
when compared to Fuzzy-VGG, the accuracy and sensitivity of this
work are still lag slightly behind. The reason is that Fuzzy-VGG
uses fuzzy C-means to modify image pixels for MRI to achieve the
effect of implicitly marking the lesion area. At the same time, the
Fuzzy-VGG adopts stacked small kernel convolution, which can
obtain more useful information in complex images in a given area.
Although the method of Fuzzy-VGG achieves a better result, it
cannot directly detect the given area and reduce the interference of
useless information. MCNNRF is 3.35% more accurate compared
to VGG16. VGG16 uses a large data set. However, the data set
of MCNNRF is small, and the feature extraction ability of the
model has not been enhanced, so there are not enough features
for learning classification. To compared with MRN, MCNNRF is
2.89% less accurate and 2.45% less sensitive. The reason for this
significant gap is that MRN uses multi relational inference networks
to learn MRI through spatial information correlation and topology.
Therefore,MRN is possible to obtainmultiple types of inter-regional
relationships. MCNNRF extracts deep features from MRI data. The
accuracy of IDA-Net is 2.05% lower than that of MCNNRF, but the

sensitivity is 11.02% higher. IDA-Net uses the Transformer structure
to classify AD, and the dataset used in this method is relatively large.

4.7 Compared to multimodal

This work is the first work to explore the application of
deep learning in combination with EEG multimodality for AD
diagnosis. Therefore, this work compares with most advanced
multimodal methods. The performance comparison between the
different models is shown in Table 5. Compared to CNN + ANN
model, MCNNRF shows relatively lower accuracy and sensitivity.
The reason is that CNN + ANN has conducted deep mining of
clinical and biological information. Firstly, CNN is used to extract
features from images, and then a fusion module is designed using
ANN to fuse and classify features. MCNNRF model lacks the
supplementation of auxiliary information like clinical data and
does not utilize feature transformation techniques to reduce feature
dimensionality differences. Compared to HMGD, MCNNRF shows
relatively lower accuracy and sensitivity. The specific reason is
that HMGD employs graph diffusion methods to enhance the
representation capability of multimodal data, thereby strengthening
the measurement of multimodal similarity. However, MCNNRF
is more focused on cross-modal collaboration and correlation.
In the comparison on Accuracy, the performance of MCNNRF
is on par with OLFG. The difference between MCNNRF and
OLFG lies in one utilizing a multimodal combination of EEG
and MRI, while the other employs MRI and PET. OLFG focuses
more on the variations of various information in brain images.
MCNNRF considers changes in brain image information, while
also focusing on information differences that occur over time. In
summary, this work explores the application of multimodal EEG
in AD. Compared to MCNNRF, the accuracy of 3D-CNN-BRNN
increases 1.25% and the sensitivity value increases 11.12%. The
main reason is that the 3D-CNN-BRNN dataset owns a clear time
series, with mobile MRI data spanning 6 months. At the same time,
bidirectional recurrent neural networks are used to recognize the
time series. 3DCNN is used to extract MRI features, and then AD
is classified by auxiliary information. However, MCNNRF has the
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TABLE 5 Comparison between MCNNRF and multimodal models.

Model Modal type Accuracy (%) Precision (%) Sensitivity (%) Mcc (%)

CNN + ANNWang et al. (2023a) MRI + profile ect 96.2 97.4 -

HMGDWang et al. (2023b) PET + gene 96.4 97.8 -

OLSL Chen et al. (2023) MRI + PET 94.7 89.0 -

3D-CNN-BRNN Pang et al. (2021) MRI + dc + cs 96.00 92.00 -

MCAD Zhang et al. (2023a) sMRI + PET + CSF 94.07 - -

MCNNRF EEG + sMRI 94.75 85.12 80.88 75.34

different time span as this method for controlling datasets, and there
is also no corresponding time series for recognition. Compared
to MCNNRF, MCAD has a 0.68% lower accuracy, and MCAD
uses MRI and PET as well as some auxiliary modal information.
MCAD uses a cross attention mechanism to fuse modalities, while
MCNNRF performs deep feature mining on modalities and finally
performs fusion.

5 Discussion

The high accuracy of the MCNNRF model can be attributed to
the effective cooperation between sCNN - EEG and sCNN - sMRI in
feature extraction.TheMJAmodule plays a crucial role in enhancing
the correlation between modalities, enabling the model to capture
more comprehensive information related to AD. For example, the
EEG data provides high - temporal - resolution information, while
the sMRI data reflects the structural changes of the brain. The MJA
module effectively combines these two types of information, leading
to improved diagnostic performance. However, the MCNNRF
model also has some limitations. The relatively small dataset used
in this study may limit the generalization ability of the model.
Additionally, themodel only considers EEGand sMRI data, ignoring
other potentially important information such as patient history
and genetic factors. Future research could focus on expanding the
dataset and incorporating more modalities to improve the model’s
performance. Previous studies mostly used single - modality data or
independent training ofmultimodalmodels, lacking the exploration
of the correlation between modalities. In contrast, our MCNNRF
model uses the MJA module to promote the collaboration between
EEGand sMRImodalities. Comparedwith the study inColloby et al.
(2016) that uses manual feature extraction, our model automatically
extracts features through deep learning, reducing subjective bias.
And compared with Jesus et al. (2021), our model shows better
performance in multimodal fusion and classification. This study
is the first to explore the combination of deep learning and EEG
multimodality for AD diagnosis. The proposed MCNNRF model
provides a new approach for AD diagnosis, which has potential
application value in clinical practice.Themodel’s high - performance
multimodal fusion and classification ability can help doctors make
more accurate ADdiagnoses, contributing to the early detection and
treatment of AD.

6 Conclusion

In conclusion, this work presents a multimodal AD diagnostic
model integrating EEG and sMRI data. It designs sCNN-EEG
and sCNN-sMRI for feature extraction, and the classification
performance is improved by incorporating RF into the classifier.
Comparative experimental results also demonstrate that the
proposed diagnostic model is competitive with the state-of-the-art
methods for multimodality-based AD diagnosis. Simultaneously,
this work pioneers the exploration of deep learning amalgamated
with EEG multimodality in the realm of AD diagnosis. It holds
promising potential to serve as a viable option for Alzheimer’s
Disease diagnosis in the forthcoming future. The results show that
MCNNRF achieves state-of-the-art overall performance compared
to existing multimodal AD diagnostic models. Furthermore, the
results of the ablation experiment demonstrate the effectiveness
of the MJA block and deep introduction of RF. It is important
to acknowledge that this work has two limitations. On the one
hand, MCNNRF only takes EEG and sMRI as input, while
ignoring the patterns of patient history. On the other hand,
MCNNRF can only handle complete multimodal data and is
not suitable for the absence of a certain modality. Therefore,
future work will focus on introducing patient history into the
proposed framework and adjusting the model structure to handle
missing patterns.

7 Futuer Works

The multimodal joint attention mechanism (MJA fusion
module) proposed in this study provides an effective framework for
combining electroencephalogram (EEG) and structural magnetic
resonance imaging (sMRI) data with significant improvements
in feature extraction and fusion. Future studies can further
explore more complex multimodal data fusion strategies, such
as the introduction of functional magnetic resonance imaging
(fMRI) and near-infrared spectroscopy (NIRS), and the application
of deep learning techniques, such as self-attention mechanisms
and graph neural networks, to improve the expressiveness and
robustness of multimodal fusion and enhance the accuracy
of clinical diagnosis. For Alzheimer’s disease (AD), the MJA
module can be extended to be applied to early diagnosis and

Frontiers in Physiology 11 frontiersin.org

https://doi.org/10.3389/fphys.2025.1515881
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Liu et al. 10.3389/fphys.2025.1515881

prediction of AD, combining EEG and sMRI data to more
comprehensively assess EEG activity and structural changes,
constructing a multimodal early diagnostic system, and realizing
dynamic tracking of AD patients and evaluation of treatment
effects. The potential of EEG as a biomarker for AD should be
further explored to provide data support for personalized prediction
models. In addition, future research should also focus on the
personalization of the model, customizing the fusion model based
on the patient’s age, gender, and genetic background, as well as
improving the interpretability and clinical applicability of the model
to achieve real-time, automated AD detection and integration
with healthcare information systems to provide adjunctive
diagnostic support.
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