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Extremely preterm birth predisposes infants to bronchopulmonary dysplasia
and associated pulmonary hypertension (PH). High altitude exposure during
pregnancy has also been shown to worsen infant lung and pulmonary vascular
outcomes. Animal models addressing the mechanisms for how maternal
hypoxia impacts postnatal and adult lung and pulmonary vascular outcomes
are lacking and development of a model to address this gap would enable
new mechanistic studies. We hypothesize that late gestational hypoxia disrupts
lung and pulmonary vascular development in the offspring, leading to abrupted
lung development and PH in adulthood. Pregnant wild-type mice were exposed
to hypobaric hypoxia at 505 mmHg, from day 16.5 of gestation until birth.
Lung and pulmonary vascular outcomes were measured in juvenile and mature
offspring. We found that late gestational hypoxia resulted in abrupted alveolar
and pulmonary vascular development in juvenile offspring and that adult
offspring showed persistent abrupted alveolar development as well as PH.
This striking model will provide a new opportunity to determine mechanisms
responsible for poor outcomes secondary to maternal hypoxia and assess
important factors that increase susceptibility to adult diseases in former
preterm infants.

KEYWORDS

prenatal hypoxia, late gestation, lung development, neonatal outcomes, pulmonary
hypertension

Introduction

Bronchopulmonary dysplasia (BPD), or chronic lung disease of infancy, is a major
complication of extremely preterm birth, predisposing former preterm infants to
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impaired lung function and pulmonary hypertension (PH) into
adulthood (Delaney et al., 2015; Heath-Freudenthal et al., 2022).
Extremely preterm birth is defined as birth occurring before
28 weeks of gestation (Morgan et al., 2022). While the lungs
of extremely preterm infants are susceptible to postnatal insults
such as oxygen and mechanical ventilation, the maternal stress
itself that led to preterm birth can also disrupt the developing
lungs (Delaney et al., 2015). One recognized maternal stressor
is hypoxia, most well-studied in pregnant women residing at
high altitude. Exposure to high altitude throughout pregnancy
can worsen neonatal outcomes for diverse reasons, including its
effects on placental function, fetal growth, and lung development
(Postigo et al., 2009; Julian, 2017; Moore, 2021; Gonzalez-Candia
and Herrera, 2021; Fallahi et al., 2022; Heath-Freudenthal et al.,
2024). Discerning the effects of maternal hypoxia during the
vulnerable canalicular period on subsequent lung development
could uncover novel insight into factors responsible for abrupted
lung development in extremely preterm infants.

Several rodent models have examined the effects of antenatal,
perinatal or postnatal hypoxia on placental or lung outcomes,
however no model specifically examines how prenatal hypoxia
impacts postnatal and adult outcomes. A series of studies have
exposed pregnant mice to hypoxia (10%–13% FiO2) beginning at
embryonic day 14.5 (E14.5) (Higgins et al., 2015; Cahill et al., 2017;
Lane et al., 2020). At this timepoint, the fetal lungs are in the
pseudoglandular phase of development, analogous to 7–17 weeks
of gestation in human infants (Schittny, 2017; Chao et al., 2015;
Hussain et al., 2017). In these studies, prenatal hypoxia disrupted
placentalmorphology (Higgins et al., 2015), increased uterine artery
blood flow (Lane et al., 2020), impaired fetal growth (Higgins et al.,
2015; Lane et al., 2020), and reduced fetal lung pulmonary blood
flow and lung volumes (Cahill et al., 2017). Other studies have
exposed mice to hypoxia in the postnatal period and evaluated
BPD and PH endpoints (Bierer et al., 2011; Mundo et al., 2021;
Roberts et al., 2022). For example, exposure to postnatal hypoxia,
from postnatal day 2–9, resulted in PH in the neonatal period
(Bierer et al., 2011) and 2 weeks of postnatal hypoxia demonstrated
BPD and PH phenotypes in 2-week-old mice (Roberts et al., 2022)
while perinatal hypoxia, fromE15 through postnatal day 4, led to PH
in the adult offspring (Mundo et al., 2021). Collectively, these studies
convincingly demonstrate that gestational hypoxia can impact fetal
lung development and perinatal hypoxia can have long-standing
effects into adulthood. These studies also present an opportunity to
address a gap in knowledge as they do not test if late gestational
hypoxia alone can disrupt lung and pulmonary vascular growth of
the offspring into adulthood. This information is critical to advance
the understanding of how maternal stress can impact both fetal and
adult outcomes.

To address this gap, we sought to develop a model of
maternal hypoxia to examine postnatal effects on lung and
pulmonary vascular outcomes. We hypothesized that maternal
hypoxia during late gestation disrupts lung and pulmonary vascular
development in the offspring, leading to impaired lung structure
and PH in adulthood. We exposed pregnant mice to hypobaric
hypoxia (505 mmHg) from E16.5 until birth. We assessed somatic
growth and alveolar and pulmonary vascular development in
the immature and mature offspring, as well as PH endpoints in
adult offspring.

Materials and methods

Late gestational hypoxia exposure

C57BL/6 mice were bred in-house in ambient Denver altitude.
Female mice were examined for a mucus plug each morning
to time the onset of pregnancy. On embryonic day (E)16.5,
pregnant dams were randomly assigned to either normoxia (Denver
altitude; 5,285 ft) or late gestational hypoxia. For hypoxia exposure,
dams were placed in hypobaric hypoxic chambers simulating an
approximate altitude of 11,500 ft above sea level (PB ∼ 505 mmHg),
equivalent to 13% fraction of inspired oxygen. PB ∼ 505 mmHg
was selected to mitigate fetal growth restriction and neonatal
mortality (Mundo et al., 2021) that would impact lung development.
Dams were checked each morning, and upon giving birth on E19.5,
the dams and their pups were placed in room air. Pups from each
litter were counted on the day of birth and postnatal day 4 (P4)
for litter size and survival. Somatic growth was measured at P4 and
P14. Offspring endpoints were assessed at P14 and 6 weeks. Nesting
enrichments, water and food were provided ad libitum. Studies were
repeated in three litters per group. Animal studies were approved by
the University of Colorado Anschutz Medical Campus Institutional
Animal Care and Use Committee.

Tissue collection

Mice were euthanized at P14 or 6 weeks by carbon dioxide
asphyxiation followed by cervical dislocation. Lungs were inflated
with 1.5% LowMelt agarose (BioExpress; Cat No. E-3128-25).
The volume of agarose was optimized for the two age groups at
400 µL for P14 whole lungs and 500 µL for 6-week-old left lungs.
Following agarose inflation, crushed ice was placed on the lungs to
polymerize the agarose for 3–4 min. Lungs were then removed and
equilibrated in 4% paraformaldehyde (PFA) for fixation for 24 h,
transferred to 10% neutral formalin buffer, embedded in paraffin,
and sectioned longitudinally (5 µm). Sectioned lungswere then used
for immunohistochemical staining.

Immunohistochemistry

Immunohistochemistry was performed on paraffin-embedded
lung tissue sections (5 µm). To identify proliferating cells, rabbit
monoclonal Ki67 (1:200; Invitrogen, Carlsbad, CA; Cat: MA5-
14520) was used with the Dako kit (Agilent, Santa Clara CA;
Cat: K4065). Apoptosis was determined using the Abcam TUNEL
Assay HRP-DAB kit (ab206386), according to the manufacturer’s
instructions. For assessment of vessel density and muscularization,
lung sections were co-stained for Von Willebrand Factor (vWF)
(1:200; Thermofisher, Cat: PA5-80223) and α-smooth muscle
actin (α-SMA) by the University of Colorado Anschutz CVP
Histology Core Lab. Vessel density was determined as the total
number of small vessels (<30 µm). Muscularization was defined
as vessels (<30 µm) with >70% of the vessel wall positive for
α-SMA. The ratio of muscularized to total vessel number was
calculated. Analysis of proliferation, apoptosis, vessel density, and
muscularization were manually counted on six to eight fields of
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view per lung within the distal region and measured by two
blinded investigators.

Lung morphometrics

H&E-stained lung sections were scanned with a whole slide
scanner OlympusVS120 (Evident, Waltham, MA) using ×20
objective. Images were exported as .tiff using CellSense (Evident)
software. Six to eight non-overlapping fields of view per lung
section were assessed for alveolar development via radial alveolar
count (RAC) using a manual protocol and mean linear intercept
(MLI) using an image analysis software (Meta Series Software
7.8.13; Molecular Devices, LLC, Sunnyvale, CA), as previously
described (Cooney and Thurlbeck, 1982; Nguyen et al., 2019;
Dobrinskikh et al., 2021; Sherlock et al., 2022). RAC quantification
was performed by two independent blinded investigators and an
average of the two values was used.

Hemodynamic measurements and right
ventricular hypertrophy

Mice were anesthetized with isoflurane (2%–4%) and right
ventricular systolic pressure obtained via direct right ventricle
puncture in a closed chest with a 25-gauge needle as previously
described (Tseng et al., 2020). To measure right ventricular
hypertrophy, the right ventricle (RV) was dissected from the septum
and the left ventricle (LV + S). Fulton’s Index, the ratio of RV weight
to LV + S weight (RV/LV + S), was calculated.

Statistical analysis

Data on litter size, percent survival, and offspring weight and
length were presented for each pup as n = 1 pup and the data
were collected from at least 3 litters. For immunohistochemistry and
morphometric analysis, we analyzed n = 2–3 pups from each of three
separate litters for each experiment. For RVSP and RVH data, we
analyzed n = 2–7 mice from three separate litters. For additional
analysis accounting for litter effects, an average of each litter per
damwas used as n = 1 and presented in the Supplementary Material.
Significance was determined by unpaired t-test using Prism v10
(Graphpad software, La Jolla, CA) and defined as p < 0.05. Data were
expressed as the mean ± standard error.

Results

Late gestational hypoxia transiently impairs
early somatic growth with recovery by day
14 of life

Pregnant dams were placed in hypoxia from embryonic day
16.5 (E16.5) to 19.5 (E19.5), and offspring endpoints were measured
at postnatal day 14 (P14) and at 6 weeks of age (Figure 1A).
We observed no effect of hypoxia on litter size (Figure 1B),
litter survival rate (Figure 1C), or maternal post-birth weights

(Supplementary Figure S1). However, we found that offspring
exposed to late gestational hypoxia weighed significantly less at day
4 compared to control mice (Figure 1D) but recovered by day 14
(Figure 1F). Hypoxia exposure did not affect body length at either
time point (Figures 1E, G).

Late gestational hypoxia leads to abrupted
alveolar development and pulmonary
vascular remodeling

To determinewhether late gestational hypoxia impacts postnatal
lung development, we evaluated lung structure at P14. In lungs
stained with hematoxylin and eosin, we quantified alveolar
development by radial alveolar count (RAC) and mean linear
intercept (MLI) (Figures 2A–D). At P14, RAC was decreased and
MLI was increased in offspring exposed to late gestational hypoxia,
indicative of abrupted lung development. We evaluated pulmonary
vascular remodeling by co-staining with Von Willebrand Factor
and α-smooth muscle actin. At P14 pulmonary vessel density was
decreased, and muscularization was increased in pups exposed to
late gestational hypoxia (Figures 2E–H).

Late gestational hypoxia blunts early cell
proliferation and apoptosis in the lung

We next examined lung cell proliferation and apoptosis
by immunohistochemical staining for Ki67 and TUNEL
staining. At P14, we observed significantly fewer Ki67-
positive cells (Figures 3A–C) and TUNEL-positive apoptotic
cells (Figures 3D–F) in the lungs of offspring exposed to late
gestational hypoxia. By 6 weeks of age, very few cells positive
for Ki67 or TUNEL were detected in the lungs in either group
(Supplementary Figure S4).

Abrupted alveolar development persists
into adulthood and is accompanied by
pulmonary hypertension

Finally, we examined whether lung and pulmonary vascular
abnormalities following late gestational hypoxia persisted into
adulthood. Six-week-old mice exposed to late gestational
hypoxia showed persistent impairment in alveolar structure,
quantified by a significantly lower RAC and increased MLI
(Figures 4A, B, E, F). Late gestational hypoxia also led to
pulmonary vascular remodeling and PH at 6 weeks of age,
demonstrated by increased muscularization of small vessels,
increased RVSP and RVH (Figures 4C, D, G–I).

Discussion

Current published models of maternal hypoxia have not
examined the effects of maternal hypoxia on postnatal lung
and pulmonary vascular outcomes. We thus developed a model
of late gestational hypoxia and examined lung and pulmonary
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FIGURE 1
Exposure to late gestational hypoxia impairs early offspring somatic growth. Timeline of late gestational prenatal hypoxia exposure and endpoint
analysis (A). Timed pregnancy mice were placed into hypobaric hypoxic chambers (505 mmHg) or set at normoxia (room air; 633 mmHg) at E16.5 until
E19.5. Pups were evaluated for litter size at birth (B) and percent survival (C) of each litter at P4; n = 12–16. Weight and length were measured in each
pup at P4 (D, E) and at P14 (F, G). Data analyzed by unpaired t-test, ∗P < 0.05. Each point represents an individual pup, n = 10–17 pups from three
separate litters. Nx, normoxia; Hx, late gestational hypoxia.

vascular development in the offspring at 14 days and 6 weeks.
We demonstrated that late gestational hypoxia beginning at E16.5
in mice leads to abrupted alveolar and pulmonary vascular
development, blunted early cell proliferation and apoptosis in
immature lungs, and persistent impaired lung structure as well as
pulmonary hypertension in adult mice.

In designing this new model of late gestational hypoxia, there
were two key parameters to consider: the timing of the prenatal
exposure and selection of the injurious stimulus. We initiated the
exposure at gestational age E16.5, when the fetal lungs are in the
canalicular stage of development, as the initial time for hypoxic
exposure. The canalicular stage of lung development correlates with
humanfetal lungdevelopmentof17–26weeksofgestation (Chaoet al.,
2015; Hussain et al., 2017). This is clinically significant because lung
development and lung function determine the limits of viability
following preterm birth, with the highest risk of extremely preterm
infants bornwith immature lungs in the canalicular stage (Chao et al.,
2015; Dumpa and Bhandari, 2021). Our protocol therefore provides
an opportunity tomodelmaternal stress during this vulnerable period
and evaluate its effect on postnatal lung outcomes. There are several
published studies that have also exposed pregnant mice to hypoxia.
Lane et al. tested a more severe degree of hypoxia for a longer period
in mice (385 mmHg to simulate 10% O2 from E14.5 to E18.5) and

examined the effects of maternal hypoxia on fetal and uteroplacental
outcomes, reporting impaired fetal growth aswell as increased uterine
artery bloodflow (Lane et al., 2020). In addition,Mundo et al. exposed
mice from late gestation (E15) to postnatal day 4 and evaluated
adult lung outcomes, observing PH (Mundo et al., 2021). Our model
advances the field as it limits the hypoxic exposure to late gestation
but evaluates outcomes in the offspring into adulthood. Exposure to
hypoxia is well-known to impact the lungs of mature and immature
animals and humans (Stenmark et al., 2006; Pugliese et al., 2015;
Shimoda, 2020;Gassmann et al., 2020). Postnatal hypoxia leads to PH,
aswell as abrupted lung development (Inscore et al., 1991; Bierer et al.,
2011; Roberts et al., 2022) while chronic hypoxia in adult models
leads to PH and pulmonary vascular remodeling (Villegas et al., 2013;
Tseng et al., 2020; Colon Hidalgo et al., 2024). Though hypoxia can
have a direct effect on lung development and induce PH, since it can
also impairuterine arterybloodflowandplacentalweights (Lane et al.,
2020), it is unclear if the effects of hypoxia on offspring are due to a
direct effect of hypoxic conditions on the developing lungs or due to
impaired placental function. We do not suspect there was impaired
maternal nutrition, as the weights of the mothers after birth were
similar in both groups. Overall, we developed this model to focus on
hypoxic stress in a vulnerable period of fetal lung development and
evaluate juvenile and adult outcomes.
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FIGURE 2
Exposure to late gestational hypoxia leads to abrupted alveolar and pulmonary vascular development in offspring at postnatal day 14. Representative
H&E staining of lungs in offspring exposed to Nx (A) or late gestational Hx (B). Quantification of radial alveolar count (RAC) (C) and mean linear
intercept (MLI) (D). Representative image of co-staining of vWF (green) for vessel density and α-sma (purple) for muscularized vessels in offspring
exposed to Nx (E) or Hx (F) with enlarged image of muscularized vessels. Closed arrows are non-muscularized vessels and open arrows are
muscularized vessels <30 μm, scale bar is 100 μm, ×20. Quantification of total number of small vessels by vWF (G), and the ratio of muscularized small
vessels to total number of small vessels (H). n = 7–9 where each n represents individual pups selected randomly from three separate litters, with 2–3
pups tested per litter. Data analyzed by unpaired t-test, ∗P < 0.05.

FIGURE 3
Exposure to late gestational hypoxia blunts early cell proliferation and apoptosis at P14. Representative image of Ki67 staining in offspring exposed to
Nx (A) or Hx (B). Quantification of cells positive for proliferation via Ki67 (C). Representative image of apoptosis via TUNEL assay in offspring exposed to
Nx (D) or Hx (E). Quantification of cells positive for apoptosis via TUNEL assay (F). Arrows indicate positive cells, scale bar is 100 μm, ×20; enlarged
image of positive cell included in corner image. Six to eight fields of view were quantified per n. n = 8–9 where each n represents individual pups
selected randomly from three separate litters, with 2–3 pups tested per litter. Data analyzed by unpaired t-test, ∗P < 0.05.
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FIGURE 4
Abrupted alveolar development persists into adulthood and is accompanied by pulmonary hypertension. Representative H&E staining of 6-week-old
lungs in offspring exposed to Nx (A) or Hx (B). Quantification of RAC (E) and MLI (F). Representative IHC of vWF (green) and α-sma (purple) co-staining
in offspring exposed to Nx (C) or Hx (D) with enlarged image of a vessel in the lower right corner. Quantification of the ratio of muscularized/total
number of small vessels (G). Closed arrows are non-muscularized vessels, open arrows are muscularized arrows <30 μm, scale bar is 100 μm, ×20
magnification. Right ventricular systolic pressure (RVSP) (H) assessed via direct right heart puncture and Right Ventricle Hypertrophy (I) measured via
right ventricle divided by left ventricle plus septum weight. n = 7–13 where each n represents individual pups selected randomly from three separate
litters. Data analyzed by unpaired t-test, ∗P < 0.05.

Our key observationswere that late gestational hypoxia impaired
alveolar and pulmonary vascular growth in juvenile mice, and lung
and pulmonary vascular abnormalities persisted into adulthood
as reduced alveolar septation and PH. The concurrent impact on
both alveolar and pulmonary vascular development is consistent
with the concept that alveolarization and pulmonary vasculature
development are tightly coordinated in the developing lung (Abman,
2001). Abrupted lung development is further supported by the
reduced cell proliferation and apoptosis observed in the developing
lungs of 14-day-old offspring exposed to late gestational hypoxia.We
did not see differences in cell turnover in the 6-week-old mice and
attributed this finding to the fact that alveolarization was complete
at this stage and thus there was low proliferation and apoptosis. Our
lab and others have previously reported a transient increase in cell
proliferation in the pulmonary vascular wall with 3 days of hypoxia
in adult mice (Dempsey et al., 2009; Nozik-Grayck et al., 2008).
In contrast, our current finding of blunted cell proliferation and
decreased vessel density with late gestational hypoxia is consistent
with abrupted lung development. Our observations demonstrate
distinct mechanisms in the developing lung, and we propose that
the increased muscularization at 14 days and 6 weeks may be a
response to elevated pulmonary artery blood pressure associated
with the abrupted vascular development. This remains to be
investigated in future studies. Our data is overall consistent with
Barker’s Hypothesis of fetal origins of disease, which states that
chronic disease during adulthood originates from events during
the fetal period (Barker, 2004). Of note, both preterm birth
and prenatal hypoxia in humans are associated with adult lung
and pulmonary vascular disease. Our findings align with existing

studies demonstrating that young adults born prematurely develop
pulmonary hypertension due to impaired right ventricular function
and increased susceptibility to cardiovascular disease (Goss et al.,
2018; Lewandowski et al., 2020; Barton et al., 2021). Multiple studies
have shown that individuals born from perinatal hypoxia (i.e.,:
high-altitude living in Bolivia) develop greater risk of pulmonary
vascular dysfunction (Julian et al., 2015; Heath-Freudenthal et al.,
2022; Heath-Freudenthal et al., 2024). We also found it very
interesting that the fetal lungs responded substantially differently
to hypoxia than the published response of the adult mouse lung.
A brief period of hypoxia during late gestation led to sustained
changes in the lung and pulmonary circulation while adult mice
with hypoxia exposure do not demonstrate PH until 14–21 days
(Villegas et al., 2013; Pugliese et al., 2017; Tseng et al., 2020)
and the response reverses over time in adult mice once they are
returned to normoxia (Pugliese et al., 2017). This observation
could indicate that there are epigenetic changes occurring in
utero that lead to long-standing consequences into adulthood.
Epigenetic regulation is implicated in other models of maternal
stress and fetal outcomes. For example, increased pulmonary DNA
methylation is induced in the offspring of stressedmothers and these
epigenetic changes can be passed on to the subsequent generation
(Rexhaj et al., 2011). Maternal stress related to diet restriction was
also shown to alter endothelial cell gene expression and function
in the offspring pulmonary vasculature that is associated with
pulmonary vascular remodeling (Zelko et al., 2019). Future studies
will therefore investigate whether epigenetic modifications with late
gestational hypoxia contribute to abrupted pulmonary vascular and
alveolar development.
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In conclusion, we developed a new model of late gestational
hypoxia that adds to growing literature on the lasting impacts
of maternal stress on postnatal outcomes. This late gestational
hypoxia exposure model affected early somatic growth and led to
abrupted lung development that persisted into adulthood. These
findings provide new opportunities to learn about hypoxia exposure
during the canalicular stage of fetal lung development and potential
mechanisms of abrupted alveolar development and induced PH that
are affected into adulthood, along with exploring therapeutic targets
to attenuate these lung outcomes.
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