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Background: Pneumonia is considered one of the most important causes of
morbidity and mortality in the world. Bacterial and viral pneumonia share many
similar clinical features, thus making diagnosis a challenging task. Traditional
diagnostic method developments mainly rely on radiological imaging and
require a certain degree of consulting clinical experience, which can be
inefficient and inconsistent. Deep learning for the classification of pneumonia
in multiple modalities, especially integrating multiple data, has not been
well explored.

Methods: The study introduce the PneumoFusion-Net, a deep learning-based
multimodal framework that incorporates CT images, clinical text, numerical lab
test results, and radiology reports for improved diagnosis. In the experiments, a
dataset of 10,095 pneumonia CT images was used-including associated clinical
data-most of which was used for training and validation while keeping part of it
for validation on a held-out test set. Five-fold cross-validation was considered
in order to evaluate this model, calculating different metrics including accuracy
and F1-Score.

Results: PneumoFusion-Net, which achieved 98.96% classification accuracy
with a 98% F1-score on the held-out test set, is highly effective in distinguishing
bacterial from viral types of pneumonia. This has been highly beneficial for
diagnosis, reducing misdiagnosis and further improving homogeneity across
various data sets from multiple patients.

Conclusion: PneumoFusion-Net offers an effective and efficient approach to
pneumonia classification by integrating diverse data sources, resulting in high
diagnostic accuracy. Its potential for clinical integration could significantly
reduce the burden of pneumonia diagnosis by providing radiologists and
clinicians with a robust, automated diagnostic tool.
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1 Introduction

Pneumonia is a very heterogeneous respiratory disease
that every year affects millions worldwide, leading to serious
complications and death among the many cases of children, seniors,
and immunocompromised patients (Torres et al., 2021). Traditional
diagnosis of pneumoniamainly relies on clinical symptoms, physical
examination, and image studies, such as X-rays and computing
tomography or CT scans (Franquet, 2001). However, in the presence
of different pneumonia forms, diagnostic methods are often faced
with a lack of sufficient sensitivity and specificity. The significant
overlapping symptomatic manifestations of both viral and bacterial
pneumonia often pose difficulties for the clinicians in making the
right diagnoses based on one source of information only (Cawcutt
and Kalil, 2017). Accordingly, medically, there is still very significant
importance for improving diagnostic accuracy and efficiency in
some complex cases (Castaneda et al., 2015).

Multimodal data fusion has been considered during the last
few years as a promising way of enhancing diagnostic precision
in complex diseases through integrated analysis by exploiting
heterogeneous data from multiple sources, such as CT images,
case histories, laboratory test results, and radiologic reports
(Chen et al., 2019). It comes intrinsically from information
gain theory in information science-that with the introduction of
more independent data sources, models can gain more relevant
information than single-modal data, thereby reducing diagnostic
uncertainty (Crupi et al., 2018). Moreover, research in psychology
and cognitive science shows that human physicians also make most
of their complicated decisions by integrating several information
sources, such as imaging data, laboratory test indicators, and clinical
presentation (Mu et al., 2020). Therefore, the fusion of multimodal
data not only follows the information integration theory in the deep
learning field but also simulates the decision-making process of
clinical physicians.

In the medical context, different modal data bear rich and
complementary information (Bramon et al., 2012).The imaging data
reflect intuitive anatomical and pathological features, whereas the
laboratory test results reflect physiological and pathological states
of the organism (Tian et al., 2021). For example, though viral and
bacterial pneumonia present similar imaging features of pulmonary
shadows, the WBC count is usually normal, and the lymphocyte
percentage is elevated in the laboratory test in the viral pneumonia
patients, while notably elevated CRP and WBC count could always
be seen in bacterial pneumonia (Titova et al., 2018). Existing
multimodal approaches, however, often adopt simplistic fusion
strategies (e.g., early concatenation or late averaging), which fail to
model dynamic interactions between modalities. PneumoFusion-
Net addresses this gap through its Swin Transformer-based dynamic
attention mechanism, enabling adaptive weighting of CT, text, and
numerical data based on diagnostic relevance.This is because the
complementarity of the sources is what actually enables multimodal
fusion to effectively enhance diagnostic accuracy in difficult clinical
scenarios (Suk et al., 2014).

With advanced computational capability and deep learning
algorithms, how to effectively integrate data from different
modalities has become a kind of frontier research topic (Lundervold
and Lundervold, 2018). Traditional diagnostic models often rely
on single-modality diagnosis-for instance, analyzing CT images

with CNNs. However, these methods frequently cannot handle
multidimensional feature presentations of complex pathologies.
These models, on the other hand, possess the capability for multi-
modal deep learning: to process data of different natures by
various neural network modules and perform feature fusion at
either intermediate layers or decision layers. This is based on the
theoretical assumption that deep learning models can abstract high-
dimensional feature representations of data through multi-layer
neural networks and jointly model these features through certain
fusion mechanisms, such as attention mechanisms or Transformer
architecture, hence capturing the correlations between different
modalities (Choi and Lee, 2023).

Recently, the attention mechanism-based model family,
including Transformers has shown excellent performance in the
field of fusing multimodal data (Xu et al., 2022). The Transformer
model with a self-attention mechanism is competent in modeling
long-distance dependencies between different modal data and
capturing global correlations among them. It can be fit for medical
data fusion since data from different modalities, such as CT
images and clinical texts, are often intertwined in various ways
both in space and time (Moghadam et al., 2022). It can be used
to compare, for example, the progress of a patient’s disease as
represented by laboratory tests and CT scans taken at different
times, in order to dynamically weight different modal data for
the purpose of generating more accurate diagnostic results using
the Transformer architecture (Pu et al., 2020).PneumoFusion-Net
extends this capability by integrating Swin Transformer’s shifted
window mechanism, which reduces computational complexity
while maintaining global interaction across modalities—a critical
advantage over conventional Transformers in processing high-
resolution CT data.

While deep learning of multimodal has demonstrated
enormous potential and found great application in research
domains, there are still manifold challenges associated with its
clinical applications (Huang et al., 2020). First, there is a large
difference in data format, dimensionality, scale, and acquisition
methods across the different modalities. For example, highly
structured three-dimensional data are represented in the CT
image data, while often unstructured free-text data is available
for clinical texts (Seinen et al., 2022). How to effectively extract
and fuse features while ensuring integrity of the data is a
big challenge. The heterogeneity of medical data manifests
not only in the formats of data but also in the quality and
annotation standard of the data. Due to the challenges above,
early fusion, late fusion, and intermediate fusion have been
proposed in a series of fusion strategies. Techniques based
on self-supervised learning and transfer learning were also
introduced to enhance model generalization over multi-center and
heterogeneous datasets (Stahlschmidt et al., 2022).

The model interpretability problem is an essential preventing
factor for it to be used clinically (Elshawi et al., 2019). During
clinical decision-making, the physicians are interested not
only in the diagnostic outcome developed by AI models
but also in knowing what features the model relied on to
make the judgment (Neves and Marsh, 2019). So, lots of
interpretability methods have been proposed recently, including
Grad-CAM and attention mechanism-based explanation
frameworks (Zhang et al., 2021). These techniques give doctors
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not only an insight into the model decision process but also
serve as additional reference information to make diagnoses of
complex diseases.

With this background, This study proposes a novel multimodal
deep learning model, PneumoFusion-Net, that adopts the
integration of multiple data sources for enhancing the accuracy
and reliability of pneumonia diagnosis. The main novelties of
PneumoFusion-Net are:

(1) Efficient Multimodal Feature Extraction: For different types
of input data, such as CT images, clinical texts, and
laboratory data, we designed specialized feature extraction
modules. Specifically, for CT images, we improved the
ResNet architecture by incorporating the Global Channel-
Spatial Attention (GCSA) module and depthwise separable
convolutions, enabling the model to capture subtle pulmonary
lesions more effectively. For clinical text, we utilized a
BERT-based text encoder to capture semantic information of
medical terminology, ensuring high-quality text features for
multimodal fusion.

(2) Dynamic Multi-Head Attention Fusion Mechanism: We
proposed a new fusion strategy where features from
different modalities dynamically interact through the multi-
head attention mechanism. This enables the model to
adaptively adjust the importance of each modality based
on its relevance, allowing more accurate predictions in
complex clinical scenarios. Specifically, we employed the
Swin Transformer to perform feature fusion at multiple
scales, capturing both local and global relationships between
modalities.

(3) Hierarchical Fusion Architecture: In this paper, we present a
hierarchical fusion architecture that fuses features at different
layers of the network. By preserving the unique characteristics
of each modality while performing deep fusion between
them, this architecture improves overall model performance,
particularly when handling complex interactions between
multimodal data.

(4) Improved Interpretability: To enhance model interpretability,
we integrated techniques such as attention-weight-based
visualization and improved Grad-CAM methods. These
approaches not only highlight the image regions the model
focuses on but also explain how the model combines
multimodal data to make diagnostic decisions, providing
clinicians with intuitive and actionable explanations for the
model’s predictions.

The innovative proposals in this paper will help enhance
the model for high-accurate pneumonia diagnosis, especially
distinguishing some challenging situations, such as viral and
bacterial pneumonia with PneumoFusion-Net. Besides, the
proposed improvements have enhanced the clinical applicability
of the model during the test. Detailed architecture, experimental
design, and performance on various datasets are shown in the
subsequent sections. This research is bound to provide new insight
into how multi-modal medical image analysis can be done and give
a boost to the application of AI-assisted diagnosis technology in
clinical practice.

2 Related work

The diagnosis and classification of pneumonia have long
been focal points in medical research, particularly with the
continuous advancements in artificial intelligence (AI) and deep
learning technologies. Early diagnostic methods primarily relied
on clinical symptoms, physical examinations, and laboratory test
results. However, these traditional approaches often struggled to
differentiate between similar types of pneumonia, such as viral and
bacterial pneumonia, based solely on clinical presentations and
symptoms. Although C-reactive protein and procalcitonin represent
biomarkers whose application has somewhat improved diagnostic
accuracy, their efficiency still remains limited in complex or atypical
cases (Danesh et al., 2004; Memar et al., 2017).

The emergence of the deep learning approaches, more especially
the convolution neural networks, has shaken this field of pneumonia
image analysis. For example, Wang et al. created ChestX-ray8
and reported much improved accuracies of the CNNs in the
disease detection of chest radiographs (Wang et al., 2019). Then,
rajpurkar et al. developed the CheXNet model by achieving expert-
level performance regarding pneumonia detection by using deep
convolution neural networks (Rajpurkar, 2017).These investigations
opened immense possibilities concerning deep learning in medical
image analysis and formed the base for further research.

Notably, several pioneering works have specifically addressed
COVID-19 diagnosis using deep learning. For instance, COVID-
Net introduced a tailored deep convolutional neural network
design for the detection of COVID-19 cases from chest X-
ray (CXR) images (Wang Linda et al., 2020). COVID-Net is
one of the first open-source network designs for COVID-19
detection from CXR images, accompanied by the COVIDx
dataset, which provides a substantial number of CXR images
from patient cases. This model not only demonstrated effective
detection capabilities but also incorporated explainability methods
to provide insights into critical factors associated with COVID-
19, thereby aiding clinicians in improved screening. Similarly,
COVIDNet-CT was developed as a deep convolutional neural
network architecture tailored for the detection of COVID-19
cases from chest CT images (Gunraj et al., 2020). Leveraging a
machine-driven design exploration approach, COVIDNet-CT was
trained to optimize model performance specifically for CT image
analysis. Additionally, Wang et al. proposed a contrastive cross-
site learning framework with a redesigned network for COVID-
19 CT classification (Wang Zhao et al., 2020). This approach
addressed distribution discrepancies across heterogeneous datasets
by implementing separate feature normalization in latent space
and utilizing a contrastive training objective to enhance domain
invariance of semantic embeddings. These enhancements led
to significant improvements in classification performance across
multiple datasets, outperforming the original COVID-Net and
existing state-of-the-art multi-site learning methods.

However, despite the success of these models in unimodal
techniques, the differentiation of pneumonia types that show
similar imaging features-for example, viral and atypical bacterial-
pneumonia remains at a threshold.Moreover, most such approaches
have an inherent tendency to completely disregard the clinical
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history and laboratory test results of the patient, which also
reduces their generalization capability in complex clinical scenarios.
These limitations thus provide a strong urge toward exploring the
possibility of multimodal approaches for enhancing diagnosis in
terms of accuracy and robustness.

Owing to the inadequacies of COVID-19 prognostication
through use of single-modality methods, the researchers opted
to start researching the approach of data fusion through
multimodalities. Multimodal approaches merge information from
imaging, clinical text, numerical data, and radiological reports.
As such, they offer more complete information on patients for
the purpose of enhancing diagnostic accuracy and its reliability.
Liang et al. proposed a deep learning multimodal combined
model featuring CT images with clinical numerical data for
prognosis prediction in COVID-19 patients. The obtained results
were remarkable (Liang et al., 2020). This study emphasized the
advantages of themultimodal method for complexmedical problem
management, particularly in the integration of image features with
clinical indicators.

Chaudhary et al. presented a multi-modal image and gene
expression integrated model for hepatocellular carcinoma survival
prediction (Chaudhary et al., 2018). This further expanded the idea
of the application of the multi-modal approach for integration with
huge promising capacities in various types of biomedical data.These
studies depict that the multi-modal approach has huge potential to
improve the diagnosis by making full use of the complementary
advantages of different sources. However, the challenge is how to
effectively fuse these heterogeneous data.

There exist mainly three strategies of multi-modal data
fusion: early fusion, late fusion, and intermediate fusion. Early
fusion conducts the fusion of diversified modal data at the input
layer. Though simple to perform, early fusion will sometimes
lead to information loss or some problems in model training.
Late fusion performs the fusion at the decision layer for the
forecasted results of each modality. Though simple to implement,
it does not make full use of relationships across modalities.
Intermediate fusion promotes modal feature interaction at the
intermediate layers of the model, effectively capturing correlations
between modalities while balancing model complexity and
performance (Pawłowski et al., 2023).

To better understand these strategies, we can illustrate with
a specific example. Consider a pneumonia diagnostic model
combining CT images, clinical text, and laboratory test results:
Early fusion might directly concatenate CT image pixel values,
text word embedding vectors, and laboratory numerical values
into a large input vector. Late fusion would process and predict
CT images, clinical text, and laboratory data independently, then
synthesize results at the decision layer through voting or weighted
averaging. Intermediate fusion would first perform preliminary
feature extraction for each modality, then interact at the network’s
intermediate layers through attention mechanisms or feature map
concatenation. For example, CT features could guide the extraction
of text features, or clinical text information could enhance the
importance of certain regions in CT images (Fried et al., 2014).

In recent years, with the advancement of deep learning
technologies, novel network architectures have been introduced
into multimodal medical data fusion. Among them, attention
mechanism-based models like Transformers have shown excellence

in handling heterogeneous data (Chen et al., 2024).TheTransformer
architecture was first proposed by Vaswani et al. and was applied to
the task of natural language processing in an early stage. However,
its advantage in the self-attention mechanism for the treatment of
sequential data in capturing long-range dependencies has enabled
rapid applications in medical image analysis and multimodal fusion
(Liu Y. et al., 2021). For instance, Li et al. proposed a Transformer-
based multimodal model which integrates electronic health records
with medical images, and it had a significant improvement in the
accuracy of predicting the diseases (Li et al., 2021).

Besides, GNNs have gradually shown their capacity in
processingmultimodal data with intricate relationships (Duan et al.,
2023). Zhu et al. proposed a GNN-based multimodal fusion
framework that integrates genomics, radiomics, and clinical data,
exhibiting excellent performance on both diagnosis and prognosis
prediction tasks (Huang et al., 1993). These emerging deep learning
architectures bring new inspiration into the fusion of multi-modal
medical data, while how to design more effective and interpretable
fusion architecture remains an open issue.

Model interpretability is increasingly important in medical
AI applications. Interpreting medical models strengthens the
confidence of patients or doctors in AI systems and provides
useful insights that could help make medical decisions. In
recent years, besides gradient-based methods like Grad-CAM,
new interpretability techniques have emerged. For example,
SHAP (SHapley Additive exPlanations) values provide a game
theory-based method for explaining individual predictions. These
methods can quantify the contribution of each feature to model
predictions, offering more fine-grained explanations for clinicians
(Zhang et al., 2021; Lafferty et al., 2006).

This will be even more complicated in multimodal
models, which have to explain the interaction between various
modalities.Baltrušaitis et al. conducted a comprehensive survey
on multimodal machine learning, presenting a detailed taxonomy
that organizes and reviews existing methods, challenges, and
applications in the field, providing a foundational framework for
understanding multimodal data fusion (Baltrušaitis et al., 2017). By
this technique,model performance improvement is facilitated, while
intuitive explanatory tools will be provided for clinicians. While
these methods have achieved some advancements in improving
model interpretability, there is still a trade-off between clinically
relevant explanations and the performance for complex models.
In particular, the generation of balanced explanations among
the different modalities and the demonstration of inter-modal
interactions in multimodal models is still an issue that needs
more research.

In the end, much promise is shown, yet a lot of challenges still
remain concerning the diagnosis of pneumonia using multimodal
deep learning. The PneumoFusion-Net proposed in this paper
aims at the challenges by architectural design innovation and
enhancement in interpretability mechanisms, hence proposing a
new direction in the solving of these issues.

3 Materials and methods

This study has proposed a new deep learning-based multimodal
framework for enhancing performance and reliability in pneumonia
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classification by integrating images obtained with CT scans, clinical
text, numerical data, and imaging reports. Basically, the main
idea of the proposed framework is to perform a simulation of
the process of diagnosis performed by clinicians by taking into
consideration integral aspects of patient information, imagining
findings, clinical symptoms, and laboratory results, which would
give more comprehensive grounds for the diagnosis.

It includes three major modules: feature extraction, feature
fusion, and classification decision (Figure 1). First, for each data
modality, CT images, clinical text, numerical data, and imaging
reports, we designed specialized feature extraction models. CT
images are processed by the optimized CNN, clinical text is
encoded using a bi-directional LSTM model with an attention
mechanism, numerical data is processed through an MLP
(Zhao et al., 2017), (Bhattacharya et al., 2022), and imaging reports
using a similar text encoding model.

After feature extraction, fuse the features of each modality into a
unified feature space and perform fusion with the Swin Transformer
architecture (Yan et al., 2022).This design provides full feature fusion
of variousmodalities at multiple scales and allows for the generation
of a comprehensive feature representation for classification, thanks
to the more powerful local and global feature extraction capabilities
of the Swin Transformer (Wei et al., 2023).

Finally, the combined features are fed into a fully connected
network that carries out the classification, and it outputs the type
of pneumonia.The framework employs a multi-head attention
mechanism to balance the importance of different modal features,
ensuring that each modality contributes reasonably to the
final decision (Barua et al., 2021).This innovativemultimodal fusion
approach achieved significant performance improvements in our
experiments, especially in recognizing complex and atypical cases.

3.1 Dataset and preprocessing

The dataset used in this study simulates real clinical diagnostic
scenarios, combining publicly available CT images with simulated
clinical text, laboratory test results, and radiology reports. The
dataset consists of 10,095 pneumonia CT images that have
undergone strict screening and annotation, representing five
different types of pulmonary conditions: normal (2,013 images),
tuberculosis (2,034 images), viral pneumonia (2,009 images),
bacterial pneumonia (2,008 images), andCOVID-19 (2,031 images).
Each category is roughly balanced to ensure that the model is not
biased toward any particular class during training and validation.

The preprocessing of CT images included standardization,
resolution unification (224x224 pixels).Additionally, considering
potential variations in CT scanners across different medical centers,
normalization was applied to the image data to minimize the impact
of equipment differences on model training.

The clinical text data was generated based on publicly available
medical records and relevant literature, with an average length of
50 words. The content covers key patient information, including
chief complaints, present illness, past medical history, and physical
examination findings. For instance, a typical record of viral
pneumonia may describe symptoms such as fever, dry cough,
and fatigue. To ensure the medical relevance and accuracy of the
text data, rule-based natural language generation techniques were

employed, and the content was reviewed and refined by experts with
a medical background.

The laboratory test results simulate 15 key indicators, including
white blood cell count (WBC), neutrophil percentage (NEUT%),
lymphocyte percentage (LYMP%), C-reactive protein (CRP), and
procalcitonin (PCT). The range and distribution of these indicators
are based on statistical analysis of over 5,000 real case data and
adjusted according to typical presentations of different pneumonia
types. For example, bacterial pneumonia patients usually exhibit
elevated WBC and CRP levels, while viral pneumonia patients may
have normal WBC levels but elevated LYMP%. The numerical data
was standardized to make it suitable for model training, ensuring
that feature values were on the same scale to prevent the model from
overly relying on specific features.

The radiology reports were crafted with reference to real
medical imaging reports and publicly available literature, with
an average length of 50 words. These reports provide detailed
descriptions of pulmonary imaging features, such as ground-
glass opacities, consolidations, nodules, and pleural effusion. In
addition to qualitative descriptions, the reports include preliminary
diagnostic impressions and differential diagnosis suggestions. To
ensure diversity and accuracy, the reports were generated using
a combination of rule-based methods and pre-trained language
models (e.g., BERT), and subsequently reviewed by medical
professionals to ensure consistency in terminology and accuracy in
expression.

The preprocessing of the entire dataset aimed to ensure
the consistency and usability of multimodal data. Through
standardization and data augmentation techniques, model
robustness was enhanced, laying a solid foundation for subsequent
multimodal fusion. Additionally, to maximize training efficiency,
the dataset was divided into 80% training and 20% validation sets,
ensuring sufficient learning during training and reliable evaluation
during validation.

3.2 CNN model optimization

Building on the theoretical foundation of multimodal fusion,
this section details the architecture of PneumoFusion-Net. First,
we propose an improved ResNet-GCSA module for fine-grained
CT feature extraction; second, we construct a hierarchical fusion
framework through dynamic attention mechanisms.

In pneumonia classification tasks, subtle features in CT images
often contain key diagnostic information. To better capture these
detailed features, improvements were made to the classic ResNet50
architecture (Liang and Jiang, 2023), aiming to enhance the model’s
performance and efficiency (Figure 2A). These optimizations take
into account the specific requirements of pneumonia classification
while balancingmodel interpretability and computational efficiency.

First, considering that CT images are typically single-channel
(i.e., grayscale images), the number of input channels in the
first convolutional layer of ResNet50 was adjusted from 3 to 1
to accommodate single-channel images (El-kenawy et al., 2021).
Directly using pre-trained weights in this case might not be ideal, so
a special method was employed to initialize the new convolutional
layer (conv1): by summing the original weights, the advantages of
pre-trained models in low-level feature capture were retained while
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FIGURE 1
The multi-modal framework of PneumoFusion-Net for pneumonia diagnosis.

ensuring that the model adapted to the characteristics of single-
channel inputs (Sun et al., 2017).This adjustment not only simplified
the model’s input processing but also enhanced its adaptation to
pneumonia CT images.

In traditional convolution operations, each convolutional kernel
processes both the spatial and channel dimensions simultaneously,

which is computationally expensive, especially when dealing
with high-resolution medical images. To reduce computational
complexity and improve efficiency, we adopt depthwise separable
convolution. Standard convolution typically processes spatial and
channel features simultaneously, whereas depthwise separable
convolution splits these two processes: depthwise convolution
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FIGURE 2
(A)Modified ResNet50-Based CNN for hierarchical CT image feature extraction with GCSA and depthwise separable convolutions. (B) BiLSTM-attention
based text model for multimodal clinical and radiological data integration. (C) Mlp with residual connections for numerical data feature processing.

operates within each channel, followed by pointwise convolution to
combine the features across channels (Cao et al., 2020). This design
significantly reduces the computational cost while avoiding the risk
of overfitting by a largemargin (Figure 3A).With this improvement,
the model remains sensitive to detailed features in high-resolution
CT images without losing computational efficiency.

Next, to reduce computational overhead while maintaining
robust feature extraction, depthwise separable convolution replaced
the standard convolution layers. Standard convolution filters spatial
and channel dimensions jointly. In contrast, depthwise separable
convolution decomposes this process into two steps:

1. Depthwise convolution applies a spatial filter to each input
channel independently. Let Fres be the feature map extracted by
the modified ResNet backbone. The depthwise convolution can be
expressed as (Equation 1):

Fdepth(c,h,w) = ∑
(m,n)∈Ω

Kdepth(c,m,n) ⋅ Fres(c,h+m,w+ n) (1)

where Ω is the kernel’s receptive field and Kdepth is the depthwise
kernel, operating on each channel separately.

2. Pointwise convolution (1 × 1 convolution) then fuses
information across channels (Equation 2):

Fdsc(c′,h,w) =
C

∑
c=1

Kpoint(c′,c) ⋅ Fdepth(c,h,w) (2)

The resulting feature map Fdsc ∈ ℝC×H
′×W′ retains essential

information while significantly reducing the parameter count and
computational cost (Cao et al., 2020). This ensures the model

remains sensitive to high-resolution CT features without incurring
unnecessary computational load (Figure 3A).

Building on this efficient backbone, a Global Channel-Spatial
Attention (GCSA) module (Xiao et al., 2019) was introduced to
emphasize discriminative channels and spatial regions. The GCSA
module jointly considers channel-wise importance and spatial
relevance, thereby guiding the network’s attention towards key
pneumonia-related patterns such as ground-glass opacities and
consolidations (Figure 4). The design involves three main steps:

1. Channel Attention: Apply global average and max pooling to
Fdsc to obtain channel descriptors (Equation 3):

Favg = AvgPool(Fdsc),Fmax =MaxPool(Fdsc) (3)

These ℝC×1×1 descriptors capture global statistics per channel.
Pass Favg through an MLP to learn channel weights (Equation 4):

Catt = σ(MLP(Favg)) (4)

Here, σ is the sigmoid function. The resulting Catt ∈ ℝC×1×1

highlights important channels. Multiplying Catt element-wise with
Fdsc emphasizes informative channels while suppressing irrelevant
ones. A channel shuffle operation is then applied to ensure better
channel mixing and avoid over-reliance on fixed channel groups.

2. Spatial Attention:ConcatenateFavg andFmax along the channel
dimension (Equation 5):

Fconcat = [Favg;Fmax] ∈ ℝ2C×1×1 (5)
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FIGURE 3
(A) Depthwise separable convolution for efficient spatial and channel-wise feature extraction. (B) Multi-stage Swin Transformer architecture for
hierarchical feature representation.

Then use a convolutional layer (often 7 × 7) followed by sigmoid
activation to produce spatial weights (Equation 6):

Satt = σ(Conv(Fconcat)) ∈ ℝ1×H′×W′ (6)

This spatial attention map highlights key regions, ensuring the
model focuses on subtle but diagnostically relevant areas of the lung.

3. Final Integration: The final GCSA output is (Equation 7):

Fout = (Fdsc ×Catt)shuffle × Satt (7)

In this final equation, (Fdsc ×Catt)shuffle denotes the channel-
attended and channel-shuffled feature map, and Satt is the spatial
attention map. By multiplying them, the network emphasizes
both discriminative channels and important spatial locations
simultaneously. This integrated attention mechanism improves the
model’s interpretability and diagnostic accuracy.

With GCSA integrated, the model better captures fine details
in CT images, particularly in early-stage or atypical pneumonia

cases. Experiments showed a 2.16% accuracy improvement over
the baseline.

Overall, the combination of single-channel adaptation,
depthwise separable convolution, and GCSA significantly boosts
the CNN model’s capability to extract and leverage subtle
pneumonia-related features from CT images, while maintaining
computational efficiency and interpretability (Kim et al., 2019).
These enhancements form a solid foundation for subsequent
multimodal fusion steps and pave the way for more accurate and
reliable pneumonia diagnostic systems.

3.3 Text processing model

In medical text classification tasks, especially when analyzing
medical reports and CT scan descriptions, the order of words and
contextual information often contains critical diagnostic details.
To better capture these nuances, this study introduces positional

Frontiers in Physiology 08 frontiersin.org

https://doi.org/10.3389/fphys.2025.1512835
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Wang et al. 10.3389/fphys.2025.1512835

FIGURE 4
GCSA (Global Channel-Spatial Attention) module architecture for enhanced feature extraction.

encoding to handle textual data (Chu et al., 2021). Positional
encoding uses sine and cosine functions to embed information
about the position of words in sequences, allowing the model to
differentiate between the relative positions of words (Figure 2B).
This position-awareness is particularly important when dealing with
complex medical texts, where the order of terms can affect the
meaning significantly.

The implementation of positional encoding utilizes
sine and cosine functions as mathematically described in
Equations 8, 9:

PE(pos,2i) = sin (
pos

100002i/dmodel
) (8)

PE(pos,2i+1) = cos (
pos

100002i/dmodel
) (9)

Here, pos is the word’s position in the input sequence (0,
1, 2, .), i is the dimension index, and dmodel is the embedding
dimension of the model. By using sine and cosine functions with
different frequencies, each position in the sequence is assigned a
unique encoding. This allows the model to differentiate not just
which words appear, but also where they appear, providing critical
contextual cues.

Following the positional encoding, the text sequence passes
through a bidirectional LSTM layer. A bidirectional LSTMprocesses
the sequence in both forward and backward directions, capturing
both past and future context.Bidirectional LSTM learns to encode
both past and future contextual information important formodeling
strong semantic relationships hidden in medical text. The output
sequence from the LSTM feeds into a self-attention mechanism.
Attention is a mechanism which allows the model to automatically
learn the importance of parts that may contribute differently to

an utterance (Brauwers and Frasincar, 2022). To illustrate the
attention mechanism, we employ a simplified formulation. Let H ∈
ℝT×dh represent the LSTM’s hidden states for T time steps, each
of dimension dh.The mathematical formulation of the attention
mechanism can be easily simplified as follows (Equation 10):

α = softmax(W ⋅H⊤) (10)

In this equation, α ∈ ℝT is a vector of attention weights over the
sequence positions. W ∈ ℝdh×1 is a learnable parameter matrix that
maps the hidden states H to scalar scores. The softmax function
then normalizes these scores into probabilities, highlighting more
relevant time steps and downweighting less informative ones. By
multiplying α back with H, the model obtains a weighted sum of
hidden states, focusing on key aspects such as certain symptom
descriptions.

This design will further enable the model to dynamically focus
on the most relevant parts of the text-some specific symptom
description, probably, or some important diagnostic information-so
that key information is captured better.

The extracted features were passed through a fully connected
layer and a dropout layer for further processing, which enhanced
the generalization ability of the model. Moreover, the dropout can
effectively avoid overfitting duringmodel trainingwhen there is only
a relatively small medical text dataset.

The advantage of this architecture is its capabilities of processing
both local features and global context, hence very suitable for the
complexity of medical text. In our experiments, such an inclusion of
the text processing model contributed to the overall improvement
in classification accuracy by 4.43%. Notably, the F1 score increased
by 4% when distinguishing between pneumonia types that have
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similar clinical presentations, such as viral and atypical bacterial
pneumonia (Liang and Zheng, 2020).

It uses the same architecture on clinical text with imaging
reports, training two separate models. This architecture considers
the differences in nature-content and structure-between these two
types of text, including most of the unique features into the model
by allowing separate optimizations.

In conclusion, the proposed medical text processing model
leverages advanced natural language processing techniques to
extract key information from medical text, yielding high-quality
textual feature representations that contribute tomultimodal fusion.
This approach enhances the comprehensive performance of the
model, making it more adaptable and robust in addressing the
complexities of medical scenarios.

3.4 Numerical data processing

The result of the laboratory test and other numerical data
provide critical objective indicators in the diagnosis of pneumonia,
important for proper diagnosis and classification. These numerical
features are efficient and dealt with by a simple but effective
model that captures the complex nonlinear relationship between
different indicatorswith residual connections to enhance themodel’s
expressive power and training stability (Figure 2C).

The numerical features processing model is based on an
improved multi-layer perceptron structure (Buyandelger et al.,
2011). The core architecture consists of two hidden layers with
64 and 32 neurons, respectively, and an output dimensionality of
32, while each of the hidden layers is eventually followed by the
ReLU activation function for introducing nonlinear transformation
capability. The mathematical expression of the model can be
summarized as (Equation 11):

Y =W3(ReLU(W2(ReLU(W1X+ b1)) + b2)) + b3 +WrX (11)

In this formula, X ∈ ℝdin is the input feature vector consisting
of various laboratory indicators. W1, W2, W3 and b1, b2,b3 are the
weight matrices and bias terms for each layer, respectively, which
transform the input through linear and nonlinear operations. Wr is
the weight matrix for the residual connection, allowing the input X
to be directly added to the output. This residual structure ensures
stable training, reduces vanishing gradient problems, and preserves
original input information.

A key innovation of this model is the introduction of residual
connections. Residual connections directly add the input features to
the final output, offering several advantages:

(1) Alleviating the vanishing gradient problem: Residual
connections provide a direct pathway for gradients to
propagate, helping train deeper networks (B et al., 2023).

(2) Preserving original feature information: Even after multiple
transformations, the model retains the original input
information.

(3) Enhancing feature learning capability:Themodel can learn the
difference (residual) between the input and output more easily
than learning the full mapping.

To further improve the model’s generalization ability and
training stability, dropout layers were added (with a dropout rate of

0.3) after each hidden layer. Dropout randomly deactivates a portion
of neurons during training, effectively preventing the model from
over-relying on specific features and reducing the risk of overfitting.

At the model input stage, feature standardization was
applied to ensure that different medical indicators (e.g., white
blood cell count, C-reactive protein, procalcitonin) were treated
fairly by the model, preventing large-scale features from
dominating the model’s decisions. The standardization process is
represented as (Equation 12):

Xnorm =
X− μ
σ

(12)

In this equation, μ and σ represent the mean and standard
deviation of each feature, respectively. By standardizing each
input feature, the model treats all indicators on a comparable
scale, preventing outliers or large-valued features from
overshadowing others.

Feature selection was also a key consideration in our model
design. In consultation with the medical experts, 15 of the most
relevant indicators were chosen as input features. It includes
blood count, biochemistry, inflammation markers, and many other
relevant features which can give a solid basis for a comprehensive
judgment of the status of a patient.

This numerical processingmodule raised themodel accuracy by
6.55% in distinguishing bacterial fromviral pneumonia.Themodule
was particularly effective in the early stage of pneumonia detection.
For example, in cases with slightly high white blood cell counts but
very high C-reactive protein counts, the model showed very high
sensitivity compared with conventional methods.

To summarize, the numerical data processing model effectively
extracts key information from laboratory examination results
through a well-designed architecture and optimization strategy,
thereby not only providing high-quality numerical feature
representations for multimodal fusion but also enhancing the
adaptability and robustness of the model when processing complex
medical data. By integrating these objective numerical indicators,
the multimodal model is able to assess the status of patients in a
more comprehensive and precise manner, thus offering great value
for clinical decision-making.

3.5 Multimodal fusion model

This study introduces a novel feature fusion model leveraging
the Swin Transformer architecture to effectively integrate multi-
modal information from CT images, clinical text, numerical data,
and imaging reports (Xie et al., 2023). By unifying the diverse
data modalities, the model enhances the accuracy and reliability
of pneumonia classification through a robust and theoretically
grounded fusion mechanism.

Multimodal fusion aims to combine information from different
data sources, each characterized by unique feature spaces,
distributions, and representations. The primary challenge lies in
effectively merging these heterogeneous modalities to capture
complex inter-modal interactions and dependencies. Traditional
fusion techniques, such as simple feature concatenation or weighted
averaging, often fail to model the intricate relationships between
modalities, leading to suboptimal performance.
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In contrast, our approach employs the Swin Transformer,
which provides a sophisticated attention mechanism capable of
modeling both local and global interactions within and across
modalities (Tang et al., 2022). The theoretical advantages of using
the Swin Transformer for multimodal fusion are twofold:

(1) Hierarchical Feature Representation: The Swin Transformer
constructs a hierarchical representation by progressively
merging image patches, which allows the model to capture
multi-scale features.This hierarchical approach is beneficial for
integrating information from modalities with varying spatial
and semantic scales.

(2) Shifted Window Mechanism: By alternating between regular
and shifted window partitioning, the Swin Transformer
facilitates cross-window interactions, enabling the model
to capture global dependencies without incurring the
high computational costs associated with full self-attention
mechanisms.

The fusion process involves several keymathematical operations
that ensure effective integration of multi-modal data:

3.5.1 Projection into a unified feature space
Each modality’s features are first projected into a common

representation space to harmonize their dimensions and
distributions. Let ECT, Etext, Enum, Ereport denote the feature
embeddings of CT images, clinical text, numerical data, and imaging
reports, respectively, after individual feature extraction and linear
projection (Yang et al., 2023). These embeddings are projected into
a unified feature space of dimension D = 96 using learnable linear
transformations (Equation 13):

Efused =W1ECT +W2Etext +W3Enum +W4Ereport (13)

where W1, W2, W3, W4 ∈ ℝD×Dm are learnable projection matrices,
and Dm is the original feature dimension of each modality.

3.5.2 Window-based self-attention mechanism
The Swin Transformer applies a window-based self-attention

mechanism to the fused feature embeddings. Given the fused input
features H ∈ ℝN×D, where N is the sequence length after flattening
spatial and temporal dimensions, the self-attention operation is
defined as (Equation 14):

WindowAttention(Q,K,V) = softmax(QK
T

√dk
)V (14)

Here,Q =HWQ,K =HWK andV =HWV are the query, key, and
value matrices obtained through learnable projections, with WQ,
WK, WV∈ ℝD×dk .The scaling factor √dk stabilizes the gradients
during training.

3.5.3 Shifted window mechanism
To enable cross-window interactions, the Swin Transformer

employs a shifted window approach (Liu et al., 2021b). In even-
numbered layers, windows are partitioned regularly, while in odd-
numbered layers, the window partitioning is shifted by a fixed offset.
Mathematically, letH(l) denote the feature representation at layer lll.
The shifted window operation can be represented as (Equation 15):

H(l+1) = SwinTransformerLayer(H(l)) (15)

where the SwinTransformerLayer comprises the window-based
multi-head self-attention (W-MSA or SW-MSA) followed by a
feedforward network (FFN) (Wang et al., 2023) (Equation 16):

H(l+1) = FFN(W−MSA(H(l))) +H(l) (16)

The shifted windows ensure that information is propagated
across different window partitions in successive layers, effectively
capturing global dependencies.

3.5.4 Hierarchical feature aggregation
By stacking multiple Swin Transformer layers, the model

aggregates features hierarchically, allowing for the integration
of both local and global information. The final output after L
layers is (Equation 17):

H(L) = SwinTransformerLayer(L)(…SwinTransformerLayer(1)(H(0)))
(17)

where H(0) = Efused.

3.5.5 Classification layer
The integrated feature representation H(L) is then passed

through a pooling layer and a classification head to produce the final
pneumonia classification (Equation 18):

y = Softmax(Linear(Pooling(H(L)))) (18)

The theoretical advantages of the Swin Transformer-based
fusion model are manifold. The hierarchical and window-
based attention mechanisms enhance the model’s representation
capacity by capturing rich, multi-scale features and complex
inter-modal relationships (Chen et al., 2022). The reduction
in computational complexity from O(N2) toO(N ⋅M) ensures
computational efficiency, allowing the model to scale effectively
with larger feature maps and additional modalities. Furthermore,
the unified feature space and the inherent flexibility of the
transformer architecture facilitate the integration of diverse
data types, enabling the model to learn modality-agnostic
representations that capture essential features across different
sources.Transformer architectures are also proven to be universal
function approximators under certain conditions, implying that the
Swin Transformer-based fusion model can theoretically represent
any complex multimodal relationship given sufficient capacity
and data (Zhao et al., 2024).

To substantiate these theoretical claims, we provide a
mathematical analysis of the fusion mechanism’s ability to capture
cross-modal dependencies. The self-attention mechanism allows
each token to attend to all tokens within a window (Chen et al.,
2021), enabling the model to capture dependencies irrespective of
their positions. This property is crucial for modeling interactions
between different modalities where relevant features may be
dispersed across the feature space. The shifted window approach
ensures that information from different windows is integrated over
successive layers, effectively capturing long-range dependencies
and cross-modal interactions that span multiple windows. This
mechanism is essential for ensuring that features from one
modality can influence and be influenced by features from another
modality, thereby modeling complex dependencies. Additionally,
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the hierarchical feature aggregation enables the model to integrate
information at various levels of abstraction, with lower layers
capturing fine-grained, modality-specific features and higher
layers aggregating these features into more abstract, cross-modal
representations (Dong et al., 2022). The scaling factor √dk
in the attention computation mitigates the issue of gradient
vanishing or explosion, ensuring stable training dynamics, which
is critical for the effective optimization of deep transformer-
based models, particularly when dealing with high-dimensional
multimodal data.

Empirical validation further supports the theoretical
foundations of our fusion mechanism. The Swin Transformer-
basedmultimodal fusionmodel achieved a significant improvement
in pneumonia classification accuracy by approximately 4.52%
compared to traditional feature concatenation methods. This
enhancement demonstrates the model’s superior ability to capture
and integrate complex inter-modal relationships, as predicted by
the theoretical framework. Ablation studies were conducted to
isolate the contributions of different components of the fusion
mechanism. Removing the window-based attention or the shifted
window strategy resulted in decreased performance, corroborating
the theoretical importance of these mechanisms in capturing cross-
modal dependencies (Xiao and Zhong, 2023). Additionally, a
quantitative analysis of modality contributions revealed that CT
image features contributed approximately 45% to the decision-
making process, clinical text 12%, numerical data 33%, and
imaging reports 10% (Figure 5A). This distribution underscores
the complementary roles of different modalities and validates
the theoretical rationale for multimodal fusion, where each
modality provides unique and valuable information that, when
integrated, leads to more accurate and reliable classifications.
Visualization of attention maps further demonstrated that the
model effectively focuses on relevant regions within each modality
and captures interactions between modalities, supporting the
theoretical claims about the model’s ability to model complex
dependencies.

4 Experiments and results analysis

4.1 Training strategy

To validate the effectiveness of the proposed architecture, the
following experiments are conducted on a multimodal dataset,
focusing on evaluating the model’s performance and interpretability
in complex pneumonia classification tasks.

To improve the convergence speed, stability, and generalization
performance of themultimodal deep learningmodel for pneumonia
classification, we designed and implemented an optimized
training strategy.

First, the optimizer used during training was AdamW. AdamW
is an improved version of the Adam optimizer, combining the
advantages ofmomentum-based updates and adaptive learning rates
while introducing a weight decay mechanism to effectively control
model complexity. After preliminary experiments, the weight decay
parameter was set to 1e-4. Through a grid search over {1e-4, 1e-
3} (as shown in (Table 1), Experiments 2 vs. 1 and 4 vs. 3), 1e-
4 achieved a validation loss reduction from 0.3735 to 0.0362 and

improved F1 scores from 83.03% to 98.66% when paired with an
appropriate learning rate.This value effectively prevented overfitting
while maintaining stable convergence.

In the selection of learning rates, multiple experiments were
conducted. For instance (Table 1), shows that with a learning rate
of 1e-3 (Experiments 2, 4, 6, 8), the validation loss remained
consistently low (0.0362, 0.0415, 0.0344, 0.0293) and the F1 scores
remained above 98%. In contrast, higher learning rates of 1e-
2 (Experiments 1, 3, 5, 7) led to notably higher validation loss
and lower F1 scores (e.g., Experiment 1: 0.3735 validation loss
and 83.03% F1), indicating instability and suboptimal convergence.
Thus, a lower learning rate (1e-3) was chosen to ensure stable
convergence and avoid overfitting.

To further optimize the adjustment of learning rates, the
CosineAnnealingWarmRestarts schedule was employed. This
schedule periodically restarts the learning rate, helping the model
escape local minima. After sensitivity testing, a starting learning
rate of 1e-3 was selected, while the minimum learning rate was set
to 1e-6.This careful fine-tuning ensured that, as training progressed,
performance metrics improved steadily without stalling.

The model was trained for a total of 80 epochs. To prevent
overfitting, in addition to weight decay, early stopping was
introducedwith a patience value of 10 epochs. Comparing validation
metrics in experiments with patience = 5 vs. patience = 10
demonstrated that patience = 10 struck a better balance, avoiding
premature termination and unnecessary over-training.

In each epoch, the model’s performance on the validation set
was evaluated using metrics including loss, accuracy, precision,
recall, and F1 score. As indicated by (Table 1), adjusting batch size
also influenced results: a batch size of 32 (Experiments 2, 4, 6, 8)
consistently yielded higher accuracy and F1 scores than a batch size
of 16 (Experiments 1, 3, 5, 7), likely due to more stable gradient
estimates and better utilization of GPU resources. Experiment 8,
with a learning rate of 1e-3, weight decay of 1e-4, and a batch
size of 32, achieved the best results: a validation loss of 0.0293
and an F1 score of 98.71%. This combination reflects the optimal
hyperparameter configuration based on our comparative analyses.

Additionally, to improve training efficiency and reduce GPU
resource consumption, mixed precision training was employed.
Mixed precision uses a combination of FP16 and FP32, which
accelerates computations and reduces memory usage without
sacrificing model accuracy. Disabling mixed precision in additional
tests increased training time by about 20% without improving
accuracy, reinforcing that mixed precision positively impacts
training efficiency and stability.

Thehardware used in this experiment included anNVIDIARTX
3060 GPU, with Python and PyTorch as the stable versions (Table 2).
A 5-fold cross-validation strategy was adopted to comprehensively
evaluate the model’s performance and stability (Figure 5B). This
multi-fold evaluation confirmed that the chosen hyperparameters
(learning rate = 1e-3, weight decay = 1e-4, batch size = 32)
consistently led to stable convergence and strong results across
different subsets of the data, minimizing the risk that the chosen
parameters were overfitted to a particular fold.

These experimental results and comparative analyses of
hyperparameter settings provided a solid foundation for final
model selection and guided further refinements. By systematically
testing different hyperparameter combinations and documenting
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FIGURE 5
(A) Contribution of different modalities in PneumoFusion-Net’s decision process. (B) Training and validation accuracy and loss comparison across 5
folds in cross-validation for PneumoFusion-Net.

TABLE 1 Hyperparameter sensitivity analysis results.

Experiment number Learing rate Weight decay Batch size Validation loss Acc(%) Recall (%) F1 (%)

Experiment 1 1e-2 1e-3 16 0.3735 82.96 82.74 83.03

Experiment 2 1e-3 1e-3 16 0.0362 98.54 98.41 98.66

Experiment 3 1e-2 1e-3 32 0.2003 91.78 91.82 91.72

Experiment 4 1e-3 1e-3 32 0.0415 98.42 98.35 98.40

Experiment 5 1e-2 1e-4 16 0.3628 83.24 83.19 82.98

Experiment 6 1e-3 1e-4 16 0.0344 98.76 98.77 98.54

Experiment 7 1e-2 1e-4 32 0.0491 98.27 97.83 98.14

Experiment 8 1e-3 1e-4 32 0.0293 98.94 99.01 98.71

their effects on key performance metrics, we have rigorously
validated our chosen settings. Through this carefully designed
hyperparameter adjustment process and training strategy, supported
by sensitivity analyses, we successfully enhanced the performance of
the multimodal deep learning model for pneumonia classification.
The experimental results further validated these optimization
decisions, establishing a strong foundation for practical
applications.

4.2 Evaluation metrics

To comprehensively evaluate the performance of the model,
This study employed the following evaluation metrics, defined
as follows:

1. Accuracy: The ratio of correctly classified samples to the total
number of samples, calculated as (Equation 19):

Accuracy = TP+TN
TP+TN+ FP+ FN

(19)

where TP is True Positives, TN is True Negatives, FP is False
Positives, and FN is False Negatives.

2. Recall: For each class, the proportion of actual samples
of that class that were correctly predicted as that class,
defined as (Equation 20):

Recall = TP
TP+ FN

(20)

3. Precision: For each class, the proportion of samples
predicted as that class that actually belong to that class,
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TABLE 2 Hardware and software Configuration for model training.

Category Configuration

GPU GeForce RTX 3060

CPU Interl(R) Core(TM) i7-12700 KF@3.60

System environment Windows 11

Framework Pytorch1.8.1

CUDA version CUDA 11.1

Programming voice Python 3.8.19

defined as (Equation 21):

Precision = TP
TP+ FP

(21)

4. F1-Score: The harmonic mean of Precision and Recall,
calculated as (Equation 22):

F1Score = 2×
precision×Recall
precision+ recall

(22)

This metric reflects the balance between precision and recall.
5. Confusion Matrix: A matrix that visually represents

the misclassifications between different classes, showing the
relationships between true and predicted labels.

For multi-class classification problems, the metrics were
calculated for each class, and bothmacro-average andmicro-average
values were reported.

4.3 Ablation experiment

To thoroughly evaluate the contribution of each module in the
proposed multimodal deep learning framework, a series of ablation
experiments were designed and conducted. These experiments
involve systematically removing or introducing specific modalities,
attentionmodules, or feature fusionmethods to observe their impact
on classification accuracy, F1 score, and other key metrics. This
enabled the determination of the role and importance of each
component within the model.

Initial Experiments: A single-modality model containing
only CT images was first used as the baseline. This baseline
model achieved a classification accuracy of 84.45% and an F1
score of 83.61% (Table 3). While this model performed well on
simpler cases, its performance was notably limited in handling
complex or atypical cases, especially in distinguishing between
viral and bacterial pneumonia, where the misclassification rate was
relatively high.

Stepwise Modality Inclusion: The results of experiments
in which different modalities were gradually introduced show
a significant improvement in overall model performance.
After incorporating clinical text data into the baseline model,
classification accuracy increased to 87.41%, and the F1 score
improved to 86.76% (Figure 6A). This indicates that clinical text

data (such as patient history and symptom descriptions) plays a vital
role in differentiating between various pneumonia types. Adding
numerical data (e.g., laboratory test results) further improved
classification accuracy to 93.31% and the F1 score to 93.33%,
highlighting the importance of numerical data in providing critical
biomarker information.

The full multimodal fusion model, which includes CT images,
clinical text, numerical data, and imaging reports, achieved the
best performance, with a classification accuracy of 97.74% and
an F1 score of 96.44% (Figure 6B). This result demonstrates that
multimodal fusion not only enhances overall classification accuracy
but also exhibits significant advantages in handling early-stage
pneumonia or cases with atypical imaging features. The results
underscore the complementary role that imaging reports and other
modalities play in complex clinical scenarios.

Compared to simpler attention modules focusing only on
channel-wise features, such as the SEA (Squeeze-and-Excitation-
like) channel attention mechanism, the proposed GCSA (Global
Channel-Spatial Attention) module achieves consistently higher
performance and offers a more comprehensive feature refinement
approach.While SEA-based attention primarily enhances important
channels by leveraging global average pooling and a simple
gating mechanism, it does not fully consider the complex spatial
patterns inherent in medical images. In contrast, GCSA integrates
channel attention, a channel shuffle operation, and spatial attention,
enabling the model to capture both global dependencies across
channels and subtle local variations that are critical for pneumonia
classification.

Empirically, the experimental results reflect these advantages.
As shown in (Table 4), adding SEA to the baseline model improves
accuracy from 94.09% to 94.81% and raises the F1 score from
94.57% to 95.07%. However, GCSA provides a more substantial
gain: incorporating GCSA alone achieves a 96.25% accuracy and
a 95.99% F1 score. This represents an improvement of over 1.4
percentage points in accuracy and nearly 1 percentage point in F1
score compared to the SEA-based approach. Furthermore, when
combining GCSA with depthwise separable convolutions (DSC),
the model reaches 96.77% accuracy and a 96.88% F1 score—a clear
indication that the joint consideration of channel mixing and spatial
weighting yields a richer and more discriminative representation
of CT images.

This performance boost is also evident in the
confusion matrices (Figure 7). While the baseline and simpler
attentions (like SEA) still exhibit some confusion among challenging
pneumonia categories (e.g., viral vs. atypical), GCSA reduces these
misclassification rates. By effectively highlightingmeaningful spatial
regions—such as areas showing subtle lesions or ground-glass
opacities—GCSA helps the model better distinguish complex or
atypical cases that elude simpler attention mechanisms.

In addition to these quantitative improvements, the complexity
analysis shows that GCSA introduces only a moderate increase
in FLOPs and parameters compared to SEA and other
attention variants, maintaining a practical balance between
performance gains and computational cost. Thus, GCSA’s integrated
approach—refining channels through MLP-based weighting,
channel shuffling to improve feature diversity, and spatial attention
to highlight key diagnostic regions—offers a more robust and
clinically meaningful enhancement over SEA-type attention. This
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TABLE 3 Performance comparison of models using different modalities.

Model Acc(%) Recall (%) F1 (%) ROC Specificity

Image Only 84.45 84.29 83.61 0.88 0.85

Text Only 41.46 41.78 38.38 0.50 0.55

Numerical Only 62.70 62.65 61.21 0.70 0.68

Image + Text 87.41 87.62 86.76 0.90 0.88

Image + Numerical 93.31 94.02 93.33 0.96 0.94

Text + Numerical 67.16 66.67 66.16 0.75 0.72

Image + Numerical + Text 97.74 98.11 96.44 0.99 0.97

FIGURE 6
(A) Validation accuracy comparison across different modality combinations in ablation study. (B) Radar Chart of performance metrics (accuracy, F1, and
ROC) for different modality Configurations.

TABLE 4 Comparison of complexity indicators across different attention modules.

Model Acc(%) Recall (%) F1 (%) FLOPs(G) Params(M)

Baseline 94.09 93.87 94.57 4.25 25.10

Baseline (+DSC) 94.26 94.54 93.74 3.78 22.87

Baseline (+SEA) 94.81 94.26 95.07 4.29 25.57

Baseline (+CBAM) 95.99 95.46 96.21 4.27 25.57

Baseline (+ECA) 95.53 95.67 94.89 4.33 24.55

Baseline (+GCSA) 96.25 96.01 95.99 4.33 28.85

Baseline (+DSC + GCSA) 96.77 96.34 96.88 4.02 24.61
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FIGURE 7
Confusion matrices of PneumoFusion-Net with different attention mechanisms.

TABLE 5 Performance comparison of different feature fusion methods.

Model Acc(%) F1 (%) FPS Params(M)

Simple concat 94.19 93.98 50.53 25.10

Swin Transformer 98.71 98.27 52.64 34.16

leads to more accurate and reliable pneumonia classification in
complex medical imaging scenarios.

Comparisons of Feature Fusion Methods: Comparisons of
different feature fusion approaches highlighted a better Swin
Transformer architecture performance compared to simple feature
concatenation. Swin Transformer has reached 98.71% classification
precision with an F1 score of 98.27%, increasing the accuracy
by 4.5% compared to simple concatenation, as shown in (Table
5). Therefore, it could be concluded that more sophisticated
mechanisms of fusion significantly raise the bar for model
performance when dealing with the integration of multimodal data.

Ablation experiments have also indicated performance drops
to a different degree when removing individual modalities or
modules. Removing numerical data resulted in the largest drop
in accuracy, which indicates that biomarkers are highly critical
for disease classification. On the other hand, removing imaging
reports resulted in a very small decrease in performance, although
they were able to add supplementary value in some of the cases.
These differences provide insights into future model optimization
directions, suggesting that, in cases where data is limited, priority
should be given to retaining the modalities that have the most
significant impact on classification.

In summary, the ablation experiments provide strong evidence
of the effectiveness of the proposed multimodal fusion framework

TABLE 6 Performance comparison of different models.

Model Acc(%) Params (M) FLOPs(G) FPS

ResNet50 87.35 23.52 4.13 187.20

VGG16 90.28 134.28 15.41 100.26

ResNet18 76.69 11.17 1.74 268.09

DenseNet 87.50 6.95 2.82 43.24

Inception 89.24 21.80 5.74 36.00

PneumoFusion-
Net (ours)

98.96 34.16 8.67 59.35

and the design of its individual modules. Each modality and
attention module plays a unique role in improving the accuracy
and reliability of pneumonia classification. These results lay a solid
foundation for the widespread application of multimodal deep
learning models in real clinical practice.

4.4 Comparative experiments

To comprehensively validate the performance of the proposed
PneumoFusion-Net multimodal deep learning framework in
pneumonia classification tasks, a comparison wasmade with several
classic unimodal deep learning models (Table 6).These models
include ResNet50, VGG16, ResNet18, DenseNet, and Inception,
which have been widely applied in medical image classification.

First, regarding classification accuracy, both PneumoFusion-
Net and the Inception model achieved the highest accuracy of
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FIGURE 8
(A) Validation accuracy comparison of different models. (B) Radar Chart of performance metrics for model comparison (accuracy, parameters,
FLOPs, FPS).

98.96%, demonstrating the clear advantage of multimodal data
fusion in improving classification accuracy. In contrast, ResNet50
and DenseNet achieved accuracy rates of 87.35% and 87.50%,
respectively (Figure 8A). Although these models perform well in
single-modality image analysis, they still exhibit limitations in
multi-class pneumonia classification tasks. VGG16 outperformed
ResNet50 and DenseNet with an accuracy of 90.28%, indicating that
its deeper network structure has advantages in feature extraction.
However, ResNet18 had the lowest accuracy at 76.69%, showing
that its shallower network structure is insufficient for handling
complex tasks.

In terms of model complexity, VGG16, due to its deep network
structure, has the highest parameter count (134.28M) and FLOPs
(15.41G), but its inference speed is the slowest at 100.26 frames per
second (FPS) (Figure 8B). In comparison, ResNet50 and ResNet18
are relatively lightweight, with parameter counts of 23.52M and
11.17M, respectively, and FLOPs of 4.13G and 1.74G.Their inference
speedswere 187.20 FPS and 268.09 FPS, respectively.DenseNet, with
its efficient network design, has a parameter count of only 6.95Mand
FLOPs of 2.82G, but its inference speed is lower at 43.24 FPS, and it
did not significantly outperform ResNet50 in terms of accuracy.

The Inception model achieves an excellent balance between
high accuracy and computational efficiency. It has a parameter
count of 21.80M, FLOPs of 5.74G, and an inference speed of 36.00
FPS, showing that it performs well in complex tasks with balanced
performance. It has a bit higher parameters and FLOPs compared
with Inception: 29.81M parameters and 8.67G FLOPs, respectively.
On the contrary, a high speed of inference brings the best results for
computational efficiency, ensuring great performance inmultimodal
fusion tasks as high as 59.35 FPS, and allows great potential for
real-world applications.

In a nutshell, PneumoFusion-Net lays out excellent performance
both from the perspective of classification accuracy and inference

efficiency. Although its computational complexity is larger
compared to some unimodal models, it fuses multi-modal
information effectively and therefore enhances classification
performance very much, especially when handling complex and
atypical pneumonia cases. Results further strongly validate the
potential of multimodal deep learning frameworks for clinical
applications, especially in those diagnosis scenarios that need high
accuracy and efficiency. PneumoFusion-Net demonstrates good
application value in these contexts.

4.5 Attention visualization

Attention visualization was done on the CT images using
Grad-CAM to understand the decision-making process of
the PneumoFusion-Net model in multimodal fusion. Grad-
CAM is a technique for interpreting deep learning models,
highlighting an important region of an image for the decisions
taken by the model. The heatmaps illustrate the region the
model has focused on while classifying different types of
pneumonia (Figure 9).

In the case of normal lungs, the attention heatmap indicates that
there is an even distribution of attention throughout the lung fields
without any outstanding highlighted region. The whole structure
and the averageness of the tissue distribution make the model
observe a healthy lung.

That is, in COVID-19 cases, model attention focuses around the
peripheral lung area where GGOs usually occur. Such areas clearly
show saliency in the heatmaps and confirm that GGO is one of the
relevant features for COVID-19 diagnosis.

For tuberculosis, this model tends to give much attention to the
upper lobes, which aligns with clinical observations that the upper
parts of the lungs are more likely to be affected by tuberculosis.
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FIGURE 9
Grad-CAM visualizations highlighting key regions in chest X-rays for normal, COVID-19, tuberculosis, bacterial, and viral pneumonia.

As can be observed from this attention visualization, the model
effectively captures this critical feature within the diagnosis of TB.

The heatmaps of bacterial pneumonia cases reflect how the
modelmostly focuses on the center part of the lungs, which is usually
where consolidation is found.This attention pattern underlines quite
well the performance of the model in correctly identifying bacterial
pneumonia by focusing its attention on areas of dense lung opacities.

In viral pneumonia, the attention of the model seems to be
more dispersed, while there is attention to the lower lobes of the
lungs. Heatmaps emphasize the presence of areas of ground-glass
opacities, therefore pointing out how the model differentiates viral
pneumonia, paying more attention to these characteristic features.

These attention visualization results further demonstrate the
transparency of the decision-making process of PneumoFusion-Net
and validate that the model effectively identifies key radiological
features associated with the different types of pneumonia. In this
way, the present model enhances not only the interpretability of
the model but also represents a more reliable tool for clinical
usage. Radiologists and clinicians can use such visual insights to

understand the rationale behind the model prediction and provide
valuable support for their clinical diagnosis.

5 Discussion

The proposed multimodal deep learning framework, namely
PneumoFusion-Net, classifies cases of pneumonia with very good
performance, outperforming several other unimodal and classic
deep learning models. Normally, the diagnosis of pneumonia is
based on a variety of data, such as imaging, clinical text, and
laboratory tests. By incorporating the additional information of CT
images, clinical text, numerical data, and imaging reports through
effective fusion, PneumoFusion-Net managed to achieve the highest
value of accuracy in classification up to 98.96%, hence giving it great
potential for improving diagnosis precision by a great amount in
complex medical tasks.

Unlike the unimodal approaches, the method leverages the
complementary strengths of CT images, clinical text, and numerical
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data, each used in isolation for most of the works that composed
the literature. The CT images will give a detailed insight into
the anatomical and pathological changes within the lungs, while
the clinical text and laboratory results offer essential contextual
information of patient history and biomarkers, such as an elevated
white blood cell count in bacterial infections. This cross-modal
validation enables PneumoFusion-Net to make more robust and
precise predictions, even when imaging features are ambiguous
or atypical.

5.1 Model architecture and innovations

Therein, the architectural innovations of PneumoFusion-Net
focus on an image processing module, text and numerical data
processing modules, and a feature fusion mechanism that helps
attain high overall model performance.

First, the novelty of the proposal is great within the well-known
image-processing module: a Global Channel-Spatial Attention
module, GCSA, and Depthwise Separable Convolution. GCSA
allows one to capture significant features with coarseness in
CT images by combining channel attention and spatial attention
effectively. This proves particularly important for early pneumonia
or when atypical imaging presentations, as ground-glass opacities or
diffuse patterns are faint (Kim et al., 2019). Focusing on the image
regions that are relevant for diagnosis, GCSA not only improved
overall classification accuracy by 2.16%, but also enhanced model
interpretability. Attentionmaps generated from this module provide
clinicians with insight into how it decided this or that and thus give
important support for early and differential pneumonia diagnosis.

As will be discussed below, Depthwise Separable Convolution
embodies reduced computational complexity while maintaining
performance for high-resolution medical images. In contrast to
traditional convolution layers, depthwise separable convolutionmay
reduce the number of parameters substantially by decoupling the
processes of spatial and channel-wise filtering.With the reduction of
computationally intensive processing, this model can process large-
scale CT data with much higher efficiency while retaining high
accuracy, thus solving one important challenge in medical image
analysis called efficiency-performance balancing.

Then, the text processing module incorporates a natural
language processing approach to extract semantic meaning from
clinical text mainly through the use of pre-trained language models
like BERT (Rogers et al., 2020). Clinical text data contains crucial
information on patient history, symptoms, and other key clinical
aspects related to pneumonia diagnosis. With the deep contextual
understanding brought about by BERT, PneumoFusion-Net is able
to represent unstructured natural language data in a meaningful
way, enhancing the accuracy and robustness of the model in making
the diagnosis of complex test cases where conditions could also be
mutually inclusive.

Laboratory results also include WBC, NEUT%, and LYMP%,
which are handled by a numerical data processing module. These
numerical features are then processed through fully connected
layers for informative pattern extraction after standardization and
normalization. Biomarkers provide key diagnostic clues, especially
in identifying bacterial and viral pneumonia. Experimental results
also indicate that the inclusions of the numerical data raised the

classification accuracy by more than 10% in distinguishing between
types of pneumonia.

The architectural design of PneumoFusion-Net closely aligns
with clinical diagnostic logic: radiologists typically first observe
local lesions in CT (corresponding to the GCSA module), then
combine laboratory indicators (residual MLP) and medical history
text (BiLSTM-Attention) for comprehensive judgment. In contrast,
existing methods [e.g., (Liang et al., 2020), (Li et al., 2021)] are
structurally rigid and cannot simulate this dynamic process. For
example, when CT findings are atypical, our model can reinforce
the predictionweight of viral pneumonia through semantic cues like
‘elevated lymphocytes’ in the text, whereas traditional models rely
solely on single-modality confidence.

5.2 Feature fusion mechanism

In this paper, the most significant novelty is represented by
the mechanism of feature fusion, effectively integrating data that
comes from different sources: a self-attention-based approach as
a strategy to project features mapped from CT images, clinical
text, and numerical data in a unified high-dimensional space. Such
a feature fusion module captures relationships between different
modalities and selects the most diagnostically relevant one through
the self-attention mechanism. This way, it achieves excellence in
the classification task where the image data alone is insufficient
to diagnose completely. The complementary knowledge coming
from the clinical text and numerical data provides an overall
comprehensive and exact diagnosis.

This mechanism of fusion further enables the PneumoFusion-
Net model to exploit the strengths of each modality to its
fullest. CT images capture anatomy and pathologic features,
while clinical text feeds rich semantic context, and numerical
data provides quantitative evidence such as inflammatory
markers. Such combinations yield a great improvement in
classification performance. For instance, in distinguishing between
bacterial and viral pneumonias, this kind of multimodal fusion
approach employed by PneumoFusion-Net yielded a much better
classification accuracy than was possible with unimodal models.

5.3 Ablation and comparative experiments

Further ablation experiments were conducted to illustrate
more the contribution of each module involved: we systematically
removed each modality and observed a steep drop in classification
performance, underpinning the fact that multimodal integration
is crucial. The removal of numerical data, for example, led to
more than a 10% reduction in accuracy for the discrimination
between bacterial and viral pneumonia, underlining the importance
of laboratory data for the identification of types of pneumonia.

Comparatively, PneumoFusion-Net outperformed several
unimodal and conventional deep learning models regarding both
classification accuracy and inference efficiency. Admittedly, because
multiple modalities and advanced attention mechanisms are
involved, the number of parameters in the model is relatively high.
This complexity is well-deserved given the significant improvement
in performance. Most importantly, PneumoFusion-Net can be very
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effective for classifying complex cases, such as distinguishing viral
from bacterial pneumonia, andwas substantially superior compared
to single-modality models.

5.4 Limitations and future directions

In spite of the remarkable achievements reported in this
work, several areas require further attention and improvement to
enhance the applicability and robustness of PneumoFusion-Net in
clinical practice.

Although public dataset was utilized for training and validation,
the diversity and scale may still be limited for broader clinical
applications. Future research should incorporate datasets from
various healthcare systems, countries, and imaging protocols. For
instance, including data from underrepresented regions can account
for variations in disease presentation and healthcare practices.
Additionally, integrating CT images from different scanners and
protocols, such as varying resolution or contrast settings, would
improve the model’s adaptability across institutions. Domain
adaptation techniques, such as adversarial learning, could also be
employed to reduce performance degradation when applying the
model to unseen datasets. These steps will improve the model’s
robustness and ensure consistent performance across diverse clinical
settings, enabling its relevance for global applications.

The current model treats data as static snapshots, whereas many
clinical indicators, such as laboratory test results and symptom
progression, evolve over time. Future research could introduce
temporal modeling techniques to leverage such longitudinal
data. Recurrent Neural Networks or Long Short-Term Memory
networks could capture trends in laboratory values and temporal
variations in imaging data, while Transformer-based temporal
attention mechanisms might prioritize critical time points and
assess disease progression patterns. For example, a temporal
approach could identify worsening pneumonia cases by tracking
rising inflammatory markers or emerging radiological changes over
consecutive CT scans. Incorporating temporal dynamics would
provide richer insights into disease trajectory, treatment responses,
and long-term prognosis, enhancing the model’s diagnostic and
predictive capabilities.

Although Depthwise Separable Convolution has reduced
computational overhead, multimodal fusion frameworks remain
resource-intensive. Further optimization strategies, such as pruning,
quantization, or knowledge distillation, could create lightweight
versions of the model without compromising performance. Neural
Architecture Search could be explored to automatically design more
efficient multimodal fusion architectures that balance performance
and computational cost. Hardware acceleration, using GPUs,
TPUs, or edge devices, could reduce inference time. For example,
deploying a low-complexity version of PneumoFusion-Net on edge
devices in rural clinics would enable real-time diagnosis with
minimal infrastructure.These advancements wouldmake themodel
scalable for time-sensitive and resource-constrained environments,
enhancing its feasibility for real-world deployments.

Moreover, as large-scale pre-trained models (often referred
to as “foundation models”) have shown significant potential
in both vision and language domains, future research could
explore integrating PneumoFusion-Net with these large models.

For instance, Vision Transformers or large multimodal pretrained
models could provide strong initial feature representations, reducing
the need for extensive task-specific training data. Combining
PneumoFusion-Net’s multimodal fusion strategy with large pre-
trained models may yield even more powerful and generalizable
feature extractors, thus further improving performance, particularly
in low-data regimes or novel clinical scenarios.

To gain trust from clinicians, future iterations of the model
should focus on improving interpretability. Advanced attention
visualization methods, such as Shapley Additive Explanations
(SHAP), could quantify the contribution of each modality to the
final diagnosis. Additionally, developing user-friendly interfaces that
allow clinicians to interact with model outputs, such as modifying
or validating predictions based on additional patient data, would
bridge the gap between AI predictions and clinical workflows. This
would increase adoption and reliability in clinical practice.

In summary, future research should prioritize expanding
datasets to improve diversity and generalization, integrating
temporal dynamics to leverage longitudinal data, optimizing
computational efficiency for real-world applications, exploring the
integration of large-scale pre-trained models for robust and data-
efficient feature extraction, and enhancing interpretability to align
with clinical needs. By addressing these directions, PneumoFusion-
Net and similar multimodal frameworks can evolve into robust,
efficient, and trusted tools for clinical decision-making, significantly
advancing healthcare outcomes and operational efficiency.

6 Conclusion

This study introduces PneumoFusion-Net, a multimodal
deep learning framework that integrates CT images, clinical
text, numerical data, and imaging reports, achieving superior
classification performance. Experimental results demonstrate
that PneumoFusion-Net achieves an accuracy of 98.96% and
an F1 score of 98%, outperforming state-of-the-art models like
ResNet50 and Inception by significant margins. Compared to
a unimodal CT baseline, the model delivers a 14% absolute
improvement in accuracy, highlighting the value of complementary
cross-modal features. Additionally, leveraging Swin Transformer
for feature fusion achieves a 4.52% accuracy gain over simple
concatenation methods, underscoring the importance of advanced
fusion strategies.These quantitative results confirm PneumoFusion-
Net’s effectiveness in harnessing diverse data modalities for
robust and accurate pneumonia diagnosis.The model excels in
challenging pneumonia cases, such as distinguishing viral from
bacterial infections, and attention-based visualizations enhance
interpretability, offering clinicians insights into critical diagnostic
factors. Each modality’s incremental contribution underscores
the value of the proposed fusion strategy and the integrative
attention design. Looking forward, future efforts will focus
on incorporating diverse, international datasets for improved
generalization; modeling temporal dynamics to capture evolving
clinical indicators; exploring large-scale pre-trained models
for more robust, data-efficient representations; and optimizing
computational efficiency via pruning, quantization, and hardware
acceleration. By addressing these directions, PneumoFusion-
Net is poised to deliver more robust, scalable, and clinically
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meaningful AI-driven diagnostics, ultimately improving patient
outcomes and accelerating the integration of AI in healthcare.
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