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Postoperative cognitive dysfunction (POCD) is a common complication
among elderly patients following surgical procedures, significantly impairing
postoperative recovery and quality of life. The selection and dosage of
intraoperative anaesthetic drugs are frequently implicated as contributing
factors in the development of POCD. In recent years, dexmedetomidine (DEX),
a novel α2-adrenoceptor agonist, has been increasingly utilized in surgical
anaesthesia for elderly patients, showing potential as both a preventive and
therapeutic agent for POCD. This paper provides a comprehensive review
of current research on the mechanisms by which DEX affects POCD in the
elderly. Additionally, it explores DEX’s mechanisms of action in the context
of neuroprotection, anti-inflammation, antioxidative stress, and the regulation
of apoptosis, autophagy, and analgesia. The objective is to provide reliable
theoretical support and a reference point for the clinical application of DEX in
POCD among the elderly, thereby promoting its broader use in clinical practice
to improve outcomes and enhance quality of life.
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1 Introduction

Anaesthetics are classified into two main categories: local and general anaesthesia, and
they are widely employed as analgesic and sedative agents in modern clinical practice
(Neuman et al., 2021). Anaesthesia typically involves the transient suppression of central
and/or peripheral nervous system function through the administration of anaesthetics via
various routes, including oral, inhalation, local, intravenous, or intramuscularmethods.This
results in skeletal muscle relaxation of the patient’s skeletal muscles and the reversible loss
of consciousness and pain sensation at either the local or whole-body level (Kamel et al.,
2022; Zhang et al., 2023). However, the administration of anaesthetics inevitably induces
various hazards and side effects (Glannon, 2014). For instance, anaesthesia may result
in long-term neurodevelopmental consequences in neonates, manifesting as neuronal
developmental disorders (Ing et al., 2014; Lee et al., 2015). In adults, anaesthesia may lead
to mild nausea and vomiting (Jenkins and Baker, 2003). Among the elderly, anaesthetics
have been associated with adverse outcomes such as neurocognitive dysfunction and, in
severe cases, mortality (Häusler et al., 2022; Koo and Ryu, 2020; Amare et al., 2019).
Consequently, there is a growing need to develop effective anaesthetics with minimal side
effects, particularly for elderly patients.
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Postoperative cognitive dysfunction (POCD) is a central
nervous system complication that frequently occurs after surgical
procedures, particularly in elderly patients (Luo et al., 2019; Lin et al.,
2020; Hua and Min, 2020). It is characterized by a gradual decline
in cognitive abilities and memory, along with personality changes,
psychiatric disorders, memory impairment, and inattentiveness
(Li et al., 2022; Kotekar et al., 2018). Studies have shown that the
prevalence of POCD in elderly patients ranges from 25.8% to 41.4%
within 1 week of surgery (Shen et al., 2022).This condition results in
prolonged hospitalization, increased economic burden, diminished
quality of life, and even heightenedmortality rates (Shao et al., 2019).
The current understanding of POCD suggests that its occurrence is
influenced by intrinsic factors, such as age, pre-existing cognitive
impairment, and cerebrovascular disease, as well as extrinsic
factors, including the type of surgery, anaesthetic agents used, and
postoperative infection (Schenning andDeiner, 2015; Rosczyk et al.,
2008; Czyż-Szypenbejl et al., 2019;Wang C. M. et al., 2021; Cao et al.,
2019). Elderly individuals are particularly vulnerable to the effects
of anaesthetic agents on the brain compared to middle-aged
individuals. Furthermore, the choice of anaesthetic significantly
affects the severity and duration of POCD (Vutskits and Xie, 2016).

Dexmedetomidine (DEX) is a novel α2-adrenoceptor (α2-
AR) agonist with a binding ratio to α2: α1 adrenoceptors
of approximately 1,620:1 (Zhou et al., 2022; Mahmoud and
Mason, 2015; Weerink et al., 2017; Tishchenko and Dobrodeev,
2019; Wang et al., 2017). Studies have demonstrated that DEX
reduces the incidence of POCD by protecting neuronal function
(Wang D. et al., 2021; Prommer, 2011; Takada et al., 2002), while
having minimal impact on postoperative cognition in patients
over 60 years of age (Yang et al., 2023). In animal models,
DEX has been shown to provide neuroprotection against brain
injury in ischaemic-hypoxic neonatal rats, attenuate POCD in aged
rats, and promote neurogenesis and cognitive recovery in mice
following surgery (Fang et al., 2018; Wang W. X. et al., 2018).
Evidence suggests that DEX may serve as a promising agent for
intraoperative neuroprotection in elderly patients (Kallapur and
Bhosale, 2012; Djaiani et al., 2016). Accordingly, this study aims
to investigate the effects and mechanisms of DEX on the nervous
system and to discuss its ameliorative effects of DEX on POCD, with
the goal of providing a more robust theoretical foundation for the
safe of clinical use of anaesthetics in elderly surgical patients.

2 Pharmacological effects of DEX

2.1 Sedative effects

The locus coeruleus, often referred to as the blue spot, is the
brain region with the highest density of α2-AR and plays a key
role in the regulation of wakefulness and sleep (Liang et al., 2021).
DEX produces dose-dependent sedative, hypnotic, and anxiolytic
effects by activating α2-AR in the locus coeruleus, initiating
endogenous sleepmechanisms (Tasbihgou et al., 2021). Unlike other
anaesthetic agents, which induce sedative-hypnotic effects through
pharmacological pathways, DEX induces sedation comparable to
natural sleep, allowing patients to be easily awakened by verbal or
tactile stimuli without causing respiratory depression (Chima et al.,
2022). In surgical patients undergoing craniofacial functional

therapy, DEX has been shown to provide optimal sedation while
enabling the completion function tests during arousal (Kallapur and
Bhosale, 2012). The sedative effect of DEX depends on its plasma
concentration. At concentrations of 0.2–0.3 ng/mL, DEX induces
mild to moderate sedation, whereas at concentrations exceeding
1.9 ng/mL result in deep sedation, which can be deleterious
to patients (Weerink et al., 2017).

2.2 Analgesic effects

DEX has demonstrated significant analgesic properties. In the
brain, DEX binds to α2-AR in the locus coeruleus, inhibiting the
transmission of pain signals. In the spinal cord, DEX activates α2-
AR on the presynaptic membranes of posterior horn neurons and
postsynaptic membranes of intermediate neurons. This activation
opens K+ channels, facilitating K+ efflux while inhibiting Ca2+

influx. Consequently, cell membranes become hyperpolarized,
blocking of the medulla oblongata-spinal cord conduction pathway
and inhibiting the central transmission of pain signals (Bahari
and Meftahi, 2019). Additionally, DEX exerts analgesic effects
by stimulating peripheral nerve cells to release choline-like
substances, thereby increasing the pain threshold (Doze et al., 1989).
When combined with other analgesic agents, DEX demonstrates
synergistic effects, allowing for dose reductions and minimizing
associated adverse effects (Blaudszun et al., 2012; Venn et al.,
1999; Lin et al., 2009; Kalaskar et al., 2021; Tsaousi et al., 2018;
Wang X. et al., 2018). For example, Mueller et al. (2014) showed
that combining DEX with morphine enhances both analgesic and
sedative effects while significantly reducing the required dosage and
side effects of morphine. Furthermore, DEX not only provides mild
intrinsic analgesic effects but also potentiates the analgesic efficacy
of opioids (Song et al., 2016; Mathai et al., 2019).

2.3 Anti-sympathetic effects

DEX has been shown to suppress the excitability of the
sympathetic nervous system by activating α2-AR in the locus
coeruleus of the brainstem. This activation inhibits norepinephrine
release, reduces plasma catecholamine levels, and stabilises
haemodynamics, providing anxiolytic, antidepressant, and
neuroprotective effects (Mondardini et al., 2019). DEX’s anti-
sympathetic action also attenuates the surgical stress response,
significantly reducing plasma catecholamine and cytokine release,
which mitigates the development of hypercoagulability during
surgical procedures (Ramadhyani et al., 2010). Moreover, by
enhancing parasympathetic activity and activating cholinergic anti-
inflammatory pathways, DEX suppresses inflammatory responses
in local tissues in the brain and various other organs during
the perioperative period, thus affording organ protection (Bajwa
and Kulshrestha, 2013). However, the reduction in sympathetic
nervous tension is dose-dependent and can lead to bradycardia and
hypotension, which are among the most common adverse effects of
DEX (Schnabel et al., 2018; Yang and Gao, 2021). Therefore, careful
monitoring is required, particularly in patients with hypovolaemia
or pre-existing arrhythmias.
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2.4 Attenuation of respiratory depression

DEX exerts a minimal effects on the respiratory function. It
slightly reduces minute ventilation and causes a mild increase
in arterial carbon dioxide partial pressure (PaCO2) during deep
sedation. However, it does not suppress the body’s response to
hypercapnia, making its respiratory effects similar to those observed
during natural sleep under continuous infusion (Venn et al., 2000;
Cui et al., 2020). Gao et al. (2020) demonstrated that DEX inhibits
neuronal apoptosis through mitochondrial pathways, mediates the
neuroprotective effects via the regulation of neurotoxin expression,
and protects against hypoxia/reoxygenation-induced neuronal
damage in rat models. Additionally, DEX has been shown to reduce
the incidence of adverse respiratory events during procedures such
as craniotomy or tracheal intubation, outperforming opioids and
propofol in this regard (He et al., 2019; Nguyen and Nacpil, 2018).

3 The effects of DEX on postoperative
cognitive dysfunction

3.1 Suppression of inflammatory response

Surgical procedures are recognised as significant contributors to
the development of POCD (Peng et al., 2023; Zhong et al., 2024;
Zhou et al., 2023). Surgery-induced peripheral blood inflammatory
factors in peripheral blood can activate microglia, eliciting excessive
immune responses (Olotu, 2020; Chu et al., 2018). This process leads
to the release of large quantities of inflammatorymediators, which can
disrupt neurotransmitter signalling in the hippocampus and cause
reversible or irreversible brain tissue damage. Such disruptions may
alter neuronal synapses, contributing to neurodegenerative processes
and cognitive dysfunction (Podjaski et al., 2015;Hoogland et al., 2015;
Gyoneva et al., 2014). Elderly patients are particularly vulnerable
to POCD due to the activation of the peripheral immune system,
which amplifies central nervous system responses (Chen et al.,
2019; Ye et al., 2024). Numerous studies have demonstrated that
DEX reduces hippocampal inflammation by downregulating the
expression of tumour necrosis factor-α (TNF-α), interleukin-6 (IL-
6), and interleukin-1β (IL-1β), thereby inhibiting neuronal apoptosis
and protecting against POCD (Wang et al., 2022; Frakes et al.,
2014). The nuclear factor kappa-B (NF-κB) pathway plays a pivotal
role in neuroinflammation by regulating inflammatory mediators in
microglia(Xuetal.,2013;Parketal.,2015).Sunetal. (2021)showedthat
DEXinhibitsmicroglialactivationandreducesinflammatorymediator
releaseby suppressing theNF-κBpathway. Similarly,Zhouet al. (2020)
demonstrated that DEX pretreatment ameliorates lipopolysaccharide
(LPS)-induced cognitive deficits in aged mice by inhibiting the
TLR4/NF-κBpathway in thehippocampus.Thesefindingssuggest that
DEX exerts a protective effect against POCD through the reduction
of inflammatory factor secretion.

3.2 Antioxidant stress

Oxidative stress, characterised by an imbalance between the
production of reactive oxygen species (ROS) and reactive nitrogen
species (RNS) production and the tissue’s antioxidant capacity, is

a key contributor to POCD (Song et al., 2019; Gong et al., 2020;
Liu H. et al., 2020; González-Domínguez et al., 2014).When cellular
antioxidants fail to neutralise ROS effectively, oxidative damage to
lipids, DNA, and proteins occurs, leading to neuronal injury and
cognitive dysfunction (Kojima et al., 2013; Rodrigues et al., 2017;
Lee et al., 2012). Mitochondria, the primary site of intracellular
ROS production, play a crucial role in oxidative metabolism,
cell survival, and apoptosis (Rizwan et al., 2020). Excessive ROS
production reduces mitochondrial protein activity in neuronal cells,
contributing to neurodegenerative diseases such as Alzheimer’s
disease (AD) and Parkinson’s disease (PD) (Alavian et al., 2015).

The protective effect of DEX against POCD is closely associated
with its antioxidative properties. DEX significantly inhibits ROS
overproduction and cell apoptosis, thereby mitigating oxidative
damage. Furthermore, the antioxidant effect of DEX ameliorates
oxidative stress and apoptosis, improving POCD progression
(Chen et al., 2018; Liu P. et al., 2020). Superoxide dismutase (SOD),
a critical component of the antioxidant defence system, scavenges
excess ROS and mitigates their adverse effects (Jiang et al., 2019).
Studies have shown that DEX increases SOD levels in elderly
patients following surgery, conferring neuroprotective effects on
cognitive function (Xie et al., 2021). Thus, DEX exerts its protective
effects on cognitive function by counteracting oxidative stress,
thereby alleviating POCD-induced damage.

3.3 Inhibition of apoptosis

Apoptosis is a regulated and orderly form of cell death
controlled by various genes. However, abnormalities in apoptotic
processes can result in cell death triggered by specific injury
factors and constitute a primary mechanism of delayed neural
injury (Wnuk and Kajta, 2017). Increasing evidence indicates that
hippocampal neuronal apoptosis is a major contributor to cognitive
dysfunction in patients experiencing brain injury (Wang et al.,
2024). Jevtovic-Todorovic et al. (2003) observed severe apoptosis
and progressive, irreversible cognitive dysfunction in rats exposed
to isoflurane, nitrous oxide, and midazolam for six hours. Similarly,
propofol, a widely used intravenous anaesthetic, has been reported
to disrupt synaptic plasticity, leading to neuronal apoptosis and
damage, ultimately causing memory dysfunction (Lv et al., 2017).
In contrast, DEX has demonstrated the ability to prevent POCD
by inhibiting neuronal apoptosis (Si et al., 2016). Liu Y. J. et al.
(2017) found that DEX significantly reduced propofol-induced
neuronal apoptosis and neurocognitive dysfunction, providing
neuroprotection. Furthermore, Sanders et al. (Sanders et al., 2010)
reported that DEX mitigated hippocampal neuronal apoptosis and
reduced brain injury in rats following isoflurane anaesthesia, thereby
preventing POCD. These findings suggest that DEX protects against
POCD by inhibiting neuronal apoptosis.

3.4 Regulation of cellular autophagy

Autophagy is a self-phagocytosis mechanism observed in
eukaryotic cells, representing a biological process of cellular self-
regulation.When cytoplasmic components or organelles are damaged
or destroyed, autophagy is activated to protect the cell (Settembre
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and Ballabio, 2014). However, disruptions in autophagy that disturb
cellular homeostasis can ultimately result in cell death (D'Arcy, 2019).
Autophagy has been implicated in the pathogenesis of cognitive
disorders. For instance, inhibition of autophagy has been shown
to cause abnormal aggregation of α-synuclein, which exacerbates
cognitive impairment in patients with AD (Ntsapi et al., 2018;
Cuervo et al., 2004). In an animal study, Zhang et al. (2016) found
that impaired autophagy following sevoflurane anaesthesia led to
cognitive dysfunction in aged rats. Phosphorylation of adenosine
monophosphate-activated protein kinase (AMPK), a key molecule in
cellular autophagy, has been demonstrated to promote autophagy and
alleviate cognitive deficits in aged rats with POCD (Niu et al., 2022).

DEX facilitates the initiation of autophagy-related signalling
pathways by activating the AMPK signalling pathway (Wang J. et al.,
2023). In addition, DEX promotes autophagy by inhibiting the
mammalian target of rapamycin (mTOR) signalling pathway, a
negative regulator of autophagy. Inhibition of mTOR enhances
autophagic processes, thereby mitigating POCD (Yu et al., 2023).
These findings suggest that DEX protects against POCD by
promoting cellular autophagy.

3.5 Reduction of anaesthetic drugs

The combination of drugs represents an effective strategy for
augmenting the protective effects of DEX against POCD. DEX,
known for its sedative and hypnotic properties, can produce
synergistic effects when combined with other sedative and analgesic
drugs, thereby reducing the required doses of general anaesthetic
agents (Liu X. et al., 2017). For instance, combining DEX with
general anaesthesia not only reduces the dose of propofol but
also decreases the incidence of adverse reactions associated with
anaesthesia, such as numbness, convulsions, and vomiting (Liu et al.,
2019). Furthermore, DEX has been shown to accelerate analgesic
effects, lower visual analogue scale (VAS) scores, and improve
early postoperative mini-mental state examination (MMSE) scores,
thereby providing protection against POCD (Zhang T. et al., 2019).
It can thus be inferred that DEX protects against POCD by reducing
the dosage of other anaesthetic agents.

4 Role of multiple signalling pathways
in POCD

4.1 DEX activates the PI3K/Akt signalling
pathway to protect against POCD

Phosphatidylinositol 3-kinase (PI3K) is a critical intracellular
signalling molecule activated by extracellular stimuli such as growth
factors, cytokines, and hormones (Xie et al., 2019). Akt, also
referred to as Protein Kinase B (PKB), is a key downstream
effector of PI3K and undergoes phosphorylation under normal
physiological conditions (Hers et al., 2011). Activation of Akt
promotes cell survival by regulating apoptosis-related proteins,
including caspase-9 and glycogen synthase kinase-3 (GSK-3)
(Zhou et al., 2000). The PI3K/Akt signalling pathway is a well-
established anti-apoptotic pathway with widespread expression
across tissues, regulating processes such as growth, proliferation,

differentiation, apoptosis, and metabolism (Zhang et al., 2022). The
PI3K/Akt pathway also plays a role in inflammatory responses.
Pro-inflammatory cytokines, including interleukin-1β (IL-1β),
interleukin-37 (IL-37), and tumour necrosis factor-α (TNF-α),
activate Akt and amplify the inflammatory response. This activation
induces autophagy and apoptosis through the PI3K/Akt pathway,
contributing to inflammation by influencing neutrophils and
lymphocytes (Xue et al., 2015; Eräsalo et al., 2018).

Extensive evidence indicates that the PI3K/Akt signalling
pathway is pivotal in the neuronal injury associated with surgical
trauma, anaesthesia, and hypoxia, particularly in POCD (Qin et al.,
2020). Xiao et al. (2018) demonstrated that DEX pretreatment
enhanced PI3K/Akt activation in the hippocampus of juvenile
rats, reduced propofol-induced neuronal apoptosis, alleviated long-
term neurotoxicity, and improved spatial learning and memory.
Similarly, Zhang et al. (2020) found that DEX attenuated neuronal
apoptosis in rats with transient focal ischemia-reperfusion through
the PI3K/Akt pathway, reducing brain injury.These findings suggest
that DEX mitigates surgically induced neuronal injury and prevents
POCD by activating the PI3K/Akt signalling pathway.

4.2 DEX activates the PGC-1α signalling
pathway to protect against POCD

Peroxisome proliferator-activated receptor γ coactivator 1-alpha
(PGC-1α) is a multifunctional protein that plays a critical role in
various neurological disorders (Han et al., 2021). Overexpression of
PGC-1α has been shown to significantly alleviate cognitive deficits
(Han et al., 2020). High expression levels of PGC-1α have been
observed in brain regions such as the cerebral cortex, striatum, and
pallidum (Tritos et al., 2003). PGC-1α is a principal regulator of
mitochondrial biogenesis and function. By improving mitochondrial
performance, it reduces ROS levels, thereby mitigating hippocampal
cell damagecausedbychronic cerebralunderperfusionandenhancing
neuronalmetabolicactivity (Hanetal., 2020).Amyloidβ-protein(Aβ),
a by-product of amyloid precursor protein (APP) processing, and
neuronal loss constitute pathological hallmarks of AD (Senousy et al.,
2022). Upregulation of PGC-1α inhibits Aβ pathology by modulating
β-secretaseactivity, thuspreventingAβproduction, reducingneuronal
damage, and improving cognitive function in AD model mice
(Motawi et al., 2022). Han et al. (2020) demonstrated that PGC-
1α enhances synaptic plasticity, promotes energy metabolism in
hippocampal neurons, and increases the expression of brain-derived
neurotrophic factor (BDNF) andmitochondrial antioxidants, thereby
alleviating cognitive dysfunction.

DEX significantly increases PGC-1α levels, thereby inhibiting
mitochondrial damage and cellular inflammation. Li et al. (2018)
demonstrated that DEX administration directly upregulates PGC-
1α protein expression in traumatic brain injury (TBI)-affected
regions, effectively reducing neuroinflammation, ROS production,
neuronal degeneration, and apoptosis, while improving cognitive
and behavioral outcomes. These findings suggest that DEX may
serve as a potential therapeutic agent for POCD. In conclusion,
PGC-1α plays a central role in the pathogenesis of neurological
diseases by regulating mitochondrial function and ROS levels. DEX
exerts neuroprotective effects against POCD by upregulating PGC-
1α, offering a novel therapeutic target.
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4.3 DEX activates the CREB/BDNF
signalling pathway to protect against
POCD

cAMPresponseelement-bindingprotein(CREB) isakeyregulator
of neuronal growth and a critical molecular target for learning and
memory processes (Carlezon et al., 2005; Barco et al., 2003). CREB-
mediated gene expression, including that of BDNF, nerve growth
factor (Fayaz et al., 2016), VGF (nerve growth factor inducible),
and tissue plasminogen activator (t-PA), is essential for long-term
memory formation and synaptic plasticity (Bourtchuladze et al.,
1994; Won and Silva, 2008; Chen et al., 2012). Impairment of these
signalling pathways is a potential mechanism underlying cognitive
deficits in AD (Pláteník et al., 2014). Among these, BDNF, a direct
target gene of CREB, plays a pivotal role in synaptic plasticity and
memory formation (Lee and Silva, 2009; Cowansage et al., 2010;
Miranda et al., 2019). Wang et al. (2020) demonstrated that CREB
promotes BDNF gene expression and the anti-apoptotic protein Bcl-
2. BDNF exerts neuroprotective effects by regulating hippocampal
synaptic plasticity and promoting neurogenesis.

DEXhasbeen shown toprotect and restoreneurological functions
by activating CREB (Hu et al., 2017; Li et al., 2020). Taha et al. (2023)
reported that DEX administration upregulated BDNF expression
in the rat hippocampus, reducing oxidative stress, alleviating
methotrexate (MTX)-induced neurotoxicity, and improving memory
deficits. Additionally, Chen et al. (2024) demonstrated that DEX
promotes hippocampal neurogenesis and reduces neuronal damage
by activating the BDNF/CREB signalling pathway in neonates with
hypoxic-ischemic brain damage (HIBD). This activation ameliorated
neurological damage and cognitive dysfunction. In conclusion, DEX
promotes neurogenesis and synaptic plasticity, attenuates neurotoxic
effects, and improves cognitive function by activating CREB and its
downstream target gene, BDNF.

4.4 DEX activates the nrf2/HO-1 signalling
pathway to protect against POCD

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a
transcription factor that regulates genes involved in oxidative
stress responses and drug detoxification. It plays a critical role
in mitigating oxidative stress (Shao, 2022; Ngo and Duennwald,
2022). DEX has been shown to alleviate oxidative stress in various
pathological conditions by activating the Nrf2 signalling cascade,
which inhibits neuronal apoptosis and neurodegenerative processes
associated with cerebral ischemia (Wang R. et al., 2023). However,
there is a notable decline in Nrf2 activity has been observed in aged
organisms (Zhang et al., 2015).

Heme oxygenase 1 (HO-1), a redox-sensitive enzyme, converts
heme to biliverdin and exhibits both anti-inflammatory and
antioxidant properties (Chen, 2014). Increased HO-1 expression
with age is hypothesised to reduce toxic proteoglycan accumulation
in AD, thereby ameliorating age-related cognitive decline
(Hirose et al., 2003; Kurucz et al., 2018; Smith et al., 1994).

Nrf2 is a key regulator of HO-1 expression, promoting its
upregulation (Syapin, 2008; Tonelli et al., 2018). Park et al.
(2023) conducted a study on ischemic rats pre-treated with
DEX, demonstrating elevated Nrf2 and HO-1 expression levels,

alongside reduced caspase-3 activity. This suggests that DEX
provides neuroprotective benefits through the Nrf2/HO-1 pathway.
Furthermore, Li et al. (2019) demonstrated that DEX mitigates
POCD after traumatic brain injury (TBI) by activating the
Nrf2 pathway and upregulating downstream factors HO-1 and
NQO-1, thereby reducing neuroinflammation-induced apoptosis.
In summary, DEX exerts neuroprotective effects in various
neurological disorders by activating the Nrf2/HO-1 signalling
pathway, reducing neuronal apoptosis and inflammation, and
providing protection against POCD.

4.5 DEX inhibits the TLR4/NF-κb signalling
pathway to protect against POCD

Toll-like receptor 4 (TLR4) is a pattern recognition receptor
within the toll-like receptor (TLR) family that plays a critical role
in immune system functioning by recognising both pathogens and
endogenous noxious stimuli. It induces innate and adaptive immune
responses and is prominently expressed in the central nervous system,
particularly in neural glial cells (Liu et al., 2021). TLR4 is involved in
the regulation of nuclear factor kappa-B (NF-κB), a critical mediator
of neuroinflammatory responses (Ghosh and Dass, 2016). The
upregulationofTLR4has been associatedwithdeficits inmemory and
learningandis regardedasasignificantcontributor to thepathogenesis
of POCD(Wang et al., 2013). NF-κB, a principal downstream
pathwayofTLR4, regulates the expressionof inflammatorymediators,
such as IL-1β, IL-6, and TNF-α. These cytokines promote cellular
inflammation andapoptosis, contributing to cognitive impairments in
POCD(Huangetal.,2019;Chietal.,2015;Zhang D.etal.,2019).Under
ischemic and hypoxic conditions, TLR4 activation initiates the NF-
κB pathway, resulting in an inflammatory response that exacerbates
neuronal apoptosis and neuropathic pain (He et al., 2020).

Recent studies have demonstrated that inhibiting the TLR4/NF-
κB pathway constitutes a primary mechanism underlying the
neuroprotective effects of DEX (Zhang et al., 2018). DEX modulates
the TLR4/NF-κB pathway, thereby reducing levels of inflammatory
cytokines such as TNF-α and IL-1β. Kim E. et al. (2017)
reported that DEX inactivated the TLR4/NF-κB pathway, reducing
inflammation and conferring neuroprotection against transient
cerebral ischemia/reperfusion injury in rats. Similarly, Zhou X. Y. et al.
(2019) found that DEX attenuated the through modulation of the
TLR4/NF-κB pathway, significantly improving cognitive dysfunction
in aged POCD mice. In conclusion, DEX exerts neuroprotective
effects by inhibiting the TLR4/NF-κB pathway, thereby reducing
inflammatory responses andmitigating POCD in elderly individuals.

4.6 DEX inhibits the JAK/STAT signalling
pathway to protect against POCD

The Janus tyrosine kinase/signal transducer and activator of
transcription (JAK/STAT) pathway consists of two protein families:
JAK and STAT. In the central nervous system, the JAK/STAT
pathway is primarily involved in processes such as hormone release,
inflammation, tumour formation, and gene regulation during
development (Nicolas et al., 2013). Specifically, the JAK2/STAT3
signalling pathway has been implicated in the progression of cerebral
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FIGURE 1
Role of Multiple Signalling Pathways in POCD. DEX has been demonstrated to bind to α2-AR, thereby promoting synaptic plasticity, inhibiting oxidative
stress, suppressing neuronal inflammation and apoptosis, and ultimately inhibiting POCD through the activation of multiple signalling pathways. The
following pathways are involved: Nrf2/HO-1, PGC-1α, CREB/BDNF, PI3K/Akt, JAK/STAT, TLR4/NF-κB, and Drp1-Bax.

ischemia-reperfusion injury (CIRI) (Zhong et al., 2021). CIRI
upregulates the expression of phosphorylated JAK2 (p-JAK2) and
phosphorylated STAT3 (p-STAT3) and induces the release of various
inflammatory mediators. In contrast, inhibitors of JAK2, such as
AG490, and STAT3 inhibitors exhibit significant neuroprotective
effects, suggesting potential therapeutic value in the treatment of
neurodegenerative diseases (Satriotomo et al., 2006).

Similar to JAK/STAT inhibitors, DEX suppresses the activation
of JAK2 and STAT3 in the cerebral cortex, thereby attenuating
neuroinflammation and apoptosis (Liu et al., 2022). Chen et al.
(2017) reported that DEX reduced neuronal damage in the
hippocampus of rats undergoing cardiopulmonary bypass (CPB).
Their findings indicated that CPB led to increased levels of p-JAK2
and p-STAT3 proteins, while DEX ameliorated POCD by inhibiting
the JAK2/STAT3 pathway. In contrast, (Kim H. C. et al. (2017)
observed that in aged mice pre-treated with DEX before exposure
to isoflurane, DEX attenuated isoflurane-induced cognitive deficits
despite elevated phosphorylation levels of JAK2 and STAT3. This
discrepancy may stem from differences in experimental models,
subjects, conditions, and the degree of injury. Chen et al. used a
rat model of CPB, whereas Kim et al. employed an aged mouse
model exposed to isoflurane, involving distinct pathophysiological

mechanisms. Additionally, differences in the age of the animals
and the severity of injuries (e.g., CPB versus isoflurane exposure)
may account for variations in the effects of DEX. These findings
suggest that the neuroprotective impact of DEX on the JAK2/STAT3
pathway is influenced by specific experimental variables.

4.7 DEX inhibits the Drp1-Bax signalling
pathway to protect against POCD

Dynamin-related protein 1 (Drp1) is a member of
the GTPase family and plays a critical role in regulating
mitochondrial morphology, distribution, and remodelling, as
well as neuronal injury and synaptic degeneration (Kim et al.,
2018; Manczak et al., 2011). Activation of Drp1 has been
shown to promote apoptosis by facilitating the mitochondrial
translocation of Bcl2-associated X (Bax), increasing cytochrome
C release, and activating the caspase-3/-9 signalling pathway.
Additionally, Drp1 mediates metabolic disturbances and depletes
mitochondrial glutathione levels, impairing free radical scavenging
capacity. These effects increase mitochondrial ROS production,
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exacerbatingmitochondrial dysfunction and forming a pathological
basis for POCD (Duan et al., 2020).

Studies have shown that Drp1 exacerbates isoflurane-
induced cognitive impairments in rats (Zhang et al., 2014).
Shan et al. (2018) reported that sevoflurane anaesthesia significantly
increased the expression of Drp1 and Bax, both of which
promote neuronal apoptosis, thereby impairing learning and
memory. However, DEX inhibited these increases, mitigating
neurological damage. Similarly, Qian et al. (2015) observed that
splenectomy under general anaesthesia in aged mice caused
severe cognitive impairments. Preoperative administration of
DEX reduced hippocampal levels of pro-inflammatory factors
TNF-α and IL-1β and downregulated apoptosis-related factors,
including caspase-3 and Bax, thereby preventing the onset of
POCD. These findings suggest that the activation of Drp1 and
Bax contributes to apoptosis and mitochondrial dysfunction,
exacerbating cognitive impairments. Conversely, DEX ameliorates
neurological damage and prevents POCD by inhibiting Drp1 and
associated apoptotic factors (Figure 1).

5 Discussion and summary

DEX, a novel α2-adrenoceptor agonist, shows great potential as a
therapeuticagent formitigatingPOCDinelderlypatients. Inanetwork
meta-analysis comparing different anaesthetic drugs regarding the
incidence of POCD in the elderly, Zeng et al. (2023) demonstrated
that DEX (12.9%) and sufentanil (6.3%) were themost effective drugs
for reducing the incidence of POCD in the elderly. In particular, DEX
significantly reduced the incidence of POCD compared to placebo
(27.7%) and sevoflurane (24.0%). DEX has been demonstrated to
exert neuroprotective effects, which may be attributed to its ability
to reduce the expression of pro-inflammatory factors by activating
relevant signalling pathways, while simultaneously inhibiting the
stress response and apoptosis, thereby reducing neuronal toxicity
and ameliorating the occurrence of POCD by facilitating synapse
formation and providing neurotrophic nutrition (Zhou M. et al.,
2019). In clinical practice, a 15-min intravenous infusion of DEX at
a loading dose of 0.5 μg/kg is typically administered 15 min prior to
the induction of anaesthesia, and then maintained at a continuous
rate of 0.5 μg/kg/h until the conclusion of the procedure (Lu et al.,
2017). However, due to inter-patient variability, the dose, duration,
and application of DEX may vary. It is noteworthy that DEX has been
observedtopredispose to thedevelopmentofadverseeffects, including
hypotension and bradycardia, in the perioperative period. These side
effectsmaybemultifactorialanddose-dependent(Nguyenetal.,2017).
Low doses of DEX have been observed to induce a decrease in central
sympathetic excitability and a reduction in norepinephrine release.
Conversely, high doses of DEX have been linked to the development
of transienthypertensionwith reflexbradycardia (Nguyenet al., 2017).
It is therefore recommended that further in-depth studies with larger
sample sizes and a greater understanding of the mechanism of action
of DEX should be conducted in the future, in order to ensure the
optimal clinical application of DEX.

The occurrence of POCD is associated with age and anaesthetic
drugs, but also other risk factors, including low level of education,
type and duration of surgery, and postoperative pain (Zeng et al.,
2023). It has been demonstrated that the brain networks of

individuals with low cognitive reserve demonstrate reduced
resilience to the damage caused by reduced flexibility and efficiency
when compared to those with high cognitive reserve (Foubert-
Samier et al., 2012). For instance, patients with limited educational
attainment may demonstrate heightened Aβ accumulation and
augmented tau deposition during surgical procedures, thereby
intensifying the incidence of POCD (Vemuri et al., 2015).
Furthermore, the reduction in tissue trauma that is associated with
minimally invasive surgery results in a less severe postoperative
inflammatory response. Consequently, the incidence and severity
of POCD are diminished (Bhushan et al., 2021). Furthermore,
reducing the duration of surgery not only mitigates the release
of pro-inflammatory mediators but also minimises the necessity
for sedative and analgesic medications, which is pivotal for the
prevention of POCD (Olotu, 2020). In addition, severe postoperative
pain may also precipitate postoperative delirium, which in turn
may lead to the development of POCD (Leung et al., 2013).
The APOE4 genotype is strongly linked to the development of
Alzheimer’s disease. Individuals with this genotype have been
shown to have a markedly elevated risk of developing POCD within
3 months of surgery (BertramandTanzi, 2008).However, the precise
mechanism by which this occurs remains unclear.

In conclusion, DEX has been demonstrated to be an effective
intervention for the prevention of POCD in elderly patients. Further
investigations are required to elucidate the precise mechanisms by
which DEX modulates the nervous system and to determine the
optimal dosage and timing for its application in surgical anaesthesia
for this population. Additionally, exploring the combination of
DEX with other pharmacological agents may enhance its efficacy in
managing POCD.
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