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Background and objectives: The atherogenic index of plasma (AIP), defined as
log10 (triglycerides/high-density lipoprotein cholesterol), serves as a biomarker
for atherosclerosis and cardiovascular disease (CVD). It is also associated with
conditions such as type 2 diabetes, insulin resistance, depression, and both
cardiovascular and overall mortality. Serum lipids have been proven to
influence serum testosterone levels, and AIP is a significant marker of lipid
levels. We hypothesize that AIP may have a specific relationship with
testosterone. This article aims to evaluate the correlation between AIP and
total testosterone (TT), as well as testosterone deficiency (TD), among the U.S.
population.

Methods: Data were collected from the National Health and Nutrition
Examination Survey (NHANES) database between 2011 and 2016. This study
was categorized into four groups based on the quartiles of AIP. Weighted
multivariate linear regression and logistic regression were utilized to evaluate
the relationships between AIP and TT, TD. Restricted cubic spline (RCS) was used
to investigate the non-linear association between AIP and TT and TD. The
subgroup analysis method was employed to investigate the relationships
between AIP and TT, TD across various stratifications. Ultimately, the
sensitivity study involved a comparison of weighted and unweighted data
analyses to ascertain the stability of the conclusions.

Results: A total of 2,572 participants were included in the final study. After
adjusting for all confounding factors, multivariate linear regression showed
that AIP was independently negatively associated with TT (β = −93.42, 95%CI:
−123.66, −63.18, P < 0.001), and multivariate logistic regression showed that AIP
level was associated with higher risk of TD (OR = 3.45, 95%CI: 2.09, 5.69, P <
0.001). In the quartile of AIP, TT levels decreased the most (β = −74.81, 95%CI:
−105.27, −44.35, p < 0.001) and the risk of TDwas highest (OR= 2.89, 95%CI: 1.70,
4.93, p < 0.001). In addition, stratified analyses showed similar results in all
subgroups except those with diabetes (P for interaction >0.05 for all
comparisons). The final sensitivity analysis revealed that elevated AIP were also
associated with decreased TT (β = −101.74, 95%CI: −123.18, −80.3, P < 0.001) and
increased incidence of TD (OR = 3.01, 95%CI: 2.17, 4.17, P < 0.001) on
unweighted data.
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Conclusion: Increased levels of AIP correlate with decreased TT levels and a higher
prevalence of TD. Additional research is necessary to investigate the underlying
mechanisms connecting them.
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1 Introduction

Testosterone, a steroid hormone synthesized mainly in
Leydig cells of the testis, is essential for various physiological
processes, including the development of secondary sexual
characteristics in males, the maintenance of muscle strength
and growth, sexual function, metabolic and cardiovascular
health, and bone mineral density (Iliescu and Reckelhoff,
2006; Dimopoulou et al., 2018; Mohamad et al., 2016; Griggs
et al., 1989; Killinger, 1970). Low serum testosterone levels in
men can result in dysfunction across multiple organ systems. Low
testosterone is associated with decreased libido, erectile
dysfunction, and muscle weakness (Rastrelli et al., 2018;
O’Connell and Wu, 2014). Furthermore, it can contribute to
or worsen metabolic diseases, including metabolic syndrome and
osteoporosis (Kupelian et al., 2006; Walsh and Eastell, 2013).
Men exhibiting symptoms of testosterone deficiency are at an
increased risk for developing coronary artery disease, type
2 diabetes, and hypertension (Colangelo et al., 2009; Ruige
et al., 2011). Testosterone deficiency is prevalent, impacting
approximately 30% of men between the ages of 40 and 79. Its
occurrence escalates with advancing age and is associated with
various medical conditions, including obesity, diabetes, and
hypertension (Traish et al., 2011). This is projected to rise in
the coming decades due to increasing life expectancy (Halpern
and Brannigan, 2019). Testosterone deficiency is increasingly
recognized as a global issue.

AIP was introduced by Dobiasova and Frohlich in 2001 as a
biomarker for plasma atherosclerosis (Dobiásová and Frohlich,
2001). It integrates triglycerides (TG) and high-density
lipoprotein cholesterol (HDL-C) levels, reflecting both the
particle size of lipoproteins and the log (TG/HDL-C). This ratio
serves as a more precise indicator of the specificity and pathogenicity
of dyslipidemia (Fernández-Macías et al., 2019). Numerous studies
indicate that elevated AIP is significantly linked to cardiovascular
disease (CVD) mortality, overall mortality, and hypertensive
populations (Qin and Chen, 2024; Duiyimuhan and Maimaiti,
2023). Additionally, AIP serves as a reliable predictor of
cardiovascular events and mortality resulting from these events
(Onat et al., 2010; Dobiásová, 2006).

Numerous clinical studies have demonstrated a biological link
between lipids and sex hormones, revealing an association between
TG and HDL-C with TT: Heller identified a consistently positive
correlation between HDL-C and TT concentration in a sample of
295 middle-aged men (Heller et al., 1983); Sook et al. reported that
among 8,606 Korean male workers, those with low testosterone
levels exhibited a higher likelihood of hypertriglyceridemia (Sung
et al., 2019); a meta-analysis confirmed a significant association
between low testosterone levels and hypertriglyceridemia (Brand
et al., 2014); Chung et al. examined 1,055 Korean men aged 45 years

and older, revealing a negative correlation between the TG/HDL
ratio and TT levels (Chung et al., 2020).

Nonetheless, the existing research presents certain limitations.
The current studies are restricted to specific elderly or regional
populations, leaving the relationship with the overall male
population ambiguous. No studies effectively combine TG and
HDL-C to examine their relationship with testosterone. Despite
extensive research on the relationship between AIP and CVD, there
is a lack of data specifically examining the association between AIP
and testosterone levels. The relationship between lipid metabolism
and sex hormones suggests a correlation between AIP and
testosterone.

This study addresses knowledge gaps by utilizing a
comprehensive NHANES dataset and conducting a cross-
sectional survey to evaluate the relationship between AIP and TT
and TD in adult men in the US. We postulated that there would be a
negative and positive correlation, respectively, between AIP and TT
and the occurrence of TD.

2 Methods

2.1 Database and survey populations

Data were utilized from the 2011–2016 cycles of the NHANES.
The National Center for Health Statistics of the Centers for Disease
Control and Prevention conducts the NHANES, which employs a
multistage, complex summary, stratified probability sampling
design to select representative samples of adults and children
from the noninstitutionalized U.S. population for the assessment
of their nutritional status. 29,902 participants were included in these
cycles. The selected cycles are based on the availability of data
regarding total testosterone levels, which is limited to the period
from 2011 to 2016. The analysis excluded 15,151 female subjects,
4,127 subjects with incomplete total testosterone data, 6,331 subjects
lacking data necessary for AIP calculation, and 1,721 subjects with
missing covariate data. Ultimately, 2,572 subjects were included in
the final analysis (Figure 1).

2.2 Informed consent

NHANES is a dataset that is accessible to the public. Before
starting any official inquiry, all participants must give both written
and verbal agreement to take part in the research. The study has
undergone evaluation and received approval from the ethical review
committee of the National Centre for Health Statistics (NCHS). The
NCHS IRB/ERB protocol number for 2011–2016 was #2011–17. The
website (https://www.cdc.gov/nchs/nhanes/) provides access to all
pertinent data.
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2.3 AIP evaluation

AIP was defined as a LOG10 (TG/HDL-C) ratio (Onat
et al., 2010).

2.4 Assessment of outcome—TT and TD

According to American Urological Association guidelines, TD
are characterized by serum testosterone levels <300 ng/dL (Mulhall
et al., 2018). The Centres for Disease Control and Prevention (CDC)
developed an isotope dilution liquid chromatography tandem mass

spectrometry (ID-LC-MS/MS) technique to measure the levels of
total testosterone in serum for routine examination. This method
has been particularly designed for samples with a high rate of flow,
and has consistently shown a high level of accuracy and precision
over a long period of time. The technique has received certification
from the CDC Hormone Standardisation Programme (HoSt) and
can be traced back to certified reference material acquired from the
Australian National Measurement Institute (ANMI) M914 for
testosterone. For a comprehensive examination of quality control
and quality assurance in the NHANES laboratory and medical
technical personnel manual of procedure (LPM), please refer to
the following link: https://wwwn.cdc.gov/nchs/data/nhanes/2013-

FIGURE 1
Flow chart of the screening process for the selection of eligible participants.
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TABLE 1 Weighted demographic and clinical characteristics in accordance with the AIP level.

Variables Overall Q1 (<-0.234) Q2
(−0.234 to −0.012)

Q3
(−0.012–0.221)

Q4 (>0.221) P-value

(N =
85,700,426)

(N =
21,238,582)

(N = 21,189,847) (N = 20,437,414) (N =
22,834,584)

Continuous variable, mean ± SD

Age (years) 46.66 ± 16.31 46.90 ± 18.06 46.19 ± 16.48 46.57 ± 16.53 46.94 ± 14.11 0.8669

TT(ng/dL) 455.06 ± 187.74 521.38 ± 192.99 493.67 ± 183.10 421.93 ± 184.10 387.19 ± 158.05 <0.0001

TG(mmol/L) 1.52 ± 1.27 0.63 ± 0.18 1.01 ± 0.20 1.44 ± 0.29 2.89 ± 1.79 <0.0001

HDL-C(mmol/L) 1.27 ± 0.37 1.64 ± 0.41 1.32 ± 0.22 1.16 ± 0.22 0.97 ± 0.19 <0.0001

Categorical variables, number (%)

Race (%) <0.0001

Mexican American 7,180,166 (8.38) 1,224,584 (5.77) 1,776,552 (8.38) 1,850,011 (9.05) 2,329,020 (10.20)

Non-Hispanic Black 7,878,658.38 (9.19) 3,163,467.04 (14.89) 2,071,196 (9.77) 1,630,421 (7.98) 1,013,575 (4.44)

Non-Hisoanic White 59,824,599 (69.81) 14,600,367 (68.74) 14,847,330 (70.07) 13,730,640 (67.18) 16,646,261 (72.90)

Other Hispanic 5,119,679 (5.97) 890,576 (4.19) 1,275,386 (6.02) 1,474,062 (7.21) 1,479,655 (6.48)

Other Race 5,697,324 (6.65) 1,359,588 (6.40) 1,219,384 (5.75) 1,752,280 (8.57) 1,366,072 (5.98)

Education (%) 0.6235

Below high school 13,683,737 (15.97) 3,658,157 (17.22) 2,951,211 (13.93) 3,280,540 (16.05) 3,793,829 (16.61)

Completed high
school

19,196,520 (22.40) 5,249,240 (24.72) 4,620,443 (21.80) 4,692,784 (22.96) 4,634,053 (20.29)

High school above 52,820,168 (61.63) 12,331,185 (58.06) 13,618,192 (64.27) 12,464,090 (60.99) 14,406,702 (63.09)

PIR (%) 0.1677

≤1.3 17,916,667 (20.91) 4,931,717 (23.22) 3,766,149 (17.77) 4,338,480 (21.23) 4,880,321 (21.37)

1.31–3.5 30,588,490 (35.69) 6,821,928 (32.12) 7,418,936 (35.01) 8,180,544 (40.03) 8,167,082 (35.77)

>3.5 37,195,269 (43.40) 9,484,938 (44.66) 10,004,761 (47.21) 7,918,389 (38.74) 9,787,180 (42.86)

Marital (%) 0.0958

Married/Live with
partner

57,999,840 (67.68) 13,612,771 (64.09) 14,049,703 (66.30) 13,984,984 (68.43) 16,352,381 (71.61)

Widowed/Divorced/
Separated

10,979,129 (12.81) 2,365,420 (11.14) 2,966,852 (14.00) 2,611,789 (12.78) 3,035,067 (13.29)

Never married 16,721,457 (19.51) 5,260,390 (24.77) 4,173,291 (19.69) 3,840,641 (18.79) 3,447,136 (15.10)

BMI (%) <0.0001

≤24.9 21,787,335 (25.42) 9,249,412 (43.55) 6,183,460 (29.18) 4,090,252 (20.01) 2,264,211 (9.92)

25–29.9 33,060,915 (38.58) 7,893,513 (37.17) 9,035,972 (42.64) 7,357,124 (36.00) 8,774,307 (38.43)

≥30 30,852,176 (36.00) 4,095,657 (19.28) 5,970,415 (28.18) 8,990,038 (43.99) 11,796,066 (51.66)

Smoke (%) 0.0057

Never 38,477,880 (44.90) 10,514,970 (49.51) 11,008,890 (51.95) 7,491,001 (36.65) 9,463,020 (41.44)

Former 27,734,492 (32.36) 6,250,331 (29.43) 5,949,443 (28.08) 7,802,279 (38.18) 7,732,440 (33.86)

Now 19,488,053 (22.74) 4,473,281 (21.06) 4,231,514 (19.97) 5,144,134 (25.17) 5,639,124 (24.70)

Drink (%) 0.5460

Never 3,124,329 (3.65) 834,643 (3.93) 844,197 (3.98) 549,898 (2.69) 895,591 (3.92)

(Continued on following page)
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2014/labmethods/TST_H_MET_Tota L_Estradiol_and_Total_
Testosterone.

2.5 Definition of other variables

The multivariate model considered potential variables that may
confound the association between AIP and testosterone, as indicated
by prior studies (Cao et al., 2024; Guo et al., 2024; He et al., 2024;
Hernández-Pérez et al., 2024). The covariates were age, BMI (≤24.9,
25–29.9, ≥30 kg/m2), race (non-Hispanic white, non-Hispanic black,
Mexican American, other Hispanic, other races), marital status,
family income to poverty ratio (PIR), smoking status, drinking
status, education status (below high school, completed high
school, high school above), hypertension, diabetes, physical
activity, and sleep time (<7 h, 7–9 h, >9 h). Smoking status was
classified as never, former, or current smoker according to “at least
100 cigarettes in your lifetime” and “are you a current smoker”.
Alcohol consumption was determined according to “at least
12 alcoholic beverages per year?”, “At least 12 alcoholic drinks in
your lifetime? “And” frequency of alcohol consumption in the past
12 months “to classify as never, former, and current drinking”.

Hypertension is diagnosed based on several factors, including a
history of previous diagnosis of the condition, current use of
medication to lower blood pressure, or exhibited systolic or
diastolic blood pressure ≥140/90 mmHg. Participants were

classified as having diabetes if they received a diagnosis from a
physician, exhibited a fasting plasma glucose level of ≥126 mg/dL,
utilized insulin or medication for glycemic management, or had a
glycated hemoglobin level of ≥6.5. Physical activity was classified
into vigorous, moderate, and inactive, based on the subjects’
engagement in activities that induced profuse sweating or a
significant increase in breathing or heart rate, as well as those
that led to slight sweating or a moderate increase in heart rate.
We considered vigorous physical activity if participant reported to
do any activity that caused heavy sweating or large increases in
breathing or heart rate (e.g., swimming, aerobics, or fast cycling).
Moderate physical activity included activities that caused light
sweating or a moderate increase in the heart rate, such as playing
golf, dancing, bicycling for pleasure, or walking.

2.6 Statistical analyses

As recommended by the NHANES Guidelines (Chen et al.,
2018; Chen et al., 2020), appropriate weighting techniques were used
to address the intricacies of the sample design to ensure that the
obtained data were representative at the national level. All data
analyses in this study were weighted appropriately, following the
rigorous methodology outlined in the official NHANES
documentation (https://wwwn.cdc.gov/nchs/nhanes/tutorials/
weighting.aspx).

TABLE 1 (Continued) Weighted demographic and clinical characteristics in accordance with the AIP level.

Variables Overall Q1 (<-0.234) Q2
(−0.234 to −0.012)

Q3
(−0.012–0.221)

Q4 (>0.221) P-value

(N =
85,700,426)

(N =
21,238,582)

(N = 21,189,847) (N = 20,437,414) (N =
22,834,584)

Former 9,944,655 (11.60) 1,983,038 (9.34) 2,423,145 (11.44) 2,746,971 (13.44) 2,791,501 (12.22)

Now 72,631,442 (84.75) 18,420,901 (86.73) 17,922,505 (84.58) 17,140,545 (83.87) 19,147,492 (83.85)

Diabetes (%) <0.0001

No 72,704,286 (84.84) 19,337,889 (91.05) 18,739,425 (88.44) 16,732,748 (81.87) 17,894,225 (78.36)

Yes 12,996,140 (15.16) 1,900,693 (8.95) 2,450,422 (11.56) 3,704,666 (18.13) 4,940,359 (21.64)

Hypertension (%) 0.0084

No 56,961,370 (66.47) 15,191,276 (71.53) 1,4,531,840 (68.58) 13,836,394 (67.70) 1,3,401,859 (58.69)

Yes 28,739,057 (33.53) 6,047,306 (28.47) 6,658,007 (31.42) 6,601,020 (32.30) 9,432,724 (41.31)

Sleep time (%) 0.063

<7 h 25,868,785 (30.19) 5,806,798 (27.34) 7,089,794 (33.46) 6,148,030 (30.08) 6,824,163 (29.89)

7–9 h 56,489,947 (65.92) 14,192,769 (66.83) 13,388,321 (63.18) 13,339,714 (65.27) 15,569,143 (68.18)

>9 h 3,341,694 (3.90) 1,239,016 (5.83) 711,731 (3.36) 949,670 (4.65) 441,277 (1.93)

Physical activity (%) <0.0001

Inactive 38,010,009 (44.35) 8,390,171 (39.50) 8,708,233 (41.10) 8,939,705 (43.74) 11,971,900 (52.43)

Moderate 22,213,435 (25.92) 4,444,832 (20.93) 5,441,785 (25.68) 6,301,545 (30.83) 6,025,273 (26.39)

Vigorous 25,476,982 (29.73) 8,403,579 (39.57) 7,039,829 (33.22) 5,196,163 (25.42) 4,837,412 (21.18)

Values are presented as mean ± standard deviation or number (%). Abbreviations: AIP, atherogenic index of plasma; Q, quartile; PIR, poverty to family income of ratio; BMI, body mass index;

HDL-C, high-density lipoprotein-cholesterol; TG, triglyceride; TT, total testosterone.
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In this study, continuous data were represented as weighted
means ± standard deviations, whilst categorical variables were
represented as weighted proportions. The comprehensive AIP data
were segmented into quartiles (Qs): Q1 (<−0.234), Q2
(−0.234, −0.012), Q3 (−0.012, 0.221), Q4 (>0.221), with
Q1 designated as the minimum value. Disparities among
various AIP groups (quartiles) were assessed utilizing chi-square
tests for categorical variables and t-tests for continuous ones.
Weighted linear regression and logistic regression studies were
conducted to evaluate the relationship between AIP and the
continuous values of TT levels and TD. Three models were
employed in the study to account for covariates: Model 1 was
unadjusted, Model 2 was adjusted for age, race, education, PIR, and
marital status, while Model 3 included adjustments for BMI,
diabetes, hypertension, physical activity, and sleep time, in
addition to the adjustments made in Model 2. Subsequently,
limited cubic spline curves derived from regression model
3 were employed to investigate any nonlinear association
between AIP and testosterone. Furthermore, stratified analyses
were conducted based on distinct age categories (20–39,
40–59, ≥60 years), including the history of chronic diseases
(hypertension and diabetes), BMI, and physical activity, with
their interactions evaluated by log-likelihood ratio tests.
Sensitivity tests utilizing unweighted data were conducted to
verify the robustness of the weighted estimates. Statistical
analyses were conducted using R (http://www.R-project.org, The
R Foundation) and Free Statistics software version 1.3. Statistical
differences were established with two-tailed p values < 0.05.

3 Results

3.1 Demographic and clinical characteristics
of study participants

A total of 2,572 individuals participated in the study. Table 1
presents the baseline characteristics of each group. The weighted
sample of 85, 70, 426 participants across the three survey cycles
accurately represents the uninstitutionalized U.S. population,
predominantly consisting of non-Hispanic whites (69.81%). The
average age of the respondents was 46.66 ± 16.31 years, and the
average TT level was 455.06 ± 187.74 ng/dL. Participants in
Q4 exhibited the lowest testosterone level of 387.19 ± 158.05 ng/dL.
They had a higher propensity for obesity (51.66%) and physical
inactivity (52.43%). Statistically significant variations were seen in
TT, TG, HDL-C levels, BMI, race, smoking status, diabetes,
hypertension, and physical activity among the four groups of AIP
patients (P < 0.05). As the AIP level rises, the prevalence of patients
with diabetes and hypertension escalates.

3.2 The association between AIP and TT, TD

Table 2 shows the 95% confidence intervals of β and OR for the
association between AIP and TT and TD in the three
regression models.

The findings indicated a significant independent negative
correlation between AIP and TT across various adjusted models

TABLE 2 Association between AIP and TT and TD, weighted.

Exposure Model1 Model2 Model3

Total testosterone, β (95% CI), P-value

AIP, Continuous −159.97 (−188.08, −131.86), <0.001 −156.54 (−183.83, −129.25), <0.001 −93.42 (−123.66, −63.18), <0.001

AIP, Quartile

Q1 Ref Ref Ref

Q2 −27.72 (-57.57, 2.14), 0.068 −25.68 (−56.58, 5.22), 0.1 −6.05 (−33.88, 21.77), 0.656

Q3 −99.46 (−125.71, −73.20), <0.001 −97.87 (−123.51, −72.22), <0.001 −58.10 (−84.70, −31.50), <0.001

Q4 −134.19 (-162.69, −105.70), <0.001 −130.62 (−159.03, −102.22), <0.001 −74.81 (−105.27, −44.35), <0.001

P for trend <0.001 <0.001 <0.001

Testosterone deficiency, OR (95% CI); P-value

AIP, Continuous 5.35 (3.68, 7.77), <0.001 5.62 (3.81, 8.28), <0.001 3.45 (2.09, 5.69), <0.001

AIP, Quartile

Q1 Ref Ref Ref

Q2 1.77 (1.10, 2.86), 0.02 1.84 (1.11, 3.04), 0.019 1.54 (0.91, 2.63), 0.104

Q3 2.87 (1.81, 4.56), <0.001 3.00 (1.84, 4.87), <0.001 1.97 (1.09, 3.55), 0.026

Q4 4.49 (3.00, 6.72), <0.001 4.69 (3.06, 7.21), <0.001 2.89 (1.70, 4.93), <0.001

P for trend <0.001 <0.001 <0.001

Abbreviations: Ref, Reference; 95%CI, 95% confidence interval; OR, odds ratio; Ref, reference group; AIP, atherogenic index of plasma.

Model 1 adjust for: None.

Model 2 adjust for: Age, Race, Marital, PIR, education.

Model 3 adjust for: Age, Race, Marital, PIR, education; BMI, status, Smoking status, Drinking status, Hypertension, Diabetes, Sleep Time, Physical Activity.
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(model 1, β = −159.97, 95% CI: −188.08, −131.86; model 2,
β = −156.54, 95% CI: −183.83, −129.25). Similar results were
noted in model 3 after comprehensive adjustment for
confounding factors (β = −93.42, 95%CI: −123.66, −63.18; All
p < 0.05). In models 1, 2, and 3, the β values for groups Q2, Q3,
and Q4 were significantly different from those of Q1 (all p < 0.05).
The two highest AIP groups (Q3 and Q4) exhibited significantly
elevated testosterone levels compared to the lowest AIP group (Q1).

A weighted multivariate logistic regression model was
employed to examine the association between AIP and TD.
After full adjustment for all covariates, the analysis of
continuous variables indicated that the risk of testosterone
deficiency increased by 109% (OR = 3.45, 95% CI: 2.09, 5.69)
for each unit increase in AIP. The analysis of categorical variables
indicated that the risk of testosterone deficiency increased
progressively, peaking at Q4 (OR = 2.89, 95%CI: 1.70, 4.93).
In the other models lacking full covariate adjustment, the odds
ratios for Q3 and Q4 were significantly different from Q1 (all p <
0.05), with all trend p values also below 0.05.

3.3 Linear relationship between AIP and
TT, TD

The restricted spline regression model depicted in Figure 2
demonstrated a linear inverse relationship between AIP and TT
in the adult male population (p for overall:<0.001), without
adjusting for any covariates (Figure 2A). Upon controlling for all
confounding factors (Figure 2B), AIP remained inversely associated
with TT (p for overall: <0.001). RCS analysis indicated a consistent
linear relationship between AIP and TD (Figures 2A1, B1).

3.4 Subgroup analysis

Our study investigated the relationship between AIP and dTT
and TD across various subgroups. The analysis was adjusted for
categorical Age, BMI, Diabetes, Hypertension, and Physical
activity.The findings indicated that the correlation between AIP
and TT levels, as well as TD, was consistent across all subgroups

FIGURE 2
Restricted cubic spline fitting for the association between AIP with testosterone levels. (A, A1) illustrate the nonlinear association between the AIP
and TT, while (B, B1) depict the nonlinear relationship between the AIP and TD. (A, B): No adjustment. (A1, B1): Adjust for Age, Race, Marital, PIR,
Education, BMI status, Smoking status, Drinking status, Hypertension, Diabetes, Sleep Time and Physical Activity.
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except for those with diabetes (all p < 0.001). No significant
interaction was detected (p > 0.05). The comprehensive findings
of the analysis are displayed in Tables 3, 4.

3.5 Sensitivity analyses

Table 5 illustrates that the correlation betweenAIP and TT persisted
when the analysis was conductedwith unweighted data (β=−155.81, p<
0.001) and remained steady in model 2 after adjusting for all covariates
(β = −101.74, p < 0.001). Comparable outcomes were noted in the
examination of AIP and TD (Model 2: OR = 3.01, p < 0.001).

4 Discussion

This study utilizes a large-scale US population survey to
demonstrate, for the first time, an epidemiological relationship
between AIP levels and testosterone. This study comprised
2,572 participants, with the sample size representing serum
testosterone levels in 857,004 adult men. The study’s results indicate
that as AIP increases, total testosterone levels significantly decline,
leading to a heightened risk of testosterone deficiency. Sensitivity
analysis was conducted to assess the robustness of our findings.

Numerous prior investigations have been conducted regarding lipids
and testosterone. Andrade et al. examined the correlation between lipid
levels and testicular function in a cohort of 278 infertile men. Their

findings indicated that triglycerides (TG) serve as a sensitive marker for
male reproductive dysfunction, with elevated serum TG levels
correlating with decreased serum total testosterone levels (Andrade
et al., 2023). Hamalainen et al. assessed serum sex hormone levels
and blood lipids in 30 healthy Finnish men with comparable dietary
habits, revealing a positive correlation between serum total testosterone
and free testosterone levels and HDL-C (Hämäläinen et al., 1986).
Semmens et al. found a significant inverse relationship between
testosterone levels and HDL-C in male vegetarian participants, after
adjusting for other variables (Semmens et al., 1983). Chung et al.
identified an inverse correlation between the TG/HDL ratio and TT
inmiddle-aged and elderly Koreanmen (Chung et al., 2020). As for AIP,
A study involving 280 male patients with type 2 diabetes and 50 control
subjects demonstrated a clear inverse relationship between TT levels and
the cardiovascular disease risk predictor AIP (Rovira-Llopis et al., 2017).

The findings of our study align with those of prior research. This
study utilizes the NHANES database with a large sample population
to investigate the association between AIP and testosterone in adult
men in the United States. AIP, which integrates both TG and HDL-
C, is employed for this analysis. These findings suggest that AIP is
linked to testosterone levels in adult males across various races and
ages. We hypothesize that AIP may be utilized for the effective
management of TT and the prevention of TD. Consequently, further
studies on AIP and TT or TD across diverse populations with larger
sample sizes are essential to strengthen the evidence base.

The mechanisms contributing to the reduction of AIP and serum
total testosterone levels remain unclear; however, several explanations

TABLE 3 Subgroup analysis for the association between AIP and TT, weighted.

Variables Beta (95%CI) P Value P For interaction

Age 0.36

20–39 −279.14 (−394.46, −163.81) <0.001

40–59 −202.91 (−281.72, −124.11) <0.001

≥60 −226.77 (−388.72, −64.81) 0.01

BMI 0.253

≤24.9 −247.37 (−369.51, −125.22) <0.001

25–29.9 −311.73 (−430.83, −192.62) <0.001

≥30 −164.53 (−272.16, −56.91) 0.004

Diabetes 0.506

No −254.49 (−334.11, −174.87) <0.001

Yes −180.26 (−384.95, 24.43) 0.08

Hypertension 0.785

No −226.50 (−312.76, −140.24) <0.001

Yes −285.26 (−393.57, −176.96) <0.001

Physical activity 0.305

Inactive −214.73 (−299.47, −130.00) <0.001

Moderate −316.61 (−447.54, −185.67) <0.001

Vigorous −209.72 (−335.49, −83.95) 0.002

All stratified factors include gender, age, race, body mass index (BMI), education level, hypertension, diabetes, physical activity, drinking status, smoking status, and sleep time, except the

stratified factor itself.
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exist. The abnormal AIP index typically indicates dyslipidemia,
characterized by elevated triglycerides and reduced HDL-C levels.
Abnormal lipid metabolism influences the synthesis and secretion of
reproductive hormones. Research involving animalmodels indicates that
a high-fat diet elevates body weight in mice, particularly increasing
serum triglyceride levels, which subsequently reduces testosterone levels
and contributes to infertility in male mice (Erdemir et al., 2012). A
clinical study indicated that alterations in lipid levels influence the
secretion of reproductive hormones, specifically testosterone, follicle-
stimulating hormone, and luteinizing hormone, with testosterone
exhibiting the most significant impact (Yang and Wang, 2016). Bi
et al. examined the correlation between lipid levels and serum
reproductive hormones in a sample of 885 men, revealing that serum
testosterone levels were significantly reduced in hyperlipidemic men
compared to those with normal lipid levels (Bi et al., 2024).

AIP, on the other hand, is an indicator utilized to evaluate lipid
metabolism and was initially employed to forecast atherosclerosis and
CVD risk (Fernández-Macías et al., 2019). Recent studies have
demonstrated that AIP serves as a significant biomarker for
predicting unfavorable metabolic conditions, including diabetes
and insulin resistance (Yin et al., 2023; Zheng et al., 2023),
metabolic syndrome (Li et al., 2021), and Visceral Adiposity (Zhou
et al., 2018; Shen et al., 2018). A significant quantity of aromatase

TABLE 4 Subgroup analysis for the association between AIP and TD, weighted.

Variables Or (95%CI) P Value P For interaction

Age 0.518

20–39 4.25 (1.49, 12.10) 0.01

40–59 2.57 (1.30, 5.08) 0.01

≥60 3.51 (1.27, 9.72) 0.02

BMI 0.309

≤24.9 7.56 (1.89, 30.18) 0.01

25–29.9 5.25 (1.99, 13.86) 0.002

≥30 2.19 (1.07, 4.48) 0.03

Diabetes 0.332

No 3.85 (2.05, 7.20) <0.001

Yes 2.17 (0.68, 6.98) 0.18

Hypertension 0.126

No 4.05 (2.40, 6.82) <0.001

Yes 2.97 (1.47, 5.99) 0.004

Physical activity 0.587

Inactive 2.51 (1.31, 4.82) 0.01

Moderate 3.98 (1.37, 11.54) 0.01

Vigorous 4.68 (1.64, 13.34) 0.01

All stratified factors include gender, age, race, body mass index (BMI), education level, hypertension, diabetes, physical activity, drinking status, smoking status, and sleep time, except the

stratified factor itself.

TABLE 5 The comparison between weighted and unweighted analysis for
detection of sensitivity.

Model Weight Total testosterone (ng/dL)

β (95%CI), P-value

Model 1 Weighted −159.97 (-188.08, −131.86), <0.001

Unweighted −155.81 (−176.64, −134.98), <0.001

Model 2 Weighted −93.42 (−123.66, −63.18), <0.001

Unweighted −101.74 (−123.18, −80.3), <0.001

Model Weight Testosterone deficiency

OR (95% CI), P-value

Model 1 Weighted 5.35 (3.68, 7.77), <0.001

Unweighted 4.23 (3.19, 5.62), <0.001

Model 2 Weighted 3.45 (2.09, 5.69), <0.001

Unweighted 3.01 (2.17, 4.17), <0.001

Model 1 adjust for: None.

Model 2 adjust for: Age, Race, Marital, PIR, education; BMI, status, Smoking status, Drinking

status, Hypertension, Diabetes, Sleep Time and Physical Activity.
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enzymes present in visceral adipose tissue (VAT) can catalyze the
conversion of testosterone to estradiol, leading to increased estradiol
levels that activate hypothalamic estrogen receptors, subsequently
inhibiting the Hypothalamic-pituitary-gonadal (HPG) axis and
influencing testosterone release (Su et al., 2023). Moreover,
hyperglycemia can directly induce a reduction in testosterone
production by activating the Toll like receptor-4 (TLR-4) mediated
oxidative stress pathway (Karpova et al., 2020). The association
between testosterone levels and chronic diseases, as well as
metabolic disorders, is bidirectional: reduced TT levels result in
heightened lipoprotein lipase expression and VAT buildup. The
buildup of VAT results in the secretion of proinflammatory
cytokines (TNF-α, IL-1β) and leptin, which directly suppresses the
HPG axis and Leydig cells in the testes. This leads to reduced serum
testosterone synthesis (Pivonello et al., 2019). The accumulation of
VAT results in heightened aromatase levels, contributing to insulin
resistance and augmenting the risk of type 2 diabetes (Singh et al.,
2003). Furthermore, TD has been linked to the development of MetS
and to endothelial and mitochondrial dysfunction (Traish and
Zitzmann, 2015). Numerous epidemiological studies have
established a strong correlation between low serum testosterone
levels and detrimental metabolic risk factors, including insulin
resistance (Zolla, 2022; Tishova et al., 2024; Minooee et al., 2019),
diabetes (Grossmann et al., 2010; Grossmann, 2011), dyslipidemia
(Newman, 2023), and metabolic syndrome (Fernández-Miró et al.,
2016), through the reciprocal promotion of bidirectional
pathophysiological pathways involving various shared biochemical
factors, such as proinflammatory pathways and cytokines.
Consequently, it may be helpful to explain the mechanism of AIP
and testosterone, nevertheless, additional investigations are required
to elucidate the further molecular mechanisms of between them.

This study utilized NHANES data to examine the correlation
between AIP and testosterone in a large sample of the US
population. The chosen index AIP is both straightforward to
compute and readily accessible. Furthermore, we included the
appropriate sampling weights and design into our statistical analysis
to enhance the precision of our representation of the general
population. While this constitutes a strength of the study, it also has
several limits. Initially, it was a cross-sectional study, indicating that
causation couldn’t be examined. Due to the numerous factors
influencing AIP or testosterone, we may not consider all
confounding variables that could impact the relationship between
AIP and testosterone levels. Moreover, the absence of sex hormone-
binding globulin and free testosterone levels constitutes limitations of
our investigation. It is essential to recognize that the NHANES database
exclusively represents the US population. The persistence of the
relationship between AIP and TT and TD in individuals from
various countries warrants investigation.

5 Conclusion

This study is, to our knowledge, the inaugural inquiry examining
the relationship between AIP and serum testosterone. In the weighted
multivariate regression analysis, AIP exhibited a negative correlation
with TT and a positive correlation with the risk of TD. Our findings
require validation through additional research.
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