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Body surface potential maps (BSPMs) derived from multi-channel ECG
recordings enable the detection and diagnosis of electrophysiological
phenomena beyond the standard 12-lead ECG. In this work, we developed two
AI-basedmethods for the automatic detection of location of the electrodes used
for BSPM: a rapid method using a specialized 3D Depth Sensing (DS) camera and
a slowermethod that can use any 2D camera. Bothmethods were validated on a
phantom model and in 7 healthy volunteers. With the phantom model, both 3D
DS camera and 2D camera method achieved an average localization error less
than 2 mm when compared to CT-scan or an Electromagnetic Tracking System
(ETS). With healthy volunteers, the 3D camera yielded average 3D Euclidean
distances ranging from 2.61 ± 1.2 mm to 5.78 ± 3.09 mm depending on the
patient, similar to that seen with 2D camera (ranging from 2.45 ± 1.32 mm to
5.88 ± 2.73 mm). These results demonstrate high accuracy and provide practical
alternatives to traditional imaging techniques, potentially enhancing the interest
of BSPMs in a clinical setting.
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1 Introduction

Body surface potential mapping (BSPM) uses multi-channel ECG recordings (up to 256
electrodes) to record frombroad areas and visualize the distribution of potentials temporally
on three-dimensional (3-D)maps (Rodrigo et al., 2014; Gage et al., 2016; Ben Johnson et al.,
2016).This enables the detection and potential diagnosis of electrophysiological phenomena
outside the regions explored with the standard 12-lead ECG. Accurate acquisition of the
ECG electrode locations on the body surface is often needed to minimize errors in the
computational procedures that use BSPM. For example, BSPM can be used to reconstruct
the electrical activity at the heart surface through the inverse problemof electrocardiography
(Rudy, 2013; Haissaguerre et al., 2014; Bear et al., 2015), also known as electrocardiographic
imaging (ECGI). This process requires accurate 3D locations of the electrodes aligned to an
anatomical model of the patient’s thorax and heart.

To localize the electrodes in a clinical environment, non-contrast computed tomography
(CT) is the simplest and most accurate way of acquiring 3D electrode locations. However,
this type of imaging is associated with some radiation exposure, making it difficult to use in
certain patient populations including healthy volunteers in clinical studies. Another option
is magnetic resonance imaging (MRI), which unlike CT does not use ionizing radiation.
MRI is not compatible with certain metallic hardware, limiting the acquisition system
to specific MRI-opaque body surface electrodes and increases the cost of the procedure.
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Furthermore, the MRI requires additional time in the bore
compared to CT, producing unnecessary discomfort from breath-
holds for the patient.

An alternative approach is to use 3D visual reconstruction.
Such systems offer the benefits of being low-cost, fast, and safe
for the patient. Several research groups have proposed fully
or semi-automatic 3D visual reconstruction systems for BSPM
electrode positioning (Schulze et al., 2014; Perez-Alday et al., 2018;
Alioui et al., 2017; Bayer et al., 2023; Shenoy et al., 2024). Early
studies using these systems relied on stereo-photography, aligning
two or more images of the electrodes from different angles to
compute their 3D coordinates (Schulze et al., 2014; Ghanem et al.,
2003). However, this approach can be time-consuming due to the
need for calibration of the cameras and their alignment for each
patient. The advent of 3D depth sensing cameras has addressed
this limitation, enabling accurate localization of BSPM electrode
positions using various camera models (Perez-Alday et al., 2018;
Alioui et al., 2017; Bayer et al., 2023; Shenoy et al., 2024).
Nonetheless, these systems still require specific 3D depth sensing
cameras to be used. Furthermore, all previously reported methods
(using 2D or 3D cameras) depend on either manually selecting
electrode locations from images or attaching specific markers to the
electrodes for their automatic detection.

This paper presents two novel fully automated deep learning-
based methods for localizing ECG electrode positions.The first uses
a 3D depth sensing (DS) camera, enabling near real-time automatic
ECG electrode detection and labeling without additional markers,
thus offering rapid results.The secondmethod, while slower, utilizes
any 2D video camera and does not require prior calibration, making
it more accessible to various clinical setting. By incorporating
both methods, we validate the robustness of our results and
demonstrate their complementary advantages. Both methods yield
similar accuracy in localizing ECGelectrodes, allowing practitioners
to choose an approach based on their specific needs, prioritizing
speed with the 3D method or accessibility with the 2D method.
Furthermore, the findings from this study open avenues for future
research, particularly regarding the application of 2D video cameras
in ECGmapping, as this approach has not been extensively explored
in the literature.

These advancements hold significant potential to enhance
clinical practice bymaking advanced ECGmappingmore accessible,
particularly in situations where traditional imaging methods are
impractical or contraindicated. Both methods have been validated
through phantom and human volunteer studies by comparing
the electrode locations to those obtained through CT and an
electromagnetic tracking system (ETS).

2 Materials and methods

A fully automated system for 3D ECG electrode localization
based on 3D visual reconstruction was developed. Two types of
cameras were employed, 1) an Intel RealSense Depth Camera
D415 (Figure 1A) fixed in an articulated arm attached to a tripod
to allow the camera to make a half rotation around the torso
and 2) a smartphone camera to record a video by hand around
the torso. The system was designed to localize BioSemi strip
electrodes (BioSemi, the Netherlands) as shown in Figures 1B, C

on the phantom and a human torso. The diameter of each
electrode is 5 mm, with a 30 mm distance between two electrodes
in the same strip. The following sections describe the methods
used to automatically extract the 3D electrode locations using
each camera (Section 2.1) and the methods used to validate
their accuracy (Section 2.2).

2.1 Automatic ECG electrode localization
using 3D visual reconstruction

Figure 2 outlines the general pipeline for localizing and
labelling the electrodes using the two different cameras to
capture the initial images. A detailed explanation of each step is
provided below.

2.1.1 Image acquisition and 3D point cloud
generation

Two methods were employed to acquire the RGB-D (color and
depth) images (Figure 3A).

2.1.1.1 Method 1 (3D camera)
Using the Intel RealSense Depth Camera D415, 12 RGB-D

images at a distance of approximately 60 cm from the torso were
recorded, with a rotation of 10° between consecutive shots. With the
12 RGB-D images and camera’s intrinsic parameters, 12 3D point
clouds were generated.

2.1.1.2 Method 2 (2D camera)
Using a smartphone camera, a video of the torso was recorded

by hand. Depth images corresponding to the RGB images of the
video were predicted, along with the camera’s intrinsic parameters
using Nerfacto (Tancik et al., 2023), a deep neural network
architecture designed to process a collection of photographs
captured from various angles of a specific scene, generating a
volumetric representation of the scene. This enables the creation of
a 3D point cloud for each frame in the video, resulting in N point
clouds corresponding to the number of frames.

Following the acquisition of RGB-D images and creation of
the corresponding point clouds, these point clouds were cleaned to
remove noise.

2.1.2 Point cloud denoising
For both methods, the generated point clouds, include

information about the surrounding environment that can be
considered noise. A density based clustering algorithm, DBSCAN
(Density Based Spatial Clustering of Applications with Noise)
(Ester et al., 1996), was used to filter the point clouds by selecting
the largest region clustered (Figure 3B).

2.1.3 Torso reconstruction
To achieve a complete 3D reconstruction of the torso

(Figures 3C), the cleaned point clouds were aligned using the
Iterative Closest Point (ICP) algorithm (Rusinkiewicz and Levoy,
2001), which computes the transformation matrix by minimizing
the distance between two point clouds. We employed a sequential
combination of two ICP variants: first, Point-to-Plane ICP, which
minimizes distances to surface planes, followed by Point-to-Point
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FIGURE 1
(A) RealSense D415 camera (left) mounted on an articulated arm to take photos from 12 fixed locations around the torso (right) (B) BioSemi strip
electrodes fixed to a phantom torso and (C) on a healthy male volunteer.

FIGURE 2
Flowchart outlining the 3D electrode localization and labelling process.

ICP, which focuses onminimizing distances between corresponding
points. To ensure reliable alignment throughout this process, we
applied various distance thresholds to exclude irrelevant point pairs.

2.1.4 ECG electrode localization
The ECG electrodes were separated into four classes based on

their original color (A - brown, B - red, C - orange and D -
yellow). To locate the electrodes in the point clouds, we followed
a two-step approach. First, we used the YOLOv8 deep learning
model (Jocher et al., 2023) to detect electrodes in the RGB images

(Figure 4A). Then we extracted the centers of the detected regions
in the point clouds (Figure 4B) to define the 3D electrode locations.

2.1.4.1 ECG electrodes detection
The pre-trained YOLOv8 model (X-large architecture) (Jocher

et al., 2023) was re-trained on a manually labeled dataset of ECG
electrodes, comprising 160 JPG images that contained a total of
7,325 electrodes, with 19 images reserved for validation.The dataset
included images of varying sizes to enhance themodel’s adaptability.
Themodel demonstrated high precision and recall across all classes,
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FIGURE 3
Reconstruction of the torso using a 2D or 3D camera: (A) Acquisition of RGB and depth images; (B) Generated 3D point cloud from a single acquisition
of the torso, denoised using DBSCAN, shown in true color (top) and in yellow (bottom); (C) Final 3D torso point cloud resulting from the alignment of N
acquisitions of the torso using the ICP-based algorithm, displayed in true color (top) and with distinct colors representing each view of the torso used
in the alignment (bottom).

achieving an overall average precision (AP) of 98.8% on a test set
of 75 images. Additionally, the area under the curve (AUC) scores
derived from the receiver operating characteristic (ROC) curve for
this test set were 98% for Classes A andD, and 97% for Classes B and
C. These results underscore the model’s effectiveness in detecting
ECG electrodes.

2.1.4.2 ECG electrodes extraction from point clouds
Following the detection of electrodes in theNRGB images using

YOLOv8, we extracted and averaged each detected region from the
depth images, and then from the point clouds (Figure 4B). Using the
transformationmatrices obtained from the 3D reconstruction of the
torso, we aligned the N 3D point clouds representing the electrodes
(Figure 4C) and averaged each group of electrode points to achieve
a complete 3D reconstruction of the ECG electrodes (Figure 4D),
ensuring their precise 3D localization.

2.1.5 ECG electrode labelling
To label the channel that each electrode corresponds to, we

have developed an algorithm that systematically arranges the 3D
electrode positions in sequential order, starting from the first
electrode in class A to the last electrode in class D.

The process begins by automatically identifying the first and
second electrodes of the first electrode strip. This relies on finding
the pixels of the electrode centers in the RGB image with the
shortest distance to the first pixel of coordinates (0,0) (Figure 4E).
Subsequently, the algorithm identifies the location of the third
electrode by searching for the nearest electrode perpendicular to the
line formedby the first two electrodes in the (x,y,z) space (Figure 4F).
This third electrode is selected if it falls within specific distance

criteria: less than 35 mm Euclidean distance and less than 15 mm
distance along the x-axis from the second electrode. This process
repeats for the remaining electrodes within the same strip, ensuring
their optimal placement. The algorithm then proceeds to apply the
same procedures to subsequent strips, excluding those electrodes
previously labelled. Figure 5 shows this algorithm in flowchart form.

2.2 Validation studies

In order to validate our methods for 3D electrode localization,
both a phantom study and a clinical study were used.

2.2.1 Phantom validation
A first validation of the system was performed using a phantom

torso tank. The 118-channel BSPM electrodes were attached to
a human-shaped plastic male torso model (see Figure 1B). The
electrode positions were automatically identified with the Intel
RealSense Depth Camera D415 and with a smartphone camera
to record a video around the phantom torso. The ground truth
electrode positions were obtained using a CT scan of the phantom,
as well as with an Electromagnetic Tracking System (ETS; Aurora
Window Field Generator) as described below.

2.2.2 Clinical validation
The clinical study was approved by the local ethics committee,

and written informed consent was obtained from the patient. The
118-channel BSPM electrodes were attached to seven healthy male
volunteers (see Figure 1C). Table 1 provides detailed population
statistics, including height, weight, age, and BMI for each volunteer.

Frontiers in Physiology 04 frontiersin.org

https://doi.org/10.3389/fphys.2025.1504319
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


El Ghebouli et al. 10.3389/fphys.2025.1504319

FIGURE 4
ECG Electrode localization: (A) Example of YOLOv8 detection and classification of ECG electrodes in RGB image, where black is for class A, red for B,
orange for C, and yellow for D; (B) Extraction of electrode locations as a 3D point cloud; (C) Alignment of all electrode point clouds; (D) Final 3D
reconstruction of ECG electrodes; (E) Automated identification of the initial and secondary ECG electrodes in the RGB image; (F) Systematic Labeling
and Arrangement of 3D ECG Electrode Positions.

FIGURE 5
Flowchart outlining the algorithm to automatically label each ECG electrode channel.

The volunteers exhibited diverse body shapes, with electrode
strips placed at varying distances and orientations to conform to the
torso contours of each individual. During the experiments, electrode
positions were automatically identified during normal breathing
with the Intel RealSenseDepthCameraD415 andwith a smartphone
camera to record a video around the volunteers torso. Ground-truth
electrode positions obtained with the ETS as described below.

2.2.3 ECG electrode localization by CTscan
Using the NAEOTOM Alpha®photon-counting CTscan

(Figure 6A) (SiemensHealthineers, 2021), a detailed 3D image of the

phantom on which the ECG electrodes were placed was generated.
The spatial resolution of the CT was 0.11 mm (in-plane), and the
slice thickness was 0.2 mm. MUSICardio software (Merle et al.,
2022) was employed to reconstruct a 3D torso mesh (Figure 6B)
from the CT imaging data. For this reconstruction, a threshold
was used to create a mask that isolated the phantom torso with
electrode strips from the CT images. This mask was then used to
generate the 3D mesh. Subsequently, ECG electrodes were localized
and labeled manually on the resulting 3D mesh (Figure 6C),
utilizing the depth, width, and height parameters as the Z-axis,
X-axis, and Y-axis respectively.
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TABLE 1 Population statistics of the seven healthy volunteers.

Healthy volunteer Gender Height (cm) Weight (kg) Age BMI

P1 Male 172 58 31 19.6

P2 Male 190 85 24 23.5

P3 Male 183 79 28 23.6

P4 Male 188 75 27 21.2

P5 Male 195 100 29 26.3

P6 Male 174 68 26 22.5

P7 Male 169 65 26 22.8

Average — 182 76 27 22.8

SD — 10 14 2 2.1

FIGURE 6
Gold standard methods for ECG electrodes localization process using the CT-scan (top) or an Electromagnetic Tracking System (bottom): (A) 3D
acquisition of the phantom via CT-scan; (B) Reconstruction of the phantom mesh using MusiCardio software; (C) Final 3D reconstruction of ECG
electrodes from CT-scan; (D) Electromagnetic Tracking System and its electromagnetic field generation space; (E) Localization of electrodes on the
phantom with the Electromagnetic Tracking System; (F) Final 3D reconstruction of ECG electrodes from the Electromagnetic Tracking System.

2.2.4 ECG electrode localization by
electromagnetic tracking system

The positions of the ECG electrodes were also obtained
by employing an Aurora Window Field Generator-type
electromagnetic tracking system (Figure 6D). This system was
used both with the phantom and for the healthy volunteers.
This system uses magnetic sensors to track the movements of
a marker emitting a magnetic field (NDI, 2022). To determine

the position of ECG electrodes the marker was positioned
by hand in the center of each electrode (Figure 6E). To
rectify for respiration movement in the volunteers, the marker
position was recorded over a short time frame, and the average
location found enabling the ECG electrodes to be located
in 3D space (Figure 6F). For the phantom, all 118 electrode
positions were tagged using the ETS. For the healthy volunteers,
60 electrodes were tagged due to time constraints. In addition,
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FIGURE 7
Phantom Data Results: Euclidean distance (mm) between electrodes positions obtained using the CT-scan, electromagnetic tracking system (ETS), 3D
camera and 2D camera in 3D (left), and for X, Y, and Z axes (right).

for each healthy volunteer, two ETS markers were fixed to two
separate electrodes and their 3D position recorded throughout the
procedure.

2.2.5 Localization error metrics
As a measure of error, we considered the Euclidean distance in

3D between the positions of the reconstructed electrodes and those
of the reference electrodes, as well as the Euclidean distances along
the X-axis, Y-axis, and Z-axis. The results are presented as the mean
± SD unless otherwise stated. Before measuring these distances, we
aligned the 3D point clouds of the reconstructed and reference
electrodes using the “umeyama” function (Umeyama, 1991). This
function finds the transformation parameters that minimize the
squared error between two point clouds.

The CT-scan, the ETS and the 3D camera are all calibrated to
give distances in the correct scale.This was confirmed by measuring
the Euclidean distances between all pairs of electrodes (within every
strip) in the point clouds. The systems each produced an average
distance of 29.76, 30.04, and 30.32 mm respectively. In contrast,
the 2D camera is not calibrated and produces an average distance
of 0.027, indicating that this point cloud is in a different scale. To
correct the scaling, the known distance of 30 mm was used for the
point clouds produced by the 2D camera.

3 Results

3.1 Phantom data results

Figure 7 presents a comparison of the 3D Euclidean distances
(left) and the Euclidean distances along the X, Y, Z axes (right)
between the electrode point clouds obtained for the phantommodel
with eachmethod. Our comparisons included CT-scan vs. ETS, CT-
scan vs. 3D camera, CT-scan vs. 2D camera, ETS vs. 3D camera, ETS
vs. 2D camera, and 3D camera vs. 2D camera.

Overall, the mean 3D Euclidean distances were all under 2 mm,
suggesting a strong agreement among the different point clouds.The
3D Euclidean distance found between the CT-scan and ETS (1.54 ±
0.79 mm) was comparable to that found between either method and
the two camera methods, suggesting the level of accuracy using the

3D visual reconstruction methods is similar to that of current gold
standard methods. Likewise, the error was found to be comparable
between the 3D camera (1.70 ± 0.74 mm with CT scan or 1.27
± 0.59 mm with ETS) and the 2D camera (1.49 ± 0.75 mm with
CT scan or 1.54 ± 0.72 mm with ETS), meaning neither 3D visual
reconstruction method outperformed the other.

The consistency of these results across the different axes (Figure 7
right) suggests that there is no directional bias in the accuracy of
the 2D and 3D camera methods. These low values imply minimal
variation between the reference methods (CT-scan and ETS) and
our two methods (2D camera and 3D camera). Thus, their point
clouds are nearly identical.

3.2 Clinical data results

Figure 8 presents a comparison of the 3D Euclidean distances
(left) and the Euclidean distances along the X, Y, Z axes (right)
between the electrode points clouds obtained with each method on
seven healthy volunteers (P1-P7).

Despite the challenges posed by the volunteer’s breathing, the
results revealed relatively low error rates. When comparing with the
ETS, the 3D camera yielded average 3D Euclidean distances ranging
from2.61± 1.2 mm to 5.78± 3.09 mmdepending on the patient.The
2D camera performed similarly with average Euclidean distances
ranging from 2.45 ± 1.32 mm to 5.88 ± 2.73 mm. There was less
difference between the 3D and 2D cameras electrode locations with
an average 3D Euclidean distances from 1.03 ± 0.39 mm to 2.97 ±
1.08 mm. Consistent with the phantom data results, the analysis of
volunteer data showsno consistent directional bias in the accuracy of
the 2D and 3D camera methods between the volunteers with results
across the X, Y, and Z axes being similar.

Given the variability in error between volunteers, we suspected
different respirationpatternsmayplay a role in accuracy.Todetermine
the maximum error in 3D electrode positions one could expect from
breathing, we evaluated the degree of respiration movement in each
volunteer by tracking the movement of two ETS markers fixed to
each volunteer’s torsos. The position of the ETS marker for each
volunteer is present in Figure 9 and the maximum movement in
along each axis presented in Table 2. For all volunteers, themaximum
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FIGURE 8
Clinical Data Results: Euclidean distance (mm) between electrode positions obtained using the electromagnetic tracking system (ETS), 3D and 2D
camera in 3D (left), and for the X, Y, and Z axes (right). Data obtained from 7 healthy male volunteers (P1 to P7). Yellow rectangles indicate the maximum
movement (across X, Y, and Z axes) of two fixed catheters for each patient, as presented in Table 2.

movement occurred in the z-axis as expected. Interestingly, while
large breath movements were associated with larger Euclidean error
in two volunteers (P5 and P7), larger respiration movement did not
always produce larger errors with 3 volunteers (e.g., P1, P4 and
P6) producing comparable error levels to those with relatively little
respiration movement (e.g., P2 and P3). The larger error seen with
P5 and P7 may then be due to the areas of the chest involved in the
respiration movement, that being a mid-chest dominant movement
with little lower stomach involvement.

Regarding the spatial distribution of error on the torso, Figure 10
presents the Euclidean distancesmeasured across the chest, abdomen,
andsidesforsevenhealthyvolunteers, forETSandthe3Dcamera(left),
and ETS with the 2D camera (right). The results indicate that errors
on the chest and abdomen were generally similar across volunteers,
with no significant differences observed between these two regions.
However, the sides consistently exhibited marginally larger errors
compared to the chest and abdomen across all volunteers, regardless
of the method used. Additionally, the similarity between the two
graphsdemonstrates that the spatial errordistributionwascomparable
between the2Dand3Dcameramethods.Thesefindingshighlight that
the spatial distribution of error on the torso is influenced primarily
by the anatomical region and individual respiratory dynamics, rather
than the choice of camera system.

Overall, these results validate the effectiveness of both the 2D
and 3D camera methods for electrode localization in dynamic
clinical conditions and demonstrating satisfactory performance
even with breathing-induced variations.

To compare the time required for eachmethod (2D-camera, 3D-
camera, ETS, and CT-scan), we evaluated the time to set up the
equipment, data acquisition, data processing, and the total duration
for all methods. The times for the 2D, 3D, and ETS methods
were based on the average measurements of the seven healthy
volunteers, while the times for the CT-scan method were estimated
by consulting a radiologist with experience in body surface electrode
mapping systems. These results are presented in Figure 11. The 3D
method is the most efficient method with a total time to localize
the ECG electrodes of 5.28 min including the time to position the
camera support behind the bed where the patient is lying and
acquire the images at appropriate intervals. The 2D method is the
least efficient method, taking nearly an hour, despite being the
fastest for preparation (with no equipment preparation required)
and acquisition (as the user only needs to record a video of the torso).
This is due to the time consuming process of analyzing the videowith
the Nerfacto model to generate RGB-D images and determine the
camera’s intrinsic parameters.TheETSmethodwas the least efficient
in terms of preparation (requiring installation of the magnetic
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FIGURE 9
Location of two ETS marker on the torso of healthy volunteers.

sensors around the patients) and acquisition (each electrode needs
to be tagged manually). The CT-scan method was fairly inefficient
for processing, however in this case the estimation was based on
manually segmenting the electrodes. This process and thus the total
time could be improved if automated methods were used.

4 Discussion

This study presents an innovative and accurate approach for
ECG electrode localization using either a 3D DS camera or a 2D
video camera. These methods are novel in that they require no
additional calibration, or markers to be placed on the electrodes
for their automatic detection or labelling, whilst remaining highly
competitive by offering comparable performance to previously
established methods.

4.1 Comparison with previous studies

In the past, several research groups have proposed similar
fully or semi-automatic 3D visual reconstruction systems for
ECG electrode positioning. Ghanem et al. (2003) were the
pioneers, utilizing a two-view 2D camera system with prior camera
calibration and manual segmentation to compute the electrodes’ 3D
coordinates. Later, Schulze et al. (2014) introduced a similar method
but incorporated automatic electrode identification by attaching

markers to the electrodes. Both studies reported a mean absolute
distance error of approximately 1 mmwhen using a phantommodel.

To overcome the need for camera calibration, more recent
studies have used 3D DS cameras (Bayer et al., 2023; Perez-
Alday et al., 2018; Shenoy et al., 2024), though continue to use
additional markers for automatic electrode identification in the
photos. Perez-Alday et al. (2018) were the first to do so using
a semi-automated approach. That is, the Kinect 3D camera was
used to localize BSPM electrodes by semi-automatically aligning
the point clouds to a generic torso mesh and manually selecting
the electrode positions. This study reported the 95% limits of
agreement exceeded 10 mm for all XYZ coordinates when compared
to electrode locations obtained in patients with CT or MRI. More
recently, Bayer et al. (2023) and Shenoy et al. (2024) introduced
fully automated methods for electrode localization from 3D DS
images, though neither study has extended this to automatic labeling
of electrodes after detection. Bayer et al. (2023) used simple image
processing techniques to automatically segment and identify the
electrodes based on their shapes.With these techniques they achieve
an average positional deviation of 2.0 ± 1.5 mm from markers
placed manually on the same 3D images. While Shenoy et al. (2024)
did not detail the specific methods for electrode detection, they
did compare the electrode positions obtained to CT scan-based
electrode locations in patients, demonstrating their system has an
average localization error of 50.2 mm. The majority of this larger
average error is likely due the change in posture of the patient
between the supine recordings in the CT and upright position used
with the 3D camera.

In this study we have presented two novel methods that have
improved the workflow of these previous established methods using
Artificial Intelligence (AI), whilst still offering a similar level of
high precision with average localization errors less than 2 mmwhen
using a phantom model. Furthermore, while this study presents an
application for the BioSemi BSPM lead set, with further training
the methods could easily be adapted to allow fully automatic
segmentation of any BSPM lead set.

For the first method using a single 2D camera, we have removed
the need for camera calibration by using the Nerfacto deep neural
network architecture to generate the camera’s intrinsic parameters
and the depth images. Whilst this method offers the benefit of being
used with any 2D camera, the use of the Nerfacto does substantially
increase the computational time taking approximately 1 h to run for
one patient. The computational time for Nerfacto depends directly
on the number of frames of the video taken. This time could be
improved by down sampling the video, however thismay also impact
the accuracy of the resulting RGB-D images and intrinsic camera
parameters, ultimately impacting the 3D location of the electrodes.

The second method we presented using a 3D DS camera stands
out for its rapid acquisition requiring 5 min to obtain accurate
measurements. This difference in acquisition time highlights the
practical advantage of the 3D DS method in clinical settings
where time is a critical factor. For both methods, we have
also eliminated the need for additional markers for electrode
identification by using a YOLOv8 model trained to automatically
detect the electrodes themselves. By not requiring physical markers
for electrode detection, the procedure is simplified and reduces the
risk of marker-related errors.
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TABLE 2 Differences (max - min) in X, Y, and Z coordinates of two ETS markers for the seven healthy volunteers.

Healthy volunteer ETS marker X diff (mm) Y diff (mm) Z diff (mm)

P1
1 1.42 2.54 8.79

2 0.92 1.44 2.50

P2
1 1.09 1.44 2.78

2 1.28 1.54 4.20

P3
1 1.10 1.44 4.34

2 0.79 2.01 3.75

P4
1 1.86 1.88 9.44

2 1.87 2.86 5.47

P5
1 1.42 1.45 9.66

2 1.13 2.14 4.81

P6
1 2.22 3.81 8.38

2 0.90 4.02 8.10

P7
1 1.83 3.93 9.48

2 1.86 2.34 6.16

FIGURE 10
Euclidean distances measured across the chest, abdomen, and torso sides in seven healthy volunteers, for ETS and the 3D camera (left), and ETS with
the 2D camera (right).

4.2 Impact of respiration

One of the key challenges in localizing ECG electrodes is the
movement of the patients torso during acquisition, in particular with
respiration.Ourclinicalvalidationhasdemonstrated thatourmethods
arewell-suitedforuse indynamicandreal-worldconditions,providing
satisfactory precision even with bodily movement (localization error
ranging from 2.45 to 5.88 mm). For use in an ECGI pipeline, this level
of error is well within the acceptable range that has been shown to
yield satisfactory results in previous studies (Jiang, 2010; Cheng, 2001;
Burnes et al., 2000a; Burnes et al., 2000b). To enhance our approach,
multiple cameras could be deployed around the torso to capture
images simultaneously.Thiswould allowus to obtain the 3D electrode

positionsduringanyphaseof the respirationcycle,potentially improve
alignment accuracy and reduce acquisition time.

4.3 Decision making for choice of method

The choice of method depends on the available resources, time
efficiency, and user training requirements. Below we outline these
for both presented methods:

4.3.1 Equipment
The 3D method requires specific equipment including a depth

sensing camera (such as the Intel RealSense, priced between 200 and
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FIGURE 11
Comparison of preparation, acquisition, processing, and total times
between 2D, 3D, ETS, and CT-scan methods.

500$), a support structure to hold and rotate the camera around the
torso (e.g., a tripod with an articulated arm, costing an additional
100 to 200$), and a standard computer. While the 2D method only
requires more standard equipment; any 2D video camera (such as
a smartphone) and a computer, the computer does require a GPU
of at least 4 GB of memory (starting at 500$) to process data using
the Nerfacto model. A web interface could be developed for the
2D method, enabling users to upload videos of the torso with ECG
electrodes and automatically retrieve the electrode positions. In this
case, users would not need a computer with a GPU, as the processing
could be done remotely via the web interface.

4.3.2 Time
In terms of time efficiency, the 3D method is significantly

faster, taking only 5 min to complete the entire process, including
preparation of equipment, data acquisition, and processing. In
contrast, the 2D method requires much more time, an average of
60 min, mainly due to the time consuming processing involved with
the Nerfacto model (Figure 11).

4.3.3 User training
Both the 3D and 2D camera methods require minimal training.

For the 3D method, typically 5–10 min is enough to ensure the
user can operate the system effectively including mounting support
structure behind the bed, ensuring the depth sensing camera is
properly aligned approximately 60–70 cm above the patient’s chest.
Once the setup is complete, the user launches the script, which
provides real-time visualization of the detected electrodes. The
acquisition process involves capturing 12 RGB-D images from
predefined positions around the torso.The camera support includes
visual markers indicating each of the 12 stops. After capturing all 12
images, the system then automatically processes the data, localizes
the electrodes, and saves all results in a specified folder. In the future,
the 3D method could be further optimized by developing a system
with three 3Dcameras positioned around the torso.This setupwould
eliminate the need to rotate a single camera, allowing for instant
data capture. Such a configuration could minimize errors caused by
patient breathing or motion during the process.

For the 2D camera method, the user only needs to record a
high-quality video of the torso using a smartphone. This video is
then provided as input to the script, which processes the data over
approximately 1 h to localize the electrodes and save the results in
a specified folder. To further simplify the installation and use of
both methods, all scripts and required libraries could be hosted
on a GitLab repository. Users would have centralized access to the
entire workflow, including detailed documentation. Additionally,
to streamline setup and compatibility, all necessary components
(scripts, dependencies, and libraries) could be packaged within a
Docker container.This approach ensures that users could deploy the
system effortlessly, regardless of their local operating environment,
while minimizing potential configuration errors.

Overall, the 3D method is faster but requires very specific
equipment. In comparison, the 2D method is simpler, needing only
a smartphone and a computer with good GPU, with the option of a
web interface for even easier access. User training for both methods
is simple and requires minimal time. The final choice thus depends
on the specific clinical context: the 3D method is ideal for situations
where speed is critical and the resources are available, while the 2D
method is a practical option when simpler equipment or remote
processing is preferred.

4.4 Generalization for other electrode
systems

Our methods can be adapted to other electrode systems beyond
the BioSemi strips used in this study. For most systems, our methods
remainapplicablewith someadjustments. Specifically, if the electrodes
differ, a detection and classificationmodel would need to be retrained
to recognize the new electrode color/shape scheme. To organize the
detected electrodes, our organization algorithm could still be applied,
provided the electrodes are in strips and specific characteristics, such
as inter-electrode distances, are taken into account. Our method has
demonstrated robustness in handling tilted electrode strips or strips
placed with varying spacings, as supported by the clinical validation.

For systems without a strip like structure, such as the vest-based
CorifyandCardioInsightsystems,ourapproachcouldbeimplemented
by retraining the deep learning model to detect the new electrode
shapesor configurations,withanadjustedECGelectrodeorganization
algorithm to accommodate the new orientations or structural layouts.
In certain cases, the organization algorithm may be uneccesary. For
example, in the case of CardioInsight, a deep learningmodel could be
trained to detect regions corresponding to ECG electrodes, followed
by an image processing algorithm or another deep learning model
to identify and classify the numbers associated with each region. For
Corify, theprocess is evensimpler:ECGregionscanbe identifiedusing
ArUco markers, which can be reliably detected with the OpenCV
library, as each marker has a unique code. This enables precise
localization of the electrodeswithout relying on adeep learningmodel
or a specific organization algorithm.

5 Limitation

Despite the promising results, several limitations should be
acknowledged. Firstly, the process of aligning the point clouds
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obtained from CT, ETS and the two camera methods relied on
the electrode positions themselves. Ideally an independent marker
should have been used for this alignment to avoid underestimating
the localization error.

Furthermore, although the reference methods used are
considered gold standard, they can produce their own errors in
localization of around 1 mm. For CT, manual selection of electrodes
within the mesh may introduce errors. Similarly, for ETS, manual
positioning of electrodes with a catheter can also contribute to
inaccuracies.

Regarding the 2D camera method utilizing the Nerfacto model,
it requires a GPU with a minimum of 4 GB of memory to ensure
adequate processing performance. Additionally, the video of the torso
with the electrodes captured by the 2D camera should be lightweight
(less than 15 MB for a GPU with 4 GB memory) while maintaining
high quality to enable accurate 3D reconstruction of the electrodes.

For the YOLOv8 based electrode detection, maintaining a well-
lit environment with clear white lighting is essential. Proper lighting
allowsthecameratoaccuratelycapturethetruecolorsof theelectrodes,
which is critical for themodel todifferentiatebetweenelectrodeclasses
effectively. Inadequate lighting conditions or colored light sources
could lead to misclassification or detection errors.

Lastly, the study was only validated on relatively healthy males
with low BMI, which limits the generalizability of the findings. Future
studies should expand the clinical evaluation to include women,
individuals with higher BMI, and other diverse patient populations.

6 Conclusion

This study introduces two innovative methods for accurate
ECG electrode localization: a 3D Depth Sensing (DS) camera-
based method and a 2D camera-based method. Both methods
demonstrated exceptional precision, with localization errors from 2
to 5 mm in patients.

The 3D DS camera method provides rapid and precise
measurements within 5 min, making it ideal for clinical settings
where time efficiency is crucial. Meanwhile, the 2D camera method,
though more time-consuming, also achieves high precision and is
effective for scenarios where time constraints are less critical and
specific 3D DS cameras are not available.

These methods offer effective alternatives to traditional imaging
techniques such as CT scans and MRI. They not only enable
accurate and efficient electrode localization but also address
practical challenges associated with conventional imaging. This
could have significant implications for clinical practice, particularly
in scenarios where traditional imaging methods are impractical or
contraindicated, such as in healthy volunteers for clinical studies
or in patients with metallic implants. By facilitating the broader
adoption of advanced ECG mapping techniques, these methods
represent a meaningful advancement in clinical practice.
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