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Objective: This study aims to employ physiological model simulation to
systematically analyze the frequency-domain components of PPG signals and
extract their key features. The efficacy of these frequency-domain features in
effectively distinguishing emotional states will also be investigated.

Methods: A dual windkessel model was employed to analyze PPG signal
frequency components and extract distinctive features. Experimental data
collection encompassed both physiological (PPG) and psychological
measurements, with subsequent analysis involving distribution patterns and
statistical testing (U-tests) to examine feature-emotion relationships. The
study implemented support vector machine (SVM) classification to evaluate
feature effectiveness, complemented by comparative analysis using pulse rate
variability (PRV) features, morphological features, and the DEAP dataset.

Results: The results demonstrate significant differentiation in PPG frequency-
domain feature responses to arousal and valence variations, achieving
classification accuracies of 87.5% and 81.4%, respectively. Validation on the
DEAP dataset yielded consistent patterns with accuracies of 73.5% (arousal)
and 71.5% (valence). Feature fusion incorporating the proposed frequency-
domain features enhanced classification performance, surpassing 90% accuracy.

Conclusion: This study uses physiological modeling to analyze PPG signal
frequency components and extract key features. We evaluate their
effectiveness in emotion recognition and reveal relationships among
physiological parameters, frequency features, and emotional states.

Significance: These findings advance understanding of emotion recognition
mechanisms and provide a foundation for future research.
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1 Introduction

Emotions represent a complex array of psychological and
physiological reactions that individuals experience in response to
specific stimuli (Shu et al., 2018). The spectrum of emotional states
can exert varying influences on an individual’s physical and mental
wellbeing, potentially precipitating severe health conditions (Ong
et al., 2006) For instance, chronic exposure to negative emotional
states has been linked to the etiology of mood disorders such as
depression and anxiety (Button et al., 2012; Gou et al., 2023).
Consequently, the accurate identification of emotions has
emerged as a pivotal area of inquiry within the realm of
psychological research.

The method of emotion assessment based on physiological
signals stands out for its capability to collect data autonomously
and discern emotional states (Maria et al., 2019), offering a
significant advantage over traditional approaches that rely on
subjective emotional scales (Bradley and Lang, 1994) and
physical cues (Anthony and Patil, 2023; Harms et al., 2010;
Hasan et al., 2019). Unlike these, physiological signals, which are
inherently spontaneous and less prone to subjective influences,
provide a more objective measure of emotional responses (Jang
et al., 2014). The activation of emotions is inherently linked to the
central nervous system’s regulatory functions. This has prompted a
multitude of studies to extract multifaceted features from
electroencephalogram (EEG) signals (Alvarez-Jimenez et al., 2024;
Issa et al., 2021; Li et al., 2022; Sarma and Barma, 2021), aiming to
construct models for emotion identification or to investigate
effective methods through the application of deep learning
algorithms (Dhara et al., 2023; Joshi and Ghongade, 2021).
Beyond EEG, the realm of emotion identification research has
also incorporated a range of other physiological signals. These
include electrocardiogram (ECG) (Hsu et al., 2020; Sarkar et al.,
2022), which captures the heart’s electrical activity;
electromyography (EMG) (Kulke et al., 2020; Sato et al., 2008),
which measures muscle electrical activity; and galvanic skin
response (GSR) (Goshvarpour et al., 2017; Wen et al., 2014),
which reflects the body’s sweat gland activity in response to
emotional stimuli. Each of these modalities contributes unique
insights into the complex interplay between physiological
responses and emotional experiences.

The burgeoning ubiquity of portable devices has catapulted
photoplethysmography (PPG) into the spotlight of research
communities, thanks to its notable benefits such as ease of
acquisition, operational simplicity, and minimal equipment costs.
Concurrently, the existing body of research has established that a
plethora of physiological changes triggered by emotional stimuli are
modulated by the autonomic nervous system (ANS) (Gordan et al.,
2015; Rainville et al., 2006), impacting vital organs like the heart,
blood vessels, and muscles (Harris and Matthews, 2004; Kleiger
et al., 2005). These physiological shifts are vividly reflected in PPG
signals, serving as a tangible indicator of the body’s response to
emotions (Chakraborty et al., 2020). For instance, the emotion of
fear can induce vasoconstriction and tachycardia (Johnstone, 1971),
while anger may lead to vasodilation in facial blood vessels, resulting
in blushing and arrhythmia (Drummond, 1999). The spectrum of
human emotions elicits a diverse array of effects on PPG signals
(Davydov et al., 2011; Krumhansl, 1997), each offering a unique

perspective on the intricate relationship between emotional states
and physiological responses (Nummenmaa et al., 2014).

To date, the body of research leveraging photoplethysmography
(PPG) signals for precise emotion recognition remains modest.
Notable contributions include Paul’s work (Paul et al., 2024),
where a novel time-domain feature was extracted from the DEAP
(Koelstra et al., 2012) dataset to discern various emotional states.
Beckmann et al. (2019), in another study, employed dual sensors to
capture PPG’s Perfusion Time to Peak (PTT) features, subsequently
integrating them into the realm of wearable device-based emotion
recognition research. Li et al. (2017) contributed by acquiring both
PPGmorphological and PRV features to differentiate between states
of sadness and happiness. Furthermore, Wang and Yu (2021) and
Lee et al. (2020) have ventured into the application of deep learning
methodologies for the analysis of PPG signals in emotion
recognition, showcasing the potential of these advanced techniques.

Previous studies have made significant progress in the field of
emotion recognition using PPG signals, yet further exploration
remains warranted. Current research predominantly focuses on
PRV and morphological features, with limited exploration of
frequency-domain analysis of PPG waveforms. Given that the
frequency domain of signals often contains substantial valuable
information, this study aims to employ physiological model
simulation to systematically analyze the frequency-domain
components of PPG signals and extract their key features.
Furthermore, this research will investigate the efficacy of these
frequency-domain features in effectively distinguishing emotional
states, thereby contributing to the advancement of emotion
recognition methodologies.

2 Methods

The schematic diagram presented in Figure 1 delineates the
emotion recognition methodology predicated on frequency-domain
features derived from photoplethysmography (PPG) signals. The
process encompasses several pivotal steps: 1) Constructing
physiological simulation models, conducting frequency domain
analysis, and extracting key features; 2) Designing experiments to
collect PPG signals and preprocessing them; 3) Accurate recognition
of emotional states; 4) Extracting PRV and morphological features
for comparison and finally 5) Verifying the recognition universality
based on PPG signals collected from the DEAP dataset.

2.1 Frequency domain analysis based on
simulated physiological model

Consequently, the development of PPG simulation models is of
paramount importance for investigating the influence of different
physiological factors on PPG signals. Among the available
cardiovascular system models, the dual windkessel model
Goldwyn and Watt (1967) proposed by Goldwyn and Watt
stands out as one of the most frequently utilized frameworks.
This model, along with its equivalent circuit representation, is
depicted in Figure 2, providing a visual and theoretical
foundation for understanding the complex dynamics of the
cardiovascular system as they relate to PPG signal generation.
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This study constructed a simulation design for Simulink based
on this model and obtained 7 variable parameters as shown
in Table 1.

By systematically modulating the aforementioned variable
parameters, significant alterations were observed in both the
simulated PPG waveforms and their corresponding frequency
spectra. As illustrated in Figure 3, the morphological state of the
PPG waveforms exhibited visually discernible variations.

Furthermore, distinct differences were identified in the spectral
peaks of the frequency domain representation, demonstrating the
sensitivity of these spectral components to parameter variations.

Our analysis reveals that the frequency-domain information of
the photoplethysmography (PPG) signal is predominantly
characterized by its fundamental frequency and two harmonic
frequency bands. Consequently, we derived multiple power-
related features and ratio-based features from these three
frequency bands as shown in Figure 4. The specific features and
their corresponding variations in response to parameter changes
during the simulation are comprehensively presented in Table 2.
The computation of these features was performed through the
following procedure: First, the average heart rate (HR) was
obtained through preliminary data processing. Subsequently, Fast
Fourier Transform (FFT) analysis was applied to the data segment.
The power spectral density within the frequency bands of ±0.2 Hz
centered at the fundamental HR frequency was identified as the
Basic Frequency component (BF). Similarly, the power
within ±0.2 Hz bands centered at twice and three times the HR
frequency were designated as the First Harmonic Frequency (FHF)
and Second Harmonic Frequency (SHF) components, respectively.
The computational methodology for these ratio-based features is
further detailed in Table 2.

FIGURE 1
The schematic diagram of the emotion recognition method.

FIGURE 2
(A) The dual windkessel model. (B) The equivalent circuit of the dual windkessel model.

TABLE 1 The 7 variable parameters of the model.

Parameters Description

R The magnitude of peripheral vascular resistance

L The magnitude of blood flow inertia

C1 Aggregate compliance of the aortic arch and its main branches

C2 Total compliance of aorta and peripheral blood vessels

Q0 Extreme point of blood flow

Ts The duration of systole

Td The duration of the heartbeat cycle
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The analysis demonstrates distinct patterns in frequency
features corresponding to variations in hemodynamic parameters:
(1) Increased peripheral vascular resistance leads to attenuation of
the fundamental frequency while enhancing harmonic frequencies.
(2) Elevated vascular compliance results in amplification of the first
harmonic frequency, accompanied by attenuation of both the
fundamental frequency and the second harmonic frequency. (3)
Augmented blood flow inertia induces enhancement of both the

fundamental frequency and the first harmonic frequency, with the
latter exhibiting more pronounced amplification, while
simultaneously causing attenuation of the second harmonic
frequency. Furthermore, other physiological parameters also exert
significant influences on these features.

2.2 Dataset and preprocessing

This dataset is anchored in Ekman and Friesen (1971) theory of
discrete emotions, which posits that emotions are distinct,
universally identified mental states. In alignment with this
theoretical framework and to ensure the selection of authentic
and impactful emotion-inducing materials, our research team
referred to authoritative emotion databases. Notably, we took
cues from the DECAF database (Abadi et al., 2015) in curating a
selection of video materials designed to elicit a variety of emotional
responses. Our team has conducted extensive prior research to
thoroughly assess and validate the efficacy of these selected
materials in inducing the intended emotions during emotion
induction experiments (Wang et al., 2022). The specific materials
chosen for this study are detailed in Table 3, where each entry
corresponds to a particular emotional state aimed to be induced.

The experimental protocol for this dataset was granted approval
by the Medical Ethics Committee of the Department of Psychology
and Behavioral Sciences at Zhejiang University, as evidenced by the
ethical review document (Zhejiang University Psychological Ethics
Review [2022] No. 059). A total of 192 students from Zhejiang
University were initially recruited to partake in the study. Eligibility
criteria for participants included having normal vision, hearing, and

FIGURE 3
The PPGs under different states based on simulation. Notes: The physiological parameters were configured as follows: Left-side: R = 0.8, C₁ = 0.8,
C₂ = 0.18, L = 0.008, Td = 0.77, Ts = 0.28, Q₀ = 395; Right-side: R = 1.2, C₁ = 1.2, C₂ = 0.20, L = 0.012, Td = 0.67, Ts = 0.25, Q₀ = 450.

FIGURE 4
Frequency domain information of PPG.
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TABLE 2 Description of PPG frequency domain features.

Features Description R ↑ C1 ↑ C2 ↑ L ↑ Q0 ↑ Td ↑ Ts ↑

BF Power of the base frequency band ↓ ↓ ↓ ↑ ↑ ↑ ↑

BFn Standardized power of the base frequency band, BF/(BF + FHF + SHF) ↓ ↓ ↓ ↓ ↑ ↑ ↑

FHF Power of the first harmonic frequency band ↑ ↓ ↑ ↑ ↑ ↑ ↓

FHFn Standardized power of the first harmonic frequency band, FHF/(BF + FHF + SHF) ↑ ↑ ↑ ↑ 0 ↓ ↓

SHF Power of the second harmonic frequency band ↑ ↓ ↓ ↓ 0 ↑ ↓

SHFn Standardized power of the second harmonic frequency band, SHF/(BF + FHF + SHF) ↑ ↓ ↓ ↓ 0 ↑ ↓

FHFBF FHF/BF ↑ ↑ ↑ ↑ 0 ↓ ↓

SHFBF SHF/BF ↑ ↓ ↓ ↓ 0 ↑ ↓

SHFFHF SHF/FHF ↑ ↓ ↓ ↓ 0 ↑ ↓

FIGURE 5
Experimental procedures.

TABLE 3 Emotion inducing materials selected.

Source Movie Duration(s) Arousal Valence Emotion Scene description

— 192 3.96 ± 1.72 5.21 ± 1.34 Calmness Daily life of a family

Up 67 6.51 ± 1.75 6.87 ± 1.39 Positive Carl—a shy, quiet boy—meets the energetic Ellie

The Truman Show 60 5.8 ± 1.88 6.29 ± 1.43 Positive Truman and his lover go to the beach for a romantic evening

Wall-E 93 6.01 ± 1.86 7.26 ± 1.36 Positive all-E and Eve spend a romantic night together

Gandhi 123 6.15 ± 1.91 3.64 ± 1.23 Negative Indian attorney gets thrown out of a first-class train compartment

My Bodyguard 101 5.32 ± 2.12 3.48 ± 1.31 Negative Group of thugs provoke a teenager

The Shining 78 7.41 ± 1.62 2.93 ± 1.46 Negative A child enters hotel room searching for his mom

Black Swan 62 8.22 ± 1.14 2.38 ± 1.81 Negative A woman notices paranormal activity around her

My Girl 66 6.39 ± 1.58 3.07 ± 1.4 Negative A young girl cries at her friend’s funeral

Bambi 166 6.19 ± 1.88 3.48 ± 1.36 Negative The fawn Bambi’s mother is killed by a deer hunter
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perception abilities, as well as being free from any physical or
psychological conditions that could potentially influence
emotional responses. Throughout the experimental process,
stringent quality control measures were implemented.
Regrettably, the dataset was compromised due to several factors:
(1) instrumental operational errors resulted in the unsuccessful
acquisition of 12 cases; (2) 4 cases were excluded due to
participants’ personal reasons; and (3) preliminary quality
assessment led to the elimination of 19 cases owing to
suboptimal physiological signal acquisition. This data attrition,
while regrettable, was necessary to maintain the integrity and
reliability of the study. Consequently, the dataset was refined to
include data and relevant information from 157 participants who
met the criteria, comprising 96 females and 61 males.

The comprehensive experimental protocol for each participant
was conducted in a dimly lit room, ensuring minimal interference
from ambient light sources, with the exception of the computer
display screen, as depicted in Figure 5. Prior to the commencement
of the experiment, participants were provided with a comprehensive
briefing on the experimental procedures and necessary precautions.
They were required to sign an informed consent form, signifying
their voluntary agreement to participate in the study. Subsequently,
each participant was outfitted with a photoelectric sensor on their
left index finger for the acquisition of PPG signals, as well as
electrodes to capture additional physiological signals. The PPG
signals were recorded using a physiological signal monitor (ePM-
12M, Mindray, China), which operated at a sampling rate of 125 Hz.
The video stimuli were presented on a computer screen positioned at
a distance ranging from 0.5 to 1 m from the participant, allowing
them to view the content from their most comfortable seated
position. Throughout the experiment, each participant was
exposed to a total of 8 distinct video materials designed to elicit
various emotional responses. Upon completion of each video
segment, participants were prompted to complete the Self-
Assessment Manikin (SAM) Emotion Scale, followed by a brief
respite. The sequence of video presentation and scale assessment was
orchestrated by a specially designed experimental program, enabling
participants to independently execute all steps of the experimental
process until its conclusion.

PPG signals are among the most accessible physiological signals
for collection; however, they are susceptible to various sources of
noise and interference that can complicate the acquisition process.
Despite the implementation of hardware-level denoising techniques,
the integrity of PPG signals can still be compromised by factors such
as respiration, bodily movement, and issues related to data
transmission. To ensure the acquisition of high-fidelity PPG
signals, it is imperative to employ additional processing
measures. In the context of this study, all PPG recordings
underwent a series of processing techniques aimed at enhancing
signal quality.

Firstly, the 1–20 Hz bandpass filter was used to remove most of
the noise and interference caused by breathing, body movements,
and other factors, thereby focusing the signal on high-density
information regions. Due to the presence of high-frequency
disturbances, each PPG record y was smoothed by Formula 1
and the result was denoted as y1, where xi represented the
sampling time of each point, i represented the sequence number

of the data points, 3 ≤ i ≤ n-1, and nwas the number of data points in
the record.

y1 x1( ) � y x1( )
y1 x2( ) � y x1( ) + y x2( ) + y x3( )

3

y1 xi( ) � y xi−2( ) + y xi−1( ) + y xi( ) + y xi+1( ) + y xi+2( )
5

y1 xn−1( ) � y xn−2( ) + y xn−1( ) + y xn( )
3

y1 xn( ) � y xn( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Then, the method named “moving-pane” was used to identify
fiducial points of each PPG record. This method created a pane with
a specific width and moved it along the timeline of the PPG record.
All maximum points in the pane and minimum points between
every two maximum points were recorded during the movement
and the maximum points that do not meet the following rules were
excluded, as shown in Figure 6A: 1) The distance between this point
Pi and Pi-1 less than 0.6s 2) The amplitude difference between this
point pi andTi-1 less than 0.5 times the amplitude difference between
Pi-1 and Ti-2, or the amplitude difference between pi and Ti-1 less
than 0.5 times the amplitude difference between pi+1 and Ti.

Following the application of the “moving-pane” method, a
meticulous manual review was performed to identify and retain
the extremum points within the PPG record, which correspond to
the peaks and troughs that serve as the fiducial markers of the
waveform. This process is crucial for the accurate characterization of
the PPG signal’s morphology. Subsequently, to address the issue of
baseline drift that can distort the PPG signal, the method illustrated
in Figure 6B and encapsulated by Formula 2 was employed. This
technique effectively removes the baseline wander, ensuring that the
origin of all individual PPG waveforms is recalibrated to zero. This
normalization is essential for the consistent analysis and comparison
of PPG signals across different recordings.

k � y xU( ) − y xU′( )
xU − xU′

y′ xi( ) � y xi( ) − k* xi − xU( )

⎧⎪⎪⎨
⎪⎪⎩ (2)

In the concluding phase of signal processing, the z-score
normalization technique was applied to eliminate the variability in
the scale of each PPG record. This standardization procedure ensures
that all records are brought onto a common scale, facilitating a unified
analysis. The aforementioned processing methodologies were executed
using a combination of self-devised algorithms and the scipy package
(Virtanen et al., 2020), which is a fundamental component of the
Python ecosystem for scientific computing. Post-processing, each PPG
record was meticulously segmented in accordance with the distinct
emotional stimuli that served as the triggers. Specifically, the records
were divided into segments every 20 s, with each segment annotated to
reflect the predominant emotional state during that interval.

2.3 Features extraction and emotion analysis

Following the preprocessing of PPG signals, the data were
segmented according to different emotional stimuli protocols.
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The continuous recordings were subsequently divided into 20-s
epochs, with each epoch being annotated with corresponding
emotional labels. This segmentation procedure yielded a total of
2,474 epochs for low arousal states, 5,560 epochs for high arousal
states, 3,229 epochs for low valence states, and 4,805 epochs for high
valence states, thereby establishing a comprehensive dataset for
emotional state classification.

For each 20-s epoch, nine frequency-domain features (as specified
in Table 3) were extracted. To account for inter-individual variability
and other potential confounding factors, feature normalization was
performed using a z-score-like transformation according to Equation
3. This standardization procedure ensures comparability across
different subjects while preserving the relative distribution
characteristics of the extracted features.

Fremove � Femotion − Fmean( )/Fstd (3)

Among them, for specific feature F and a certain subject S, Fmean

and Fstd were the average and standard deviation of feature F for all
sections of subject S, Femotion was the value of feature F before
processing for a specific emotional section of subject S, and Fremove

was the processed feature value.
The Mann Whitney U-test (Rosner and Grove, 1999), a non-

parametric statistical method, serves as a robust tool for assessing
significant differences between two independent datasets, especially
when the data does notmeet the assumptions of parametric tests. In this
study, the U-test, facilitated by Python’s SciPy library (Virtanen et al.,
2020), was employed to scrutinize the variability in the newly extracted
PPG frequency-domain features across different emotional dimensions,
specifically comparing the high and low arousal states, as well as the
high and low valence states. The preliminary evaluation of the emotion-
discriminative capability of the extracted PPG frequency-domain
features was conducted through two complementary approaches: (1)
statistical analysis using p-values derived from the two-tailedU-test, and
(2) comparative examination of feature distribution patterns across
different emotional states. This dual-method assessment framework
provides robust evidence for evaluating the effectiveness of the proposed
features in emotion differentiation.

Subsequently, based on the preliminary analysis, the identified
emotion-discriminative features were utilized to construct a machine
learningmodel for emotion recognition using Support VectorMachines
(SVM). In this study, the SVM was implemented using the Scikit-learn
algorithm package in Python (Fabian et al., 2011). To effectively
partition the dataset, the train_test_split function from the Scikit-
learn package was utilized, segregating the feature set into training
and testing subsets with a ratio of 7:3. Given the modest size of the
dataset, traditional cross-validation could potentially result in overfitting.
Consequently, the study opted for a leave-one-point-out method for
model training, a technique that iteratively excludes a single data point
from the training process. This approach was iterated 100 times,
ensuring a comprehensive assessment of the model’s performance
(Ma et al., 2023). The Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) curve was computed for each iteration.
The median AUC value, derived from the 100 models, was adopted as
the representative performance metric for the SVM model.

ROC curves (Rodellar-Biarge et al., 2015) were employed to evaluate
and visualize the discriminatory power of the features in identifying
distinct emotional states. The model’s predictive accuracy, the AUCs for
the ROC curves, and the precision metric were computed to
quantitatively assess the model’s efficacy in recognizing emotions.

2.4 Feature comparison and cross dataset
validation

To further validate the effectiveness of the extracted PPG
frequency-domain features while maintaining the exclusive use of
PPG as the sole physiological signal, we additionally extracted two
well-established feature sets that have been extensively validated by
numerous researchers for emotion recognition: pulse rate variability
(PRV) features and PPG morphological features, as detailed in Table 4.
Following the same analytical protocol applied to the frequency-domain
features, these comparative features underwent preliminary screening
before being utilized to construct SVM-basedmachine learningmodels,
thereby obtaining their respective emotion recognition accuracymetrics

FIGURE 6
(A) The method “moving-pane.” (B) The method removing baseline drift.
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for systematic comparison. Furthermore, to investigate the underlying
relationships among different feature sets, we conducted correlation
analysis between the PPG frequency-domain features and the two
additional feature groups. This analysis facilitated the development
of an integrated feature set through optimal feature fusion, potentially
enhancing the overall emotion recognition performance.

To ascertain the efficacy and generalizability of the
methodologies and features delineated in this research, an
expanded dataset of PPG recordings was sourced from the
DEAP database, which is publicly accessible. The DEAP dataset
(Koelstra et al., 2012) serves as a multimodal repository for

affective analysis, encompassing physiological signal recordings
from 32 participants exposed to 40 distinct video stimuli. For the
purpose of this analysis, PPG recordings were exclusively selected.
Consistent with the methodology applied to the aforementioned
dataset, participants were prompted to rate the arousal, valence,
and additional pertinent attributes of each video stimulus. The
models established in the preceding section were then applied to
discern the emotional states associated with the DEAP dataset
entries. Subsequently, the derived accuracy metrics were utilized to
assess the models’ performance in emotion recognition and their
adaptability across different datasets.

TABLE 4 Features for comparison.

Category Features

PRV MeanNN, SDNN, RMSNN, MedianNN, RDNN, IQRNN, CVNN, SDSD, RMSSD, CVSD, pNN20, ApEn, FuzzyEn, LZC

Morphological Features Amp_Diff, Interval_Rise, Interval_Drop, Slope_Rise, Slope_Max_Rise, Slope_Drop, Slope_Min_Drop, Area_Rise, Area_Drop, Area_Total,
Area_Rise_rate, Area_Drop_rate, Area_Total_rate, Area_RD_rate

FIGURE 7
The distribution of Peaks-based frequency-domain features under different emotional states. Note: *represents p < 0.05, ** represents p < 0.01, ***
represents p < 0.001.
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3 Results

Figure 7 presents the distribution patterns of the nine extracted
PPG frequency-domain features across different emotional states,
categorized by high/low arousal and high/low valence. The
corresponding p-values derived from U-tests, which indicate the
statistical significance of differences between high and low arousal
states as well as between high and low valence states, are also
displayed. The analysis reveals distinct patterns of feature
variations in response to different emotional dimensions.

Regarding arousal levels, we observe synchronous increases in
both the fundamental frequency and the first harmonic frequency,
while the ratio-based features remain relatively stable. Notably,
features associated with the second harmonic frequency
demonstrate significant enhancement, indirectly reflecting the
overall increase in total power during heightened arousal states.
This observed phenomenon can be primarily attributed to the
physiological correlates of increased peripheral vascular resistance
and enhanced blood flow intensity. These physiological changes are
consistent with the characteristic manifestations of heightened
arousal states, which typically involve muscle tension,

vasoconstriction, and intensified cardiac activity resulting from
emotional excitation (Shu et al., 2018).

In contrast, valence levels exhibit a different pattern of influence:
while both the fundamental frequency and the first harmonic
frequency show moderate increases (with the first harmonic
demonstrating more pronounced enhancement), the second
harmonic frequency displays a marked decrease. Interestingly, the
total power remains relatively unaffected by changes in valence. This
observation is strongly associated with the fundamental nature of
valence as a psychophysiological dimension that primarily reflects
the distinction between positive and negative affective states
(Gendolla and Krusken, 2001; Fairclough et al., 2014).

The analysis clearly demonstrates that the PPG frequency-
domain features exhibit significant sensitivity to both arousal and
valence variations, as evidenced by their systematic changes
corresponding to different emotional states. To further evaluate
the effectiveness of these features in emotion recognition, we
conducted a comparative analysis with two well-established
feature sets: PRV features and PPG morphological features.
Figure 8 presents the results of intra-group and inter-group
correlation analyses among these three feature sets.

FIGURE 8
Results of intra-group and inter-group orrelation analyses.
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The correlation matrix reveals several important patterns: (1)
The PPG frequency-domain features maintain relatively low intra-
group correlations, suggesting their complementary nature in
capturing different aspects of emotional states. (2) Moderate
correlations between frequency-domain features and
morphological features indicate that the spectral information
partially reflects certain morphological characteristics of PPG
signals. (3) Both PRV and morphological feature sets exhibit
substantially higher intra-group correlations compared to the
frequency-domain features, indicating greater redundancy within

these conventional feature sets. This comparative analysis suggests
that the proposed frequency-domain features offer a more diverse
and potentially more efficient representation of emotional states.

The comparative results of feature performance are presented in
Table 5 and Figure 9. Among the three feature sets, the proposed PPG
frequency-domain features demonstrated superior performance in
machine learning models, achieving an accuracy of 87.5% in arousal
classification and 81.4% in valence classification. The higher accuracy in
arousal classification aligns with the more pronounced feature
distribution differences observed in arousal states, as previously

TABLE 5 The accuracy infornmation of models.

Features Dataset Emotion Accuracy AUC Precision Sensitivity Specificity F1-score

Combination Mine LA-HA 91.0% 0.961 0.972 0.898 0.939 0.933

Frequency-Domain 87.5% 0.940 0.980 0.831 0.965 0.899

Morphology 84.4% 0.929 0.978 0.784 0.965 0.871

PRV 75.7% 0.827 0.873 0.747 0.778 0.805

Combination LV-HV 85.9% 0.916 0.881 0.893 0.804 0.887

Frequency-Domain 81.4% 0.852 0.899 0.814 0.814 0.854

Morphology 75.9% 0.824 0.895 0.743 0.797 0.812

PRV 71.1% 0.747 0.757 0.799 0.560 0.778

Combination DEAP LA-HA 79.3% 0.784 0.771 0.915 0.628 0.836

Frequency-Domain 73.5% 0.741 0.709 0.881 0.555 0.786

Morphology 72.6% 0.739 0.698 0.880 0.540 0.778

PRV 70.6% 0.714 0.682 0.855 0.530 0.759

Combination LV-HV 75.9% 0.762 0.738 0.882 0.602 0.804

Frequency-Domain 70.9% 0.707 0.694 0.848 0.539 0.763

Morphology 71.5% 0.718 0.686 0.872 0.530 0.768

PRV 69.5% 0.699 0.676 0.842 0.520 0.750

FIGURE 9
ROC curves for distinguishing (A) arousal levels; (B) valence levels.
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discussed. The PPG morphological features also showed reasonable
discriminative capability, while the PRV features exhibited relatively
poor performance. The suboptimal performance of PRV features may
be attributed to two potential factors: (1) The exclusion of traditionally
effective features such as LF and HF components, which could not be
accurately computed due to the short duration (20s) of individual
epochs; (2) The high intra-feature correlation within the PRV feature
set, resulting in substantial redundancy despite the large number of
features, effectively reducing the dimensionality of useful information.

To further validate the generalizability of our methodology, we
replicated the analytical procedure on PPG signals from the DEAP
dataset, maintaining identical processing pipelines and model
construction approaches. The comparative results, as presented in
Table 5, demonstrate remarkable consistency with our proprietary
dataset findings, though with marginally reduced classification
accuracy in the DEAP dataset. This performance variation can be
attributed to multiple factors, including the use of default SVM
parameters without specific optimization and inherent differences in
emotional elicitation protocols between studies.

Capitalizing on the observed low inter-group feature correlations,
we implemented a comprehensive feature fusion strategy. This
integrated approach yielded exceptional emotion recognition
performance, achieving accuracy rates surpassing 90% on our
proprietary dataset. These findings not only confirm the standalone
efficacy of the proposed PPG frequency-domain features in emotion
recognition but also establish their crucial role as a fundamental
component in advanced emotion recognition systems. The features’
unique complementary characteristics make them an indispensable
element in the pursuit of enhanced recognition performance, serving as
a critical piece in the development of more sophisticated emotion
classification frameworks.

4 Discussion

This study employs a physiological model-based simulation
approach to systematically analyze the frequency-domain
components of PPG signals and extract their essential characteristics.
Through this comprehensive investigation, we examine the efficacy of
these frequency-domain features in effectively discriminating emotional
states. Furthermore, the research elucidates the intricate relationships
between physiological parameters and emotional states, as well as the
connections between PPG frequency-domain features and emotional
responses, thereby providing a deeper understanding of the
psychophysiological mechanisms underlying emotion recognition.

Through comprehensive investigation of PPG frequency-
domain features, we have identified significant correlations
between these features and various physiological parameters,
including peripheral vascular resistance, blood flow inertia, and
vascular compliance. Moreover, these features demonstrate
remarkable sensitivity to variations in both arousal and valence
levels, thereby establishing a crucial tripartite relationship among
physiological parameters, PPG frequency-domain characteristics,
and emotional states. These findings provide valuable
psychophysiological foundations and references for subsequent
emotion recognition analyses based on PPG frequency-
domain features.

An intriguing observation from both our proprietary dataset and
the DEAP dataset reveals that PPG frequency-domain features
exhibit greater sensitivity to arousal levels compared to valence.
This phenomenon may be attributed to the more pronounced
cardiovascular changes associated with emotional intensity
(arousal) rather than emotional polarity (positive/negative
valence), suggesting that the autonomic nervous system’s

TABLE 6 Comparisons with other studies.

References Signals Scourse Features (PPG) or method Accuracy or result

Lee et al. (2019) PPG DEAP Features extracted through CNN Valence: 75.3%
Arousal: 76.2%

Choi and Kim (2018) EEG, PPG, Video DEAP LSTM Valence: 78%
Arousal: 74.65%

Paul et al. (2024) PPG DEAP A New Morphological Feature Special emotions: 97.78%

Beckmann et al.
(2019)

PPG Experiment Pulse Transit Time (PTT) Significant Effectiveness

Li et al. (2017) PPG Experiment PRV,
Morphological Features

1) Morphological features superior to PRV features
2) Frequency domain features (LF, etc.) superior to time

domain features (SDNN, etc.) in PRV

Wang and Yu (2021) PPG Experiment Deap Learning Two classes: 89.15%
Four classes: 84.70%

Kang and Kim (2022) PPG, GSR DEAP, MERTI-
Apps

Deap Learning Valence: 73.49%
Arousal: 77.87%

Yang et al. (2024) PPG, GSR, EEG,
Viedo

Experiment PRV,
Morphological Features

Positive-Negative: 80.96%

Lee et al. (2020) PPG DEAP PRV, Features extracted through CNN Valence: 82.1%
Arousal: 80.9%

This Study PPG Experiment,
DEAP

Frequency Domain Features, PRV,
Morphological Features

(Experiment) Valence: 91.0%
(Experiment) Arousal: 85.9%

(DEAP) Valence: 75.9%
(DEAP) Arousal: 79.3%
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response to emotional arousal might be more substantial and
detectable through PPG analysis.

In comparison with existing studies, as summarized in Table 6,
research utilizing PPG signals for emotion recognition remains
relatively scarce, with even fewer studies employing PPG as the
primary or exclusive physiological modality. When considering
variations in emotional elicitation materials and differing analytical
focuses across studies, our research demonstrates competitive emotion
recognition accuracy, positioning itself within the upper-middle range
of existing literature. This represents a significant achievement in the
field. Notably, findings from other researchers corroborate our
observations regarding the suboptimal performance of PRV features
and the relatively better performance of morphological features.
However, what distinguishes our study is the establishment of a
comprehensive theoretical framework that bridges physiological
parameters, PPG frequency-domain features, and emotional states.
This tripartite model provides robust psychophysiological evidence
supporting the use of PPG frequency-domain features for emotion
recognition, thereby advancing our understanding of the underlying
mechanisms and offering a solid theoretical foundation for future
research in this domain.

Nevertheless, this study is subject to several limitations that
warrant consideration. First, while we have established a tripartite
framework connecting physiological parameters, PPG frequency-
domain features, and emotional states, the current analysis primarily
demonstrates their strong associations rather than establishing
precise quantitative correlations. This limitation highlights the
need for more sophisticated modeling approaches to quantify
these relationships. Secondly, the selection of emotional
elicitation materials presents inherent challenges. The material-
specific characteristics sometimes exert a more substantial
influence on the extracted features than the emotional states
themselves. Additionally, the duration of stimulus materials
significantly impacts feature selection and interpretation, a
methodological concern that persists across numerous studies in
this field. Finally, our research primarily focused on feature analysis
and interpretation, with relatively less emphasis on optimization for
classification accuracy. This methodological orientation, while
providing valuable insights into feature characteristics, has
resulted in classification performance that, while respectable,
leaves room for improvement. Future studies should aim to
strike a better balance between feature exploration and
recognition performance optimization.

5 Conclusion

This study employs a physiology model-based simulation
approach to systematically analyze the frequency-domain
components of PPG signals and extract their essential
characteristics. Through comprehensive investigation, we
examine the efficacy of these frequency-domain features in
effectively discriminating emotional states. Furthermore, the
research elucidates the intricate relationships between
physiological parameters, frequency-domain characteristics, and
emotional states, thereby providing deeper insights into the
psychophysiological mechanisms underlying emotion
recognition. These findings establish a solid theoretical

foundation and offer valuable references for subsequent
research in this field.
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