
TYPE Original Research
PUBLISHED 05 March 2025
DOI 10.3389/fphys.2025.1480018

OPEN ACCESS

EDITED BY

Colin K. Drummond,
Case Western Reserve University,
United States

REVIEWED BY

Adolphe J. Béquet,
Catholic University of Toulouse, France
Kuan Tao,
Beijing Sport University, China
Jonathan Giron,
Reichman University, Israel

*CORRESPONDENCE

Jelena Medarević,
jm98847@student.uni-lj.si

RECEIVED 13 August 2024
ACCEPTED 10 February 2025
PUBLISHED 05 March 2025

CITATION

Medarević J, Miljković N, Stojmenova
Pečečnik K and Sodnik J (2025) Distress
detection in VR environment using Empatica
E4 wristband and Bittium Faros 360.
Front. Physiol. 16:1480018.
doi: 10.3389/fphys.2025.1480018

COPYRIGHT

© 2025 Medarević, Miljković, Stojmenova
Pečečnik and Sodnik. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Distress detection in VR
environment using Empatica E4
wristband and Bittium Faros 360

Jelena Medarević1*, Nadica Miljković1,2, Kristina Stojmenova
Pečečnik1 and Jaka Sodnik1

1Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia, 2School of Electrical
Engineering, University of Belgrade, Belgrade, Serbia

Introduction: Distress detection in virtual reality systems offers a wealth of
opportunities to improve user experiences and enhance therapeutic practices
by catering to individual physiological and emotional states.

Methods: This study evaluates the performance of two wearable devices, the
Empatica E4 wristband and the Faros 360, in detecting distress in a motion-
controlled interactive virtual reality environment. Subjects were exposed to
a baseline measurement and two VR scenes, one non-interactive and one
interactive, involving problem-solving and distractors. Heart rate measurements
from both devices, including mean heart rate, root mean square of successive
differences, and subject-specific thresholds, were utilized to explore distress
intensity and frequency.

Results: Both the Faros and E4 sensors adequately captured physiological
signals, with Faros demonstrating a higher signal-to-noise ratio and consistency.
While correlation coefficients were moderately positive between Faros and E4
data, indicating a linear relationship, small mean absolute error and root mean
square error values suggested good agreement in measuring heart rate. Analysis
of distress occurrence during the interactive scene revealed that both devices
detect more high- and medium-level distress occurrences compared to the
non-interactive scene.

Discussion: Device-specific factors in distress detection were emphasized due
to differences in detected distress events between devices.

KEYWORDS

virtual reality, user experience, wearables, Empatica E4, Faros 360, distress detection,
mean heart rate, RMSSD

1 Introduction

Virtual Reality (VR) environments have gained significant popularity in recent years,
offering immersive and interactive experiences that can simulate realistic scenarios.
Alongside the visual and auditory components, the measurement within VR environments
can provide a deeper understanding of human responses and experiences. By capturing
physiological signals such as heart rate (HR), electrodermal activity (EDA), and
motion data (MD) like acceleration, researchers can explore the correlations of
user engagement, emotional states, cognitive processes, and user experiences during
VR interactions (Egan et al., 2016). VR’s ability to create a strong sensation of
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being physically present in the virtual environment and the
perception that virtual events are genuinely occurring ensures
that users react to virtual scenarios as they would in real-life
and collectively contribute to overall sense of presence in virtual
environment (Slater et al., 2022).

The information collected with distress detection in VR systems
has the potential to enhance user experience and holds promising
implications across various fields. In VR therapy, it can be used
to monitor and regulate patients’ emotional states during exposure
sessions (Rahman et al., 2022), such as in the treatment of phobias
(Raghav et al., 2016) or Post-Traumatic Stress Disorder (PTSD)
(Wout et al., 2017). Physiological monitoring systems, detecting
indicators like increased heart rate (Rahman et al., 2022) and skin
conductance (Wout et al., 2017), allow therapists to dynamically
adjust virtual environments in real-time, optimizing therapy
based on individual needs. In training simulations, particularly
in high-pressure scenarios such as medical (Rahman et al.,
2022) or military (Wout et al., 2017) training, distress detection
becomes a valuable tool. By evaluating trainees’ stress levels,
VR systems can identify areas requiring additional support or
practice (Parsons and Reinebold, 2012). Beyond therapy and
training, distress detection contributes significantly to human-
computer interaction, enabling VR systems to adapt the presented
content based on the users’ emotional states for more natural
and intuitive interactions (Duric et al., 2002). Additionally, VR
systems equipped with physiological sensors can offer stress
management experiences, providing guided meditation or calming
environments that respond to users’ distress levels, creating a
feedback loop to enhance relaxation (Gromala et al., 2015). The
field of Neuroergonomics, which examines brain function in real-
world environments, offers another potential application of distress
detection in VR, particularly in optimizing user-performance in
safety-critical professions (Parasuraman, 2003).

One of the primary physiological signals used for distress
detection is heart rate, which measures the number of heart beats
per minute. Heightened distress or emotional responses can lead
to changes in HR (Mack et al., 2006), making it a fundamental
parameter in assessing distress levels during VR experiences
(Robitaille and McGuffin, 2019). Recent research suggests that
there might be subtle differences in HR patterns between males
and females. Studies have indicated that females tend to exhibit
slightly higher average resting HRs compared to males, which
could be attributed to hormonal and physiological variations
between the sexes (Altini and Plews, 2021; Quer et al., 2020).
Beyond sex-related distinctions, HR is influenced by a variety
of factors, including physical activity levels, stressors, emotional
states (Wu et al., 2019), fatigue (Tran et al., 2009), and even
caffeine consumption (Koenig et al., 2013) and environmental
conditions (Tiwari et al., 2021).

For reliable distress detection, the non-intrusivity of
measurement devices is paramount. In VR, user immersion and
experience are crucial, and intrusive devices can compromise
data accuracy and user comfort. Wearable sensors and cameras
provide non-intrusive data acquisition (Heikenfeld et al., 2018),
preserving the naturalness of the VR experience and encouraging
user compliance. In this context, we decided to utilize Empatica
E4 (E4) wristband and Faros 360 chest strap (Faros), particularly
as in the previous research we already validated E4 against Faros

(Gruden et al., 2019). This study focused on evaluating E4 and
Faros 360 devices in assessing drivers’ physiological responses
during various driving conditions, emphasizing their effectiveness
in measuring heart rate variability (HRV) and EDA, but noting
challenges with motion artifacts affecting data quality, particularly
in distinguishing different driving demands.However, it showed that
the user-friendly nature of E4 sets it apart in experimental settings,
offering easy mounting and usage—crucial factors when subjects
are engaged in multitasking scenarios requiring sustained focus.
Such non-intrusive nature of E4 wristband ensures seamless data
collection (Heikenfeld et al., 2018) contributing to the authenticity
and reliability of physiological responses in virtual reality settings.

However, it is important to note that results of (McCarthy et al.,
2016) point out the low data quality of physiological signals obtained
using E4 due to motion artefacts, especially the Blood Volume Pulse
(BVP) signal, often used to estimate the HR signal. Even though
Empatica released a new device – (Empatica Embrace Plus, 2024),
we chose E4 device as its data is easily accessible (Looff et al., 2022),
since the new device does not provide the API or access to the raw
data in real time anymore. With the new device the data collection
should be performed through a proprietary Empatica app and web
server which is not ideal for research purposes, but it is worth noting
that, for offline purposes, researchers can access raw.avro files from
the server, and if needed, convert it to .csv format (Béquet, 2023).
Furthermore, E4 device is still present on the market and majority
of researchers still use it. One of Faros’ main limitations is direct-
skin placement, which may be uncomfortable for some subjects,
especially those with skin sensitivities or those requiring prolonged
wear. Adhesive reactions, pressure from the chest strap, and sweating
can impact user comfort and compliance. Its placement makes it
less practical in applied settings like workplace monitoring, and
its requirement to have precise sensor placement adds to setup
complexity and potentially affects data quality.

Through the E4 measurement evaluation and comparison with
Faros, this paper explores the importance of reliable data acquisition
inVR environments for distress detection.Our proposedmethod for
distress detection involves a straightforward thresholding approach
and a rule-based system, contributing to the precision and efficiency
of the analysis. The method uses distress detection thresholds that
are subject-specific in order to tailor the method to each subject’s
unique physiological profile.

Subjects were exposed to a baseline measurement and two
VR scenes–a non-interactive scene (NIS) in which the subjects
observed nature, and an interactive scene (IS) with distress
induction in which the subjects were required to solve the Hanoi
tower problem using a VR controller while being surprised with
various distractors.

The main research questions addressed in this study
are as follows:

1. Can both the Faros and E4 devices effectively detect distress in
individuals in IS?

2. What is the level of data quality (determined through level
of noise contamination) achieved by the E4 device when
measuring heart rate used for distress detection?

The first research question explores firstly the possibility of using
Faros/E4 in distress intensity and frequency detection based on the
HR parameters, and secondly also the E4 performance compared to
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Faros. Only responses collected in the IS are considered since this
scene is created for the purpose of eliciting distress in test subjects.

The second question is primarily focused on validating the
performance and data quality of the E4 device assessed by evaluating
the level of noise present in the heart rate measurements used for
distress detection. The goal is to confirm if E4 can emerge as a user-
friendly option for future studies, by exploring whether its heart rate
measurements exhibit sufficiently high data quality, ensuring that
distress detection remains unaffected. Baseline measurements, NIS
and IS data is considered, since it is expected that the data quality is
high for each measurement.

In summary, these research questions form the core inquiries
guiding the investigation, aiming to assess the accuracy and
potential of the E4 device and the comparative performance of the
Faros and E4 devices in distress detection.

2 Materials and methods

In this section, the experimental design and procedures used to
investigate physiological responses in a motion-controlled virtual
environment are outlined. Two commercially available devices,
Empatica E4 wristband and Faros, which were utilized to measure
and record various physiological parameters during the study, are
introduced. Before the experiment description, an overview of
each device’s capabilities and functionalities is provided, setting the
context for their use in this research. Subsequently, the experiment
design is presented, along with subject details, and the VR scenes
employed to capture physiological data.

2.1 Empatica E4 wristband device

Empatica E4 wristband (shown in Figure 1) is a commercially
available physiological monitoring device (Empatica, 2024). It is
equipped with several sensors that enable the measurement of
multiple physiological parameters. Using photoplethysmography
(PPG) it can capture the Blood Volume Pulse, which provides
information on changes in blood volume in the microvascular
bed, allowing for the estimation of HR and inter-beat interval
(IBI) (Allen, 2007). Additionally, the device includes an EDA
sensor, which measures changes in the electrical conductance of the
skin, reflecting the user’s sympathetic nervous system activity and
emotional responses (Boucsein, 2012). Moreover, the E4 wristband
incorporates a temperature sensor, enabling the monitoring of
skin temperature variations, a 3-axis accelerometer that measures
acceleration in three directions, enabling the detection of motion
and physical activity that can help researchers understand the
subjects’ movements and activity levels during data collection.

Utilizing E4 wristband within a motion-controlled VR
environment offers several advantages, particularly in the context
of capturing physiological responses. The devices’ less obtrusive
and user-friendly nature allows seamless data collection without
disrupting subjects’ experiences in the VR scenarios. Being worn
on the wrist, it enables continuous monitoring and real-time data
transmission, making it well-suited for prolonged data collection
during immersive VR sessions.

However, it is crucial to address potential limitations associated
with the E4 wristband. Subjects’ activities during VR sessions may
introduce motion artifacts and affect data quality. To mitigate this
issue, carefulmeasureswere taken to control subjects’motion during
data collection, ensuring more accurate and reliable physiological
measurements (Böttcher et al., 2022). Considering the context of our
study, the E4 wristband ease of use, portability, and compatibility
with VR scenarios make it an appropriate choice for HR.

2.2 Faros 360 device

Faros 360 (shown in Figure 2) is a commercially available
physiological monitoring device designed for electrocardiographic
(ECG) signal recording. It allows the measurement of the electrical
activity of the heart, providing information on heart rate and
cardiac rhythm. The device is equipped with high-quality ECG
sensors that enable accurate and reliable data collection, and
enables 3-channels ECG measurement and data streaming via
Bluetooth (Bittium Faros, 2024).

This device focuses on ECG measurements and high-quality
ECG signals which makes it well-suited for providing precise HR
data, crucial in understanding subjects’ cardiovascular responses
during VR scenes in a motion-controlled VR environment.

However, it is essential to consider the limitations associated
with Faros application in the VR context. The device is not capable
of capturing other physiological parameters, such as EDA or
skin temperature, which can also provide important information
about subjects’ emotional and physiological states during VR
experiences. Additionally, the placement of ECG electrodes on the
chest may introduce potential challenges, as subjects may have
to wear additional equipment that could affect their comfort and
immersion during the VR sessions. There are three different ways
to mount Faros to a participant’s chest, including Fast-Fix (Bittium’s
proprietary electrode), cable sets, and using a textile belt with two
electrodes and amounting pad for Faros. For our study, we chose the
third option, using a textile belt with two electrodes and a mounting
pad, to balance signal quality and participant comfort. Faros 360was
chosen for this study due to its specialization in ECGmeasurements,
allowing the acquisition of precise HR data during the motion-
controlled VR scenes. By leveraging the capabilities of Faros 360,
subjects’ cardiac responses can be understood, enhancing insights
into their physiological reactions. Moreover, Faros 360 serves as a
valuable reference for evaluating the performance of E4 wristband.
Through a comparison of the data obtained from both devices,
the consistency and reliability of the E4 wristband physiological
measurements in the VR environment can be assessed. This
comparative analysis has the potential to provide a comprehensive
understanding of the strengths and limitations of each device,
enabling informed decisions about their applications in future
physiological research within VR settings.

2.3 Virtual reality

The study was conducted with the HTC Vive Pro Eye (2024)
VR Headset (HTC Corporation, Vive, 2024). The system consists
of a headset with integrated glasses with stereoscopic screens for
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FIGURE 1
Empatica E4 device. This photography was taken at the Faculty of Electrical Engineering, University of Ljubljana.

FIGURE 2
Bittium Faros 360 device. This photography was taken at the Faculty of Electrical Engineering, University of Ljubljana.

displaying content in virtual reality, and two hand-held controllers
that are used to manipulate and interact with the environment and
the displayed objects in it. The two screens (one for each eye) of the
glasses are high-definition OLED screens with a diagonal of 8.89 cm
(3.5 inches). Each screen has a resolution of 1440 × 1600 pixels,
whichmeans that the headset displays content with a total resolution
of 2880 × 1600 pixels or 615 pixels per inch. The refresh rate is
up to 90 Hz and offers 110-degree field of view. The headset straps
and the distance between the screens are adjustable, which allows
for adaptations that best conform to the subjects’ needs (head size,

pupillary distance, etc.). The hand-held controllers have a touch-
sensitive surface, which the subject uses to input controls in a similar
way as they would when using a touchpad on a laptop computer.The
headset is equipped with speakers for playing sound.

For the baselinemeasurement subjectswere equippedwith Faros
and E4 wristband for measuring the HR and BVP (respectively) and
seated quietlywith no significantmovement, on a chair in themiddle
of the cabinet for 4 minutes. The length of the baseline data capture
was consistent with the second and third parts of the experiment
to ensure uniformity across all phases. This initial phase provided
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FIGURE 3
Left) Fall of the first box, center) fall of the second box, right) monster attack.

data on participants’ resting state and physiological responses in the
absence of virtual reality stimuli.

In the second part of the experiment, participants remained
seatedwith both Faros andE4, but this time they alsoworeHTCVive
Pro Eye VR headset. The basic scene of Steam VR Home was used
as the non-interactive scene (NIS), which is a virtual environment
consisting of a house with a terrace on top of a mountain. The
house is surrounded by trees, and in the distance the subject has a
beautiful view of the surrounding mountains. In the background,
the subject can hear the wind blowing and birds chirping. During
the experiment, the subjects were placed on the mentioned terrace,
where they could observe the view in the distance and the birds
flying around them. This environment was chosen with a goal to
keep the subjects calm during this scene and to not induce distress.

The interactive VR scene (IS) was created using Blender
(Stichting Blender Foundation, Amsterdam, Netherlands) for
the visual elements, and Unity (Unity Software Inc., San
Francisco, United States) for the creation of the actual scene and
implementation of the Hanoi Tower problem game. The scene was
set in a poorly lit and slightly dimmed warehouse. A forklift is
driving in the background and ambient sound of a warehouse and
the forklift moving is played through the speakers. Shelves with
cardboard boxes are placed left and right from the subject.

The subject is (virtually) seated in front of a table in the middle
of the room (Figure 3), so they cannot see any of the walls of the
space. A table lamp is lit red at the beginning of the test, which turns
green upon successful completion of the Hanoi Tower task.

The scene test starts when the subject is satisfied with the
placement of the VR and the view (and distance) they have of the
table in front, which enables easy and comfortable moving of the
cubes to complete the task. The subject is instructed to only move
the dominant hand, keeping the non-dominant hand on the armrest.
On the table, bases and cubes with different sizes are presented for
solving the Hanoi Tower problem. The subject is first presented with
three cubes and asked to arrange them in a predefined pattern. Upon
successful completion, the scene ends. The scene is then reset, and
the subject is presented with an additional cube, resulting in four
cubes. Again, the subject is asked to arrange them in a predefined
pattern. Upon successful completion, the scene ends. After that,
the last scene is presented, where the subject is presented with five
cubes and again asked to arrange them in a predefined pattern. Two
minutes (120 s) after the start of the scene, one of the boxes falls from
the left shelf to the floor accompanied by a loud bang. A few seconds

before the end of the 3 minutes (180 s), a tension sound effect like
typical sounds used in horror movies is played. This effect adds an
extra level of suspense by telling the test taker that something is
about to happen. As soon as the tension sound effect ends, another
box falls from the right shelving unit, this time with a louder bang
and further into the room. Unlike the first event, the second fall
causes the lights on the ceiling to flicker, which can also be heard,
for 1.5 s. Boxes falling are very short events, lasting less than 5 s.

After 4 minutes (240 s), a monster, making loud noises, jumps
from the ceiling in front of the test subject and starts attacking them.
As the monster lands on the ground, the lights in the background go
out and the warehouse becomes very dark. A light placed under the
table and aimed at the monster begins to flicker, illuminating the
monster’s face. This lasts less than 5 s, and at this point, the scene
and the whole trial ends. The subject is at that moment instructed to
take off the VR glasses.

2.4 Experiment design

The study involved subjects aged over 18 and under 40,
due to the difference in physiological signals after a certain age
(Quer et al., 2020; Zhang, 2007; Acharya et al., 2004), with no known
cardiovascular diseases. Each subject participated on a voluntary
basis, and they could withdraw or stop the experiment at any point.
The studywas conducted in accordancewithDeclaration ofHelsinki
(General Assembly of the World Medical Association, 2014) and
the study design as well as the study execution strictly followed the
Code of ethics for researchers and Guidelines for ethical conduct in
research involving people issued by (University of Ljubljana, 2024).
Before the study, the participants were informed about the study
goals and asked to sign the Informed consent provided by the
ethical committee of University of Ljubljana. We acquired data
on the subjects’ sex referring to the biological features related to
both physical and physiological characteristics (Coen and Banister,
2012). The information on participant’s sex was self-reported on a
voluntary basis.

We have followed Cohen’s guidelines for interpreting effect
sizes (Cohen, 1988), with a slight modification for effect
size distribution analysis for HRV studies as suggested by
(Quintana, 2016; Laborde et al., 2017). The data for three subjects
was not recorded appropriately in total, so the final sample size
resulted in 8 female and 10 male subjects participated in the

Frontiers in Physiology 05 frontiersin.org

https://doi.org/10.3389/fphys.2025.1480018
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Medarević et al. 10.3389/fphys.2025.1480018

study, with a mean age of 22.3 ± 1.3 years (minimum age: 20,
maximum age: 25).

The experiment was conducted in a motion-controlled virtual
reality environment. Prior to the experiment, both the E4 and Faros
devices were attached to the subject. Subjects were seated, with the
E4 device positioned on their non-dominant hand, which they were
instructed to keep on an armrest throughout the experiment to
minimize movement. They were also instructed on the importance
of remaining still to ensure data quality. Interaction with the VR
scene was conducted using their dominant hand. Faros was placed
with the textile belt right below the chest muscle. Once the VR
headsetwas turned on, physiological responsesweremeasured using
both devices simultaneously. Each subject was exposed to a:

1. Baseline measurement
2. Non-interactive scene (NIS)
3. Interactive scene (IS),

and for each condition a 4-min recording was obtained.

2.5 Variables

In order to perform data quality assessment and distress
detection, several key metrics had to be calculated.

2.5.1 Data quality metrics
The Signal-to-Noise Ratio (SNR) was estimated for each heart

rate signal, measuring the strength of the desired signal relative to
backgroundnoise or interference (Box, 1988).Psignal was calculated
as the average of squared HR values recorded by each device, and
Pnoise was estimated as the average squared difference between the
HR values and their mean–essentially the variance of the HR signal.
This calculationwas performed separately for both the Empatica and
Faros devices.

SNR = 10 log10
Psignal

Pnoise

Higher SNR values indicate stronger and more reliable
heart rate signals, providing insights into signal fidelity and
measurement accuracy.

Correlation is a statistical method used to evaluate the
potential linear relationship between two continuous variables. The
correlation coefficient, a dimensionless quantity ranging from −1
to +1, quantifies the strength of this presumed linear association.
A coefficient closer to +1 indicates a strong positive correlation,
while a value closer to −1 suggests a strong negative correlation.
A coefficient near 0 indicates a weak or no linear relationship
between the variables (Swinscow and Campbell, 2002; Witte R.S.
and Witte J.S., 2017). In this study, both Pearson (Kirch, 2008) and
Spearman (Dodge, 2008) correlation coefficients were employed to
assess the linear and monotonic relationships between the Faros
and E4HR signals, respectively.While Pearson correlationmeasures
linear associations, Spearman correlation evaluates monotonic
relationships, making it less sensitive to nonlinear associations
or outliers (Siegel and Castellan, 1981).

Furthermore, the Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) (Willmott et al., 1985) were computed for
both Faros and E4 HR signals for each subject. The MAE represents

the average absolute difference between corresponding heart rate
values from Faros and E4, with Faros considered the reference
or “ground truth” value. A smaller MAE indicates a lower overall
error, reflecting a higher level of agreement between the two
devices. On the other hand, RMSE represents the square root of
the averaged squared differences between heart rate values, placing
greater emphasis on larger errors compared to MAE.

Each of these metrics was calculated for 16 out of 18 subjects’
baseline, NIS and IS scene, excluding two subjects with corrupted
signals in IS. Out of the remaining 16 subjects, six were female and
10 were male.

2.5.2 Distress metrics
To compare the distress detection capabilities of E4 wristband

and Faros based on HR features, two parameters were used:

1. Mean Heart Rate (Mean HR) provides an average HR value
over a specific time period and serves as a measure of central
tendency for HR data. It can be useful for understanding the
overall level of cardiac activity during a specific time interval.
It is commonly used to compareHRvalues between individuals
or different conditions, such as rest and exercise (Karvonen and
Vuorimaa, 1988). Mean HR is typically expressed in beats per
minute [bpm].

2. Root Mean Square of Successive Differences (RMSSD) on the
other hand, quantifies the variability in time intervals between
consecutive heartbeats. It is calculated by taking the square
root of the average of the squared differences between adjacent
HR values. RMSSD reflects the high-frequency components
of HRV, which are primarily influenced by parasympathetic
(vagal) activity (Shaffer and Ginsberg, 2017). Higher RMSSD
values indicate greater variability in HR, suggesting a more
flexible autonomic nervous system and better cardiac health.
RMSSD is often used as a marker of parasympathetic activity
and can be used to assess the balance between sympathetic and
parasympathetic regulation of the heart.

As outlined in (Stauss, 2014), it is crucial to avoid using
HRV parameters in isolation without considering the mean level
of HR, as this approach can lead to serious misinterpretation of
experimental data. In this study, we chose Mean HR and RMSSD
since their accuracy is preserved even when short-term recordings
are used (Baek et al., 2015). Also, these two features are both
important parameters in the analysis of HRV and are commonly
used in research and clinical settings to assess autonomic function,
cardiac health, and the impact of interventions or conditions on the
cardiovascular system (Kamath et al., 2012).

Ultra-short-term (UST) recordings for HRV estimation have
shown promise due to their efficiency in clinical and research
settings. While UST measurements exhibit strong correlations with
longer recordings for certain HRV parameters, such as mean HR
and RMSSD, their accuracy may vary for other parameters like
standard deviation of NN intervals (SDNN). Contextual factors,
such as recording method (e.g., ECG vs PPG), age, health and
artifact removal procedures, and the choice of HRV parameters
can influence the reliability of UST measurements (Shaffer and
Ginsberg, 2017). In this study, a 10 s window for segmentation
and calculating mean HR and RMSSD was employed, since the
correlations with the longer short-term recordings was reported
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as high enough–for mean HR in (Baek et al., 2015; Shaffer et al.,
2016) and for RMSSD in (Baek et al., 2015; Nussinovitch et al.,
2011; Salahuddin et al., 2007). Also, using a time window of 10 s
helps capture short-term fluctuations in heart rate. It provides a
balance between capturing immediate changes and avoiding noise
or transient spikes that may occur within shorter time intervals.
Munoz et al. (2015) conducted a comprehensive investigation into
HRV measurements across a large adult sample (N = 3,387) and
found that averaging over multiple 10-s segments, regardless of
whether they are continuous, can provide reliable estimates of
RMSSD. This approach aligns with contemporary practices in HRV
analysis, where shorter recording periods are deemed sufficient
for capturing meaningful physiological variability in quasi real-
time. However, further research is needed to standardize protocols,
establish normative values, and ensure consistent application of
UST HRV measurements in place of conventional 5-min and 24-h
recordings (Electrophysiology, 1996).

2.6 Data analysis

The data analysis section focuses on the processing and
evaluation of the physiological data collected from both the E4
wristband and the Faros device during the motion-controlled VR
experiment. The data undergoes thorough preprocessing to ensure
data quality, followed by an assessment of E4 data quality. The
section further explores distress detection using data from both
devices and examines distress intensity and frequency. Additionally,
a detailed analysis of distress during the interactive scene is
conducted to gain insights into subjects’ physiological responses.

2.6.1 Preprocessing
The collected physiological signals underwent comprehensive

preprocessing to improve data quality and reliability. For this
step and the analysis, Python version 3.9.7 (Python Software
Foundation, Delaware, United States) was used. Synchronization
between physiological recordings and VR events was achieved
using timestamps from both data sources, since the distress events
timestamps were known. The Faros ECG signal, sampled at 500 Hz,
was subjected to various preprocessing steps using the biosppy
Python package (Carreiras et al., 2018) and its ecg.py script. The
first step was the application of a bandpass Finite Impulse Response
(FIR) filter to eliminate artifacts outside of ECG frequency range.
The order of this filter was calculated as 0.3∗sampling rate, and the
cutoff frequencies were set to 3 and 45 Hz, with a goal to eliminate
baseline drift, remove low-frequency noise such as muscle artifacts
and electrodemotion artifacts, preserve ECGwaveform and exclude
higher-frequency noise. Hamilton segmentation (Hamilton, 2002)
was used to accurately detect and isolate the QRS complexes and
correction of R-peaks was done using template matching. Heart rate
was calculated based on the array of R-peaks, and it was smoothed
using moving average filter of type boxcar and window size equal to
three samples (6 ms).

Similarly, the E4 BVP signal, sampled at 64 Hz, underwent
preprocessing using the ppg.py script of the biosspy package.The first
preprocessing step for the BVP signal involved filtering using 4th
Butterworth bandpass filter with cutoff frequencies set at 1 and 8 Hz,
applied with a goal to remove respiration influence (0.2–0.33 Hz),

high frequency noise, and preserve heart rate range (from 1 Hz to
3 Hz, or 60–180 bpm). Both filters from ppg.py and ecg.py scripts
use filtfilt function from the scipy package to perform zero-phase
filtering, meaning that the filter is applied in both the forward
and reverse directions, effectively eliminating any phase distortion
introduced by the filtering process.

Onset detection was performed utilizing Elgendi’s method
(Elgendi et al., 2013), and heartbeat extraction was done using
detected peaks. The final HR signals were obtained using moving
average smoothing of type boxcar and window size set to three
samples (46.88 ms).

Both HR signals were upsampled to 4 Hz, to ensure accurate
alignment between the two datasets, facilitating meaningful
comparative analysis of the physiological responses captured by
the Faros and E4 devices.

2.6.2 Data quality assessment
To ensure the quality and reliability of the HR signals, key

metrics described in Section 2.5.1. were calculated. SNR was used
to evaluate each signal, with higher SNR values being preferable.

The correlation coefficient was used to quantify the similarity
between the Faros and E4 HR signals, providing insights into their
relationship. A higher correlation indicates a stronger connection
and similar patterns, validating the accuracy and reliability of E4
HR measurements compared to Faros as the reference. A strong
correlation signifies good E4 signal quality and reliability, while
lower correlation may suggest potential measurement errors or
artifacts.

MAE and RMSE were compared in order to determine the level
of agreement between E4 and Faros for each of the conditions, with
lower values indicating a higher degree of agreement.

In addition to the calculated metrics, Bland-
Altman plot (Altman and Bland, 1983), a statistical method for
assessing the agreement between two measurement techniques, was
generated, and analyzed to further assess the agreement between
Faros and E4 HR signals. This plot provides a comprehensive
visualization of the mean differences and limits of agreement,
offering valuable insights into the overall consistency and potential
bias between the two measurement methods, aiding in the
identification of any systematic bias or trends that may not be
apparent in individual metrics.

2.6.3 Distress detection using Faros and E4:
intensity and frequency

In order to detect distress during both scenes, three
additional preprocessing steps needed to be performed: HR
signal segmentation, HR feature calculation and feature threshold
calculation, after which the detection analysis was performed.

HR signal was segmented using a 10 s window, and features
were calculated as described in Section 2.5.2. The calculation of
feature thresholds was guided by the recognition that heart rate
can vary significantly among individuals due to factors such as
sex, age, fitness level, health conditions, and other physiological
differences (Alexandre et al., 2012). To account for these individual
variations (Whitehead et al., 1977), a personalized threshold
approach was implemented, aiming to establish distinct thresholds
for each subject based on their unique baseline HR.
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The baseline measurement served as the reference for deriving
feature thresholds to compare with signal segments fromNIS and IS.
For the Mean HR feature, the threshold was determined by setting
it to the minimum value of each subject’s baseline HR, which is
considered as the resting or normal HR. On the other hand, the
threshold for the RMSSD feature was calculated as the median of
the RMSSD values computed during the entire baseline period, in
order to make it more robust to outliers and work with non-normal
distribution (Altman and Bland, 1983; Rossi, 2022).

The utilization of individualized thresholds allows for a
relative comparison of the features, as it considers the baseline
HR specific to each subject. Specifically, when comparing the
Mean HR feature with its threshold, a 30% increase above
the personalized threshold was employed. Likewise, for the
RMSSD feature, a 50% decrease below the subject’s personalized
threshold was used. This relative difference approach offers a
more meaningful indication of significant changes in physiological
responses, as it considers the unique baseline characteristics of each
individual (Alexandre et al., 2012).

These two features are used in the analysis that compares the
distress detection capabilities of E4 and Faros. The following steps
were performed to compare the HR signals and their performance
in detecting distress during each scene, so each step was performed
on both E4 and Faros data, for each subject and each scene:

1. Threshold calculation: based on the Baseline measurement,
calculated for each subject and its features.

2. Segmentation: HR signal is divided into non-overlapping
segments of 10 s.

3. Feature calculation: Mean HR and RMSSD were calculated for
each segment of the HR signal.

4. Threshold comparison: For each HR signal segment, both
Mean HR and RMSSD are compared to their respective
thresholds.

5. Distress detection: If the Mean HR of a segment exceeded
its baseline threshold by 30%, it was considered elevated and
labeled as one in the output vector. Similarly, if the RMSSD
of a window was 50% below its baseline threshold, it was
considered low and labeled as one in the output vector.
Otherwise, a value of 0 was assigned, in both cases.

6. Threshold comparison vectors: for bothMeanHR and RMSSD
a threshold comparison vector was obtained.

7. Interpretation: A value of one in either the Mean HR and
RMSSD threshold comparison vector pair indicated “medium
distress level”, a value of one in both the Mean HR and RMSSD
threshold comparison vector pair indicated “high distress
level” and a value of 0 in both the Mean HR and RMSSD
threshold comparison vector pair indicated “low distress level”
or absence of it. This step was performed to granulate the data
and present a more detailed distress state of a subject.

For example, if aMeanHR threshold comparison vector is equal
to [0 1 0 1], and its RMSSD threshold comparison vector is equal to
[1 1 0 0] the resulting distress vectorwould be equal to [1 2 0 1]which
would translate to:

• 1: medium distress level
• 2: high distress level
• 0: low distress level

8. Distress level cases occurrence: number of occurrences for
each level of distress was counted.

A statistical analysis was done to compare the occurrence
of distress of a certain level (low, medium, or high) for IS,
between Faros and E4. For this analysis, the Wilcoxon signed-
rank test (Wilcoxon, 1992) was used, since it is suitable for
comparing paired data from the same group if the data is not
normally distributed. We have used it along with Cliff ’s delta (Cdelta)
as the effect size measure. In this case, the Faros and E4 data
came from the same subjects, and it was measured during IS. The
hypothesis related to this test is that there should be no statistically
significant difference between the distress level occurrences detected
by E4 and Faros during IS.

The test was conducted with a confidence level of 95%, ensuring
a reliable measure of statistical significance. The obtained p-
values were then compared to the predetermined alpha level of
0.05, allowing us to assess whether the observed differences were
statistically significant.

2.6.4 Interactive scene distress analysis
As it was already mentioned, during the interactive

scene (IS) subjects are required to solve the Hanoi tower
problem using a VR controller while being surprised by
various distractors:

1. A box falls from the shelf in the 2nd min (120 s) after the
scene starts.

2. The second box falls from the shelf in the 3rd minute
(180 s) after the scene starts and the suspense sound effect
is played.

3. Themonster appears 4 min (240 s) into the scene, and it marks
the end of the scene.

The idea of this analysis was to try to detect distress (if there is
any) during the events at 120/180/240 s, for both Faros and E4. Since
each HR signal is segmented into 10 s segments, the following steps
are performed:

1. Segment extraction: For each event, three segments were
extracted: (1) the segment immediately before the event, (2)
the segment starting at the onset of the event with 10 s
duration, and (3) the segment capturing the 10 s following
the event onset. This approach accounted for potential delays
in physiological responses while ensuring comprehensive
coverage of distress reactions.

2. Distress detection was conducted by checking if distress
was detected in at least one or two segments out of the
three for each event situation. The resulting distress vectors
explained in Section 2.4.4., step 7 was used to perform
these checks.

3. Calculate distress occurrence in percents: based on the
previous step values, the percentage of situations in which
detected distress coincided with the VR events for each
subject was calculated. This was done using two criteria:
one-third (1/3) of the segments detecting distress and two-
thirds (2/3) of the segments detecting distress. The resulting
percentages ranged from 0% (no detected distress coinciding
with VR events) to 100% (all detected distress coinciding with
VR events).
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FIGURE 4
Visual comparison of Faros and E4 heart rate signals for three distinct cases (Subject 1, Subject 16, and Subject 11), for each scene.

3 Results

3.1 Data quality assessment results

To provide a comprehensive understanding of the data
quality assessment, we start with a visual inspection of the HR
signals from both devices. We specifically highlight three distinct
cases, represented by Subjects 1, 11, and 16. These cases show
case varying degrees of overlap between Faros and E4 signals:
high overlap, medium overlap with E4 signal contamination,
and low overlap with substantial E4 signal contamination,
respectively (Figure 4). This visual representation serves as a
foundational step in our analysis, allowing us to closely examine the
specific differences in noise-related data quality assessment between
the two devices.

In the case of Subject 1, there is little difference between
Faros and E4 signals, for both scenes. However, occasional peaks
in the E4 HR signal indicated the possibility of bad contact or
unfiltered movement artifacts. Subject 16 exhibited a similar trend
between the Faros and E4 HR signals. However, E4 signal was
heavily contaminated with artifacts, likely caused by movement or
other sources of unfiltered interference. For Subject 11, there was

a clear lack of overlap between the Faros and E4 HR signals most
of the time. The discrepancy could again be attributed to poor
contact between the E4 device and the subject’s skin and/or data
loss issues.

The Bland-Altman plot is visualized in Figure 5, and it
implies similar conclusions as the ones obtained by observing
visual comparison of Faros and E4 HR signals in Figure 4.
This plot is often used to assess how similar a new instrument
or technique is at measuring something compared to the
instrument or technique used as the reference (Giavarina, 2015).
The abscissa of the plot displays the average measurement
of the two devices, and the ordinate displays the difference
in HR measurements between E4 and Faros. The further the
value of the average difference (orange horizontal line) is
from zero, the larger the difference in measurements between
the instruments.

Figure 5 shows that that value is further away from zero if
we observe Subjects from top row to the bottom row, coinciding
with Figure 4 and confirming that the measurement noise increases
the average difference in measurements between E4 and Faros.
Besides that, for Subject 1, most of the data points are inside
the 95% confidence interval (purple horizontal lines), while for
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FIGURE 5
Bland-Altman plot showing the agreement between Faros and E4 heart rate signals for Subjects 1, 16, and 11. Orange line represents the mean
difference in measurements between the two devices, and the two purple lines represent the upper/lower limit of the 95% confidence interval for the
mean difference.

Subjects 16 and 11 we can observe that the data points are
following a diagonal spread, indicating the discrepancy between
measurements of E4 and Faros is biased proportionally to the
magnitude of measurements. Also, in the upper right graph it can
be seen that themeasurements above the average line indicate biased
comparison and are a consequence of subjects’movements andmore
pronounced artifacts, as revealed in Figure 4.

Table 1 presents themean and standard deviations of SNR values
for each sensor and scene utilized in this study, calculated across
all subjects. The results indicate that Faros consistently exhibited a
higher mean SNR than E4 for all measurements.

Furthermore, the standard deviations provide insights into the
variability of the signal quality among the subjects for each sensor.
Faros demonstrated smaller standard deviation values compared to
E4, implying a greater degree of consistency in the SNR values across
measurements.

Pearson and Spearman correlation coefficients mean values
and standard deviation values, calculated between Faros and E4
across all subjects and for each scene, are displayed in Table 2.
The correlation coefficients provide insights into the degree
and direction of association between the data collected by
the two devices.
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TABLE 1 Signal-to-Noise Ratio (SNR) mean value and standard deviation calculated across all subjects, for both Faros and E4 and each scene.

Scene Baseline NIS IS

Sensor E4 Faros E4 Faros E4 Faros

Mean ± SD [dB] 17.5 ± 3.2 22.4 ± 2.0 18.1 ± 3.9 24.2 ± 1.6 18.6 ± 3.3 22.9 ± 2.0

TABLE 2 Pearson and Spearman correlation coefficients mean values and standard deviation calculated between Faros and E4 across all subjects, for
each scene.

Scene Baseline NIS IS

Sensor Pearson Spearman Pearson Spearman Pearson Spearman

Mean ± SD 0.24 ± 0.32 0.30 ± 0.34 0.19 ± 0.24 0.27 ± 0.27 0.31 ± 0.27 0.36 ± 0.29

TABLE 3 Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) mean values and standard deviation calculated between Faros and E4, across
all subjects, for each scene.

Scene Baseline NIS IS

Sensor RMSE MAE RMSE MAE RMSE MAE

Mean ± SD [bpm] 14.4 ± 8.2 9.9 ± 6.5 13.7 ± 8.0 8.9 ± 6.0 13.2 ± 7.1 9.2 ± 5.9

The results show that both Pearson and Spearman correlation
coefficients consistently showed positive values for all scenes,
indicating a positive linear relationship between the data captured
by Faros and E4 sensors. The mean Pearson correlation coefficients
ranged from 0.19 to 0.31, while the mean Spearman correlation
coefficients ranged from 0.27 to 0.36. These positive correlation
values suggest that as the physiological measurements from Faros
increase, the measurements from E4 also tend to increase, and vice
versa. However, these values do not indicate a strong correlation
between the measurements, and that may be caused by the noise
present in E4measurements. Standard deviation values ranged from
0.24 to 0.34 for Pearson and from 0.27 to 0.29 for Spearman. These
standard deviations represent the variability in the correlation values
among the scenes.

The Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) were computed to assess the agreement between the heart
rate signals obtained from Faros and E4 devices for each subject
and scene. The results presented in Table 3 indicate that for all three
measurements (Baseline, NIS, and IS), the RMSE and MAE values
were relatively small. For example, in NIS, the mean RMSE was
13.73 bpm, indicating an average difference of approximately 13.73
bpm between the HR measurements obtained from the two devices.
The mean MAE in the same scenario was 8.87 bpm, representing
an average absolute difference of around 8.87 bpm between the two
measurements.

Furthermore, the standard deviations of RMSE and MAE values
were also reported for each scene, providing information about the
variability in accuracy across different subjects. In general, smaller
standard deviation values suggest a higher degree of consistency and
reliability in the accuracy of heart rate measurements between Faros
and E4 for individual subjects.

3.2 Distress detection using Faros and E4:
intensity and frequency results

The results in Table 4 provide information on the frequency of
distress events at different levels (low,medium, and high) duringNIS
and IS as captured by both Faros and E4 devices.

Table 4 shows that, on average, there were more high- and
medium- and less low-level distress occurrences detected in IS than
in NIS both when using Faros and E4 HR signal. Standard deviation
was higher for Faros-detected distress occurrences compared to E4-
detected distress occurrences for all cases except for medium-level
distress in NIS where the trend was reversed.

Comparing the two devices, it can be observed that there
are differences in the number of detected distress events in each
category. For example, in NIS, E4 detected more medium-level
distress events compared to Faros, while Faros recorded more low-
level distress events. In IS, E4 detected noticeably more medium-
level distress events compared to Faros, but a similar amount of
high-level distress events.

The Wilcoxon signed-rank test comparing distress detection
capabilities of both devices at all distress levels, is visually
represented using boxplots in Figure 6 for IS, and the p-values for
are displayed in Table 5.

The p < 0.01 indicates that the difference in distress intensity
occurrences between the devices is statistically significant for the
Low andMediumdistress levels.However, for theHigh distress level,
the p-value of 0.57 suggests that there is no statistically significant
difference in distress intensity occurrences between the devices.
Cliff ’s deltawas calculated for comparison of distress occurrences of
each level between Faros and Empatica, and it was equal to −0.652,
0.667 and −0.018 for Low, Medium and High distress occurrences,
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TABLE 4 Faros and E4 detected distress level occurrences for NIS and IS mean value and standard deviation.

Faros NIS IS

Low Medium High Low Medium High

Mean ± SD [counts] 19 ± 8 3 ± 4 2 ± 6 9 ± 9 11 ± 7 7 ± 8

E4 NIS IS

Low Medium High Low Medium High

Mean ± SD [counts] 6 ± 8 14 ± 7 4 ± 5 1 ± 2 20 ± 6 6 ± 5

FIGURE 6
Boxplot comparisons of E4 and Faros for different distress level counts (left, middle, right plot) in IS.

TABLE 5 Distress intensity occurrences comparison between Faros and
E4 device for different distress levels in IS. P-values were obtained using
the Wilcoxon signed-rank test with 95% confidence interval.

Scene Distress Intensity

Low p < 0.01

Medium p < 0.01

dHigh p = 0.57

respectively. These values showed a significant difference between
devices for Low and Medium distress occurrences, since any value
above |0.474| is considered a large effect.

3.3 Interactive scene distress analysis
results

The analysis of distress occurrence during the interactive IS was
conducted using two criteria: detection in one-third (1/3) or two-
thirds (2/3) of the segments (before, during, and after the triggering
stimulus/event).The stricter criterion required distress presence for at
least20 saroundthetriggeringevent.Themeanandstandarddeviation
of the percentage of distress occurrences detected for both criteria (1/3
and 2/3) are shown in Table 6 for both Faros and E4 devices.

TABLE 6 Mean and Standard Deviation (SD) of percentage of distress
occurrences detected coinciding with VR triggering situations during IS.

Device Faros E4

Criteria 1/3 2/3 1/3 2/3

Mean ± SD [%] 88.9 ± 24.1 90.9± 21.6 98.2 ± 7.9 96.3 ± 15.7

The results indicate that both Faros and E4 devices detected a
relatively high percentage of distress occurrences coinciding with
triggering events during IS, with E4 showing slightly higher mean
percentages compared to Faros. The standard deviation reflects the
variability in event-related distress detection across participants for
each criterion and device, showing that the results obtained using
E4 HR signal were in a narrower range than the ones obtained
using Faros HR signal (7.86% and 15.71% compared to 24.1%
and 21.6%, respectively).

Figure 7 shows the periods of medium (yellow) and high (red)
level distress occurrences for both E4 and Faros HR signals during
NIS and IS. Although in NIS E4 HR signal is contaminated with
more noise than Faros HR signal, there is no distress detected,
which is expected since NIS is the scene without emotional events
or triggers. The impact of noise on false positive distress occurrence
detection can be seen in IS E4 HR signal, where Medium-level
distress occurrence was detected from 0 to 80 s due to multiple
high-intensity HR peaks that are not present in Faros HR signal.
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FIGURE 7
E4 (upper row) and Faros (lower row) heart rate signal with annotated medium- (yellow) and high- (red) level distress occurrences during NIS (left) and
IS (right).

4 Discussion

The presented study compared the distress detection capabilities
of two wearable devices, Faros and E4. The results shed light on
the strengths and limitations of each device and their potential
applications in assessing emotional responses during interactive
scenarios. Moreover, the analysis of distress occurrence during the
interactive scene provided valuable insights into the physiological
responses of participants during the dynamic and immersive
virtual reality experience.

To explore if both devices used in this study can effectively
detect distress during IS and answer the first research question,
the analysis of distress occurrence was conducted, and it revealed
interesting patterns during IS. Faros and E4 detectedmore high- and
medium-level distress occurrences in IS than in NIS, demonstrating
the impact of surprising elements on participants’ emotional
responses. While E4 showed slightly higher mean percentages
of distress occurrences compared to Faros, the devices exhibited
similar overall performance in detecting distress occurrences during
interactive scene-induced distress events. However, differences
in detected distress events between two devices highlight the
importance of considering device-specific factors in distress
detection studies.

The Wilcoxon signed-rank test indicated that Faros and E4
exhibited statistically significant differences in distress intensity
occurrences for low and medium levels, but not for high level
in IS. Since the high distress level occurrences are the ones, we
aimed to detect in the interactive scene, this is a significant result
that indicates that both devices detected strong subject responses
to distress inducing events, which implies that E4 could be used
for high distress detection in motion-controlled environment. The
significant differences between distress intensity occurrences for low
and medium levels could be attributed to the noise contamination
problem characteristic of E4 causing false positive distress detection.
Noisy HR signal results in increased RMSSD values which prevents
successful distress detection as with RMSSD we are looking for a
decrease below the threshold. The significant difference between
the two devices for low and medium distress levels is primarily the
consequence of multiple false positives of E4 (cases where E4 detects
distress even if it is not present). Since with E4 the RMSSD was
less frequently below the designated threshold, therefore correctly
interpreted as no distress, the occurrences of these false positive
detections can mainly be attributed to the Mean HR signal of E4.
This is not completely in line with the results from (Menghini et al.,
2019) that clearly state that Mean HR measures for E4 show
the best accuracy over various conditions. We believe the false
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positives observed in our study could also be attributed to the
selected duration of the segments used for calculation as a 10 s
segment is more prone to erroneous distress detection in case of a
noisy HR signal.

Ragot et al. (2018) compared a laboratory based Biopac
sensor to wearable E4 device for detecting emotion valence and
intensity (distress) using selected features, for which the correlation
coefficients ranged from 0.13 to 0.99, indicating non-consistency
among different parameters. Our approach showed that higher
distress levels are consistently detectedwith both deviceswhen using
appropriate feature engineering, comparable to the results of the
Machine Learning approach used in (Ragot et al., 2018) on a similar-
sized study sample of 19 volunteers. While valuable comparison
presented in (Ragot et al., 2018) confirms that Empatica can be
used for emotion valence and intensity classification in a non-noisy,
static environment, our study shows that E4 device can be used for
high-level distress detection in motion controlled, interactive VR
environment.

With regards to our second research question, we addressed
specifically the problem of data quality of E4 as this device is
known to be more prone to motion artifacts and results in poorer
SNRs. This was done mostly through noise contamination analysis
and direct comparison of both devices. While Faros consistently
exhibited higher mean SNR and smaller standard deviation, E4
signals occasionally showed false peaks indicating possible bad
contact or unfiltered movement artifacts.

Both Pearson and Spearman correlation coefficients showed
positive linear relationships between Faros and E4 data across all
scenes. However, the correlation coefficients are relatively moderate,
with large standard deviations, indicating that the strength of
the association between the data from these two devices is not
exceptionally strong. The moderate correlation can in our opinion
again be explained by the motion (and other) artefacts, common for
E4 measurements.

Despite relatively low correlation coefficients, small Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE)
values indicate good agreement in measuring heart rate. The
smaller standard deviation values for Faros further suggest higher
consistency and reliability in accuracy compared to E4. It is
important to consider that the Faros HR, obtained from the
ECG signal with a higher sampling frequency of 500 Hz, provides
better temporal resolution compared to E4 HR. This difference
in resolution could also contribute to potential errors and
discrepancies in the E4 HR signal.

It becomes evident that the presence of artifacts, poor contacts,
data loss and different sampling frequency impact the reliability and
alignment between the Faros and E4HR signals.This corresponds to
findings reported in (Schuurmans et al., 2020) where E4 also proved
to be a practical and valid tool for research on HR and HRV, but
only inmovement-controlled conditions (in this study, subjects were
meditating). With that, our third research question can be answered
by stating that E4 device exhibits good performance in measuring
heart rate, but with lower reliability and accuracy compared to
Faros, due to the limitations based on lower sampling frequency and
presence of artifacts and poor contacts that introduce noise to the
measurement.

The results of our study and their interpretation should be
considered with several limitations:

1. The noise present in the E4 HR signal after preprocessing
still impacts the accuracy of distress detection, as observed in
the example of Subject 2, IS with false positives. Future work
should include the employment of advanced signal processing
techniques to recognize noisy segments and to minimize the
impact of noise on distress analysis.

2. We did not assess Heart Rate Variability (HRV) from
Faros, as it may differ from Pulse Rate Variability (PRV)
from E4 and thus could introduce even more discrepancies
in results (Park et al., 2022).

3. The study focused on specific triggering events during IS to
assess distress occurrences. While these events were carefully
designed, they may not fully represent the complexity and
variability of emotional responses in real-world scenarios.
Further investigations incorporating a wider range of
emotional stimuli and experiences would provide a more
comprehensive understanding of distress detection in dynamic
environments.

4. The main limitation of this study was the sample size, which
was relatively small and age cohort as it included only
university students and consisted of 8 females (6, since for two
females the measurements were corrupted) and 10 males. This
may limit the generalizability of the findings. Future studies
with larger and more diverse samples are needed to validate
the observed trends.

5. The study focused on distress intensity occurrences, which
can be influenced by sex, age, individual differences and
contextual factors. Incorporating these factors in future
research would contribute to a more nuanced understanding
of the complex interplay between physiological responses,
individual differences, and emotional experiences. This
includes intra-individual factors such as caffeine intake and
fatigue levels, which may influence physiological responses
and heart rate variability.We should consider controlling these
variables in the future, for their potential impact on distress
detection in VR settings.

6. We have mostly focused on the participant comfort and
non-intrusivity of the setup, which is why we didn’t include
measurement of signals like EEG, which require additional
equipment, adding bulk and pressure and reduces participant
comfort, but, for example, has been shown useful in classifying
distress and no distress situations (Eldeeb et al., 2021). We
should aim to assess additional physiological measurements
that could provide more insights into the physiology behind
the distress assessment using VR in healthy subjects.

7. No self-reported measures of distress were included in
our study. While validated questionnaires could provide
valuable ground truth data, they are inherently limited by
biases such as social desirability, recall errors, acquiescence,
and participant fatigue. Future studies should incorporate
these measures, such as the Generalized Anxiety Disorder-7
(GAD-7) questionnaire (Spitzer et al., 2006), while carefully
considering their limitations when interpreting self-reported
data alongside physiological measurements

In this paper we presented a comprehensive approach to
measuring and understanding subjects’ physiological responses
within the motion-controlled VR environment by using two
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commercially available wearable devices. The study highlights
primarily the importance of considering device-specific factors and
data quality when using such wearable devices for distress detection.
Faros demonstrated superior signal quality and consistency
compared to E4 by retaining higher mean signal-to-noise ratios
(from 4.3 dB to 6.1 dB) for all scenes, making it a more reliable
choice for studies requiring high-quality HR data. Although
correlation coefficients between datameasured by Faros and E4were
consistently positive, they revealed relatively weak correlations with
correlation coefficients below 0.4. Both devices, however, showed
good agreement in measuring heart rate with average absolute
difference less than 9 bpm, indicating their potential utility in
assessing emotional responses during motion controlled interactive
VR scenarios. Moreover, both devices performed well in detecting
distress occurrences related to the triggering events and to the
high distress levels. We found no statistically significant difference
between Faros and E4 data for comparing high distress intensity
occurrences (p-value = 0.57), while this is not true for low and
medium distress intensities (p-value <0.01).

In addition to device comparison, we have also proposed a
simple rule- and subject-specific threshold-based distress detection
method that showed promising results and performance, especially
when detecting distress coinciding with the distress-inducing events
which were included in the interactive scene by design. Threshold
fine-tuning and exploring different options and threshold values is
out of scope of this paper, but it is one of the directions we would
consider in our future work.

While E4 device shows promising potential as a practical
alternative to Faros for distress detection, especially in scenarios
where wrist-worn monitoring is preferred, researchers must be
mindful of the specific research objectives and the level of data
accuracy and consistency required. For studies that demand the
highest level of data reliability and signal stability, Faros remains
the preferred choice. Nonetheless, these findings open the door for
further investigations and advancements in wearable physiological
monitoring technologies. Our future research could include adding
more distress-inducing scenarios and improving existing ones,
considering more physiological features for distress detection,
testing multiple commercially available devices, and trying to
minimize the movement artifacts through device placement or
differentmovement artifact removalmethods. Future research could
be directed towards examination of different distress inducing
scenarios, comparison of other relevant physiological features for
distress detection, testing multiple wearable devices, minimization
of themovement artifacts with appropriate processingmethods, and
fine-tuning the feature thresholds for distress detection.
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