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Introduction: There is a well-established relationship between the respiratory
compensation point (RCP) and local muscular breakpoints determined from
near-infrared spectroscopy (NIRS) and electromyography (EMG). However,
these breakpoints have not yet been compared both in locomotor and non-
locomotor muscles simultaneously in single-leg cycling exercise. Therefore, the
aim of the study was to investigate the relationship and agreement between
systemic and local breakpoints in locomotor and non-locomotor muscles.

Method:Data from twelve physically-active participants (25.5 ± 3.9 years, 176.1 ±
11.6 cm, 71.2 ± 9.4 kg, 4 females) who completed a continuous single-leg step
incremental cycling test (10 W min-1) with their right leg were included in the
analysis. Ventilation and gas exchange were recorded to determine RCP. Surface
EMG (sEMG) and NIRS signals were measured from both vasti lateralis muscles
and breakpoints were determined from root mean Q square sEMG and
deoxygenated hemo- and myoglobin signal m[HHb].

Results: There was no significant difference in the power output at RCP (127.3 ±
21.8 W) and local muscular breakpoints both from the locomotor (m[HHb]:
119.7 ± 23.6 W, sEMG: 126.6 ± 26.0 W) and non-locomotor (m[HHb]: 117.5 ±
17.9 W, sEMG: 126.1 ± 28.4 W) muscles. Breakpoints also showed significant (p <
0.01) correlations (r = 0.67–0.90, ICC = 0.80–0.94) to each other with weaker
correlations in the non-locomotor muscle (r = 0.66–0.86, ICC = 0.74–0.90).
Despite the strong correlations, high individual variability and weak limits of
agreement (up to −32.5–46.5 W) and substantial absolute differences
(10.2–16.7 W) were observed which indicates that these breakpoints cannot
be used interchangeably.

Discussion: These findings offer further insights into the mechanistic relationship
between local and systemic physiological response to exercise with increasing
workload. We conclude that, despite strong correlations, local muscular
breakpoints do not have to coincide with systemic boundaries of physiological
domains.
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1 Introduction

The determination of breakpoints (also referred as thresholds or
turn points) to demarcate three intensity zones with distinctive
metabolic properties (Binder et al., 2008; Hofmann and Tschakert,
2011) is relevant for exercise and sports practice. Severalmethodological
approaches exist to determine these breakpoints.Most of thesemethods
are based on systemic adaptions to increasing exercise intensity, e.g.,
based on blood lactate concentration, gas exchange variables, or heart
rate (Meyer et al., 2005) while others are related to the local adaptions of
the muscles. A common systemic breakpoint is the respiratory
compensation point (RCP) which demarcates the transition from
heavy to severe exercise intensity and is determined by the
performance depending changes in the curse of oxygen uptake and
carbon dioxide output in relation to ventilation (Beaver et al., 1986). The
local breakpoints are based on muscular activity measured by
electromyography (EMG) signals (e.g., root mean square EMG) or
muscular oxygenation measured by near-infrared spectroscopy (NIRS
signals) (Boone et al., 2016b). Typically, root mean square (RMS) values
or mean power frequency from EMG (Ertl et al., 2016) and oxygenated
(O2 [HHb]) and deoxygenated (m[HHb]) hemoglobin and myoglobin,
total amount of tissue heme (totalHb), and tissue saturation (SmO2)
values from NIRS (Perrey et al., 2024) are used to determine these
breakpoints. It has been shown consistently that systemic and local
breakpoints are observed at similar intensities during exercise testing.
However, there is still an ongoing debate if there is a mechanistic
relationship between local and systemic breakpoint concepts (Caen and
Boone, 2023; Goulding et al., 2023).

Boone et al. (2016b) provided a theoretical framework that
represents the relationship between muscular activity, metabolic
processes, ventilation (VE), and (cerebral) blood flow which may
explain the possible mechanistic link between different breakpoint
concepts. Noticeably, apart from respiratory muscles that increase in
activation due to the need for increased respiration (Contreras-
Briceño et al., 2022), non-locomotor muscles are not included in this
framework. However, several studies already investigated the
behavior of non-locomotor muscles of the arm during lower limb
exercises and reported increased blood flow (Tanaka et al., 2006) and
decreased oxygenation in the inactive limb (Shiroishi et al., 2010;
Özyener et al., 2012; Yogev et al., 2022; Sendra-Pérez et al., 2024a).
This indicates that non-locomotor muscles are related to locomotor
muscles through the systemic blood flow. Hence, local breakpoints
in variables based on blood flow, e.g., based on NIRS signals should
be observable in non-locomotor muscles. As a consequence, the
framework between systemic and local breakpoints by Boone et al.
(2016b) could be augmented by non-locomotor muscles. Indeed,
Ogata et al. (2004), Yogev et al. (2022), and Sendra-Pérez et al.
(2023) reported that breakpoints in NIRS signals of non-locomotor
upper limb muscles during ramp leg exercises coincide with the
respiratory compensation point (RCP) which is determined from
systemic spirometry variables and demarcates the intensity for the
transition from steady state to non-steady state exercise conditions.
However, in contrast to breakpoints from NIRS signals, local
breakpoints based on muscular activity (EMG) should not be
observable in non-locomotor muscles as they are assumed to not
increase activation during the increase of exercise intensity.
Although such an observation would strengthen the framework
by Boone et al. (2016b), this has not been tested yet.

Therefore, the aim of the study was to investigate the
relationships and agreement between systemic and local
breakpoints in locomotor and non-locomotor muscles. Our
hypotheses were twofold: First, in the locomotor muscles we
hypothesized a relationship and agreement between RCP
determined from systemic variables and local muscle breakpoints
based on muscular activity (sEMG, RMS) and oxygenation (NIRS,
m[HHb]). Second, in non-locomotor muscles we hypothesized a
relationship and agreement between RCP and the local breakpoint
based on oxygenation (NIRS, m[HHb]) but not based on muscular
activity (sEMG, RMS).

2 Methods

2.1 Participants

Boone et al. (2016a) reported a significant relationship (r = 0.91,
p < 0.01) between the breakpoints of deoxygenated hemo- and
myoglobin (m[HHb]BP) and integrated sEMG (EMGBP) signals.
Based on these results, a minimum of eight participants was
calculated (using G*Power software, Faul et al., 2007) to achieve
a significant relationship between the breakpoints in our study. To
account for technical problems and possible non-responders,
13 participants (4 females) were included in the study. Data from
one participant had to be discarded due to a tattoo on the thigh,
which affected the NIRS data. Therefore, 12 participants (4 females,
25.5 ± 3.9 years, 176.1 ± 11.6 cm, 71.2 ± 9.4 kg, skinfold thickness:
5.93 ± 0.8 mm, VO2Peak: 43.3 ± 4.1 mL.kg−1min−1, WPeak: 177.1 ±
29.9 W) were included in the final analyses. All participants were
physically active but not specifically trained in cycling. Participants
were eligible for the study if they were free of acute infections,
injuries, chronic diseases, recent medication intake, or any
restrictions that could have influenced the test. The study was
approved by the local ethics committee (GZ. 39/132/63 ex 2022/
23) and conducted in accordance with the Declaration of Helsinki.

2.2 Experimental design

Participants performed one maximal single-leg step incremental
cycling test. They were instructed not to perform any strenuous
exercise within 24 h before the test. On the test day, following the
signing of the written informed consent, anthropometric
measurements were recorded and the electromechanically braked
cycle ergometer (Excalibur Sport, Lode, Groningen, Netherlands)
was individually adjusted to the participant. The single-leg
incremental cycling test was performed with the right leg in all
participants. To enable a safe and easy execution of the test, the left
pedal was demounted. The incremental protocol to exhaustion
started with a 3-minute rest period followed by a 5-minute
warm-up at 40 W. Subsequently, the load was stepwise increased
by 10 W. min−1and ended when the participants could not sustain
the load any longer with a cadence of approximately 80 revolutions
per minute. The test ended with a 3-minute cool-down period at
40 W followed by a 3-minute rest period. The cycle ergometer and
the spirometry were electronically synchronized while sEMG and
NIRS were manually synchronized with the rest of the devices by
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pushing the start button at the beginning of the measurements.
Possible asynchronies should be clearly below 1 s and therefore
irrelevant for the aim of the study.

2.3 Cardiopulmonary measurements

Expired air was continuously measured during the test with a
breath-by-breath system (Metamax 3B, Cortex Biophysic Gmbh,
Leipzig, Germany). The spirometer was calibrated according to the
manufacture’s guidelines on every test day. Raw data was exported as
excel CSV in 5 s intervals via Metasoft Studio software (Cortex
Biophysic Gmbh, Leipzig, Germany). Heart Rate (HR) was
measured using a chest strap (H10, Polar Electro, Kempele,
Finnland) which was connected to the spirometer via Bluetooth signal.

2.4 Near-infrared spectroscopy

Relative changes in deoxygenated haemoglobin + myoglobin
(m[HHb]) were measured at 10 Hz by a continuous wavelength
portable NIRS device (PortaMon, Artinis Medical Systems, Elst,
Netherlands) (Barstow, 2019). Positions for the NIRS sensors were
at 1/3 the distance from the proximal pole of the patella to the
greater trochanter (van der Zwaard et al., 2016). Prior to placing the
NIRS sensors, adipose tissue thickness was measured with
ultrasound (Esaote Mylab 60, Esaote SpA, Genova, Italy). The
skin was then shaved and cleansed with alcohol. The NIRS
sensors were wrapped in transparent foil to protect them from
sweat and were attached with tape to the leg. Furthermore, a light-
absorbing black cloth and elastic bandages were then wrapped
around the thigh to shield the sensors from ambient light.

2.5 Electromyography

Muscle activity was assessed using sEMG (Ultium EMG System,
Noraxon Inc., Scottsdale, AZ, United States) recording at a sampling
rate of 2000 Hz (MR3 software version 3.18.64, Noraxon Inc.,
Scottsdale, AZ, United States). The sEMG electrodes were placed
as close as possible proximally to the NIRS device, and ultrasound
imaging was used to ensure that the electrodes were positioned on
the VL muscle. Following established methodology (Hermens et al.,
2000), the skin was prepared properly before electrode placement,
including shaving, abrasion with sandpaper, and thorough cleansing
with alcohol to optimize impedance conditions for accurate sEMG
signal measurements. To minimize the risk of detachment during
movement, the sEMG sensors were securely attached to the leg using
double-sided adhesive tape under and strips over the sensors, while
ensuring that the cables leading to the electrodes were not impeded.

2.6 Data analysis

2.6.1 Systemic variables
Based on the actual standard three-phase two threshold model of

energy supply (Skinner and Mclellan, 1980; Binder et al., 2008), two
breakpoints were determined from an incremental protocol to

exhaustion. Using respiratory parameters, the first ventilatory
threshold/breakpoint (VT1), as well as the second ventilatory
threshold/breakpoint (VT2), which is equal to the respiratory
compensation point (RCP), were determined according to Beaver
et al. (1986), Wasserman et al. (1994), and Binder et al. (2008). VT1
was defined as the first increase of VE accompanied by an increase in
_VE/ _VO2without an increase in _VE/ _VCO2. VT2 respectively RCP, which
was used for further analyses, was determined by an increase in both the
respiratory equivalent for oxygen ( _VE/ _VO2) and for carbon dioxide
( _VE/ _VCO2) accompanied by the second sharp increase in _VE detected
by means of multi-linear regression analysis using Vienna CPX-Tool
(https://www.univie.ac.at/vcpx/), a commercially available software. The
region of interest for determination of RCP was set between the first
threshold/breakpoint (approximately 40% of peak power output) and
peak power output (Wpeak) which denotes the highest power output
pedaled for at least 30 s in the incremental test. The highest VO2 value
averaged over a 30 s period at Wpeak represented _VO2peak. Since the
specific one-leg exercise modality did not allow a maximum systemic
exhaustion, and since the determination of VO2max was not targeted in
this investigation, the termsVO2peak and Wpeak were used.

2.6.2 Local muscle variables
Sample rate and the noise of the m[HHb] NIRS signal was reduced

by a factor of 50 using a lowpass Chebyshev Type I infinite impulse
response filter of order 8. Root mean square (RMS) of the raw sEMG
signals were calculated using a sliding window of 1,000 points
corresponding to a window duration of 9.5 s. Subsequently, the
sample rate and the noise of the sEMG signals was reduced by a
factor of 1,000 using a lowpass Chebyshev Type I infinite impulse
response filter of order 8. Then, a two-line regression (Osawa et al.,
2011; Boone et al., 2016a) was employed for both NIRS and sEMG data
to determine a possible breakpoint (m[HHb]BP, EMGBP) with the
lowest overall root mean square error. As artefacts were observed at
the beginning and the end of the measurements, the first 3 minutes
when workload started to increase and the last 2 minutes of the data
before maximal workload was reached were not included. Furthermore,
the region of interest to determine the breakpoint was limited to 40%–
90% of peak power output. A 50-fold resampling strategy to ensure the
robustness and objectivity of the detected breakpoints was used.
Specifically, 80%of the data set was randomly sampled to estimate
the breaking point in each fold. The mean value of the breaking points
from these folds provides a robust and objective estimate of the
physiological breakpoints.

2.7 Statistical analysis

Means, standard deviations, and 95% confidence intervals were
calculated for all variables. A Shapiro-Wilk test was used to test for
normal distribution and a Mauchly-test was used to test for
sphericity. Power output data was normally distributed (p =
0.16–0.95 for different variables) but sphericity was violated (p <
0.01), therefore, a Greenhouse-Geissler correction was applied for
the repeated measures analysis of variance to compare all the means
(RCP, EMGBP and m[HHb]BP) of the locomotor (right vastus
lateralis) and non-locomotor (left vastus lateralis) muscles.
Pearson correlation coefficients were computed to evaluate the
linear relationship between the power output values at which the
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breakpoints occurred across the variables. According to Cohen
(1988), the magnitude of correlations was assessed as small,
medium, and strong for r = 0.10, r = 0.30, and r = 0.50,
respectively. Furthermore, intraclass correlation coefficients
(ICC(3.1)) were computed between breakpoints to assess the
agreement between breakpoints. Bland-Altman analysis (Bland
and Altman, 1986), mean absolute difference, and regression
intercepts were used to assess agreement in power output
between the breakpoints. All tests were performed with SPSS
29 and the level of significance was set to 0.05.

3 Results

3.1 Locomotor muscle

The m[HHb] signal in the working muscle (locomotor vastus
lateralis) showed a consistent pattern that increased from the start
and attenuated (or decreased) at about 75% of peak power output
(WPeak). The sEMG (RMS) signal of the working muscle initially
increased with increasing work rate, demonstrating a distinct change
in slope close to the RCP. However, this change in slope was not

FIGURE 1
Exemplary data set of an individual subject including the kinetics of ventilation ( _VE), and the locomotor (Loc) and non-locomotor (Nloc) vastus
lateralis (VL) NIRS (HHb) and EMG (RMS) signals during the step-incremental single-leg cycling. Black lines show original data, cyan lines show filtered
data, red lines show linear regressions. Vertical dashed red lines show breakpoints. Please note that HHb kinetics of the non-locomotor vastus lateralis
does not represent a typical behavior as m[HHb] increased or decreased close to RCP in the different participants.
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always an increase but in some cases a decrease in slope. Figure 1
shows a representative data set from an individual.

Table 1 shows the occurrence of the different breakpoints in W
and as percentage of peak power output reached during the single-
leg exercise. Furthermore, it shows the absolute values of VO2 and
heart rate at breakpoints.

Repeated measures analysis of variances with Greenhouse-
Geiser correction indicated that there was no significant
difference between power output values at RCP and
breakpoints of the m[HHb] and sEMG responses of the
locomotor and non-locomotor vastus lateralis, F (3.0,33.4) =
1.53, p = 0.23, η2p = 0.122 (see Figure 2). Figure 3 presents
Bland-Altman plots displaying the agreement between power
output at RCP, m[HHb]BP, and EMGBP of the locomotor vastus
lateralis. The mean average difference between RCP and
m[HHb]BP was 7.7 W (limits of agreement (LoA):
lower = −12.8 W, higher = 28.1 W) with a mean absolute
difference of 10.2 ± 7.7 W. The mean average difference
between RCP and EMGBP was 0.67 W (LoA:
lower = −22.1 W, higher = 23.4 W) with a mean absolute
difference of 8.8 ± 7.1 W. The mean average difference

between m[HHb]BP and EMGBP was 7.0 W (LoA:
lower = −32.5 W, higher = 46.5 W) with a mean absolute
difference of 16.7 ± 12.5 W.

Power output values of RCP and all breakpoints determined
from the locomotor vastus lateralis correlated significantly with each
other (all p < 0.01). The correlation coefficients were r = 0.67 (0.16,
0.90) (m[HHb]BP VL loc vs. EMGBP VL loc), r = 0.90 (0.67, 0.97)
(m[HHb]BP VL Loc vs. RCP), and r = 0.90 (0.66, 0.97) (RCP vs.
EMGBP VL Loc). Intraclass correlation coefficients (ICC(3.1)) were
ICC = 0.80 (0.34, 0.94) (m[HHb]BP VL loc vs. EMGBP VL loc), ICC =
0.92 (0.63, 0.98) (m[HHb]BP VL Loc vs. RCP), and ICC = 0.94 (0.80,
0.98) (RCP vs. EMGBP VL Loc). The relationships between the RCP
as well as m[HHb]BP and EMGBP from the locomotor VL are shown
in Figure 4. Bias assessed as regression intercepts were not
significant (Table 2).

Similar to power output values, repeated measures ANOVAs
revealed that there was no significant difference between RCP,
m[HHb] BP, and EMGBP in VO2 (F (4,44) = 0.53, p = 0.71,
η2p = 0.046) and heart rate (F (4,44) = 1.01, p = 0.414, η2p =
0.084). For detailed results on heart rate and VO2 data, please see
supplement.

3.2 Non-locomotor muscle

In contrastto the locomotor muscle, the non-locomotor muscle
did not show such a consistent pattern in the m[HHb] signal. Here,
the m[HHb] showed greater fluctuation with both increases or
decreases after the RCP. The sEMG (RMS) signal of the non-
locomotor muscle showed much lower absolute values and,
similar to the non-locomotor m[HHb] signal, an inconsistent
pattern (see Figure 1).

The m[HHb]BP and EMGBP from the non-locomotor muscle
also correlated significantly, but not as strong, with RCP (r = 0.66
(0.13, 0.89)/ICC = 0.74 (0.16, 0.92), r = 0.77 (0.36, 0.93)/ICC =
0.90 (0.63, 0.97), respectively). Furthermore, there was a
significant correlation between m[HHb]BP and EMGBP of the
non-locomotor muscle with r = 0.86 (0.55, 0.96)/ICC =
0.79 (0.31–0.94).

TABLE 1 Absolute and relative power values and absolute VO2 and HR values at the respiratory compensation point as well as m[HHb]BP and EMGBP of the
locomotor and non-locomotor muscles.

Power at breakpoints (W) % of Wpeak (%) VO2 at breakpoints
(L/min)

HR at
breakpoints (bpm)

Mean ± SD
(CI, 95%)

Range Mean ± SD
(CI, 95%)

Range Mean ± SD
(CI, 95%)

Mean ± SD
(CI, 95%)

RCP 127.3 ± 21.8 (113.5, 141.2) 94.6–167.5 71.9 ± 1.9 (64.1, 79.8) 68.1–74.5 2.24 ± 0.4 (1.99, 2.49) 161.5 ± 15 (151.8, 171.2)

m[HHb]
(VL, Loc)

119.7 ± 23.6 (104.6, 134.7) 91.4–154.9 67.6 ± 6.7 (59.1, 76.1) 58.1–80.3 2.11 ± 0.4 (1.87, 2.36) 158.8 ± 14 (149.9, 167.8)

m[HHb] (VL,
Nloc)

117.5 ± 17.9 (106.1, 128.8) 93.2–156.4 66.9 ± 7.2 (60.4, 73.3) 55.0–78.2 2.16 ± 0.3 (1.97, 2.36) 158.1 ± 12 (150.6, 165.5)

EMG (VL, Loc) 126.6 ± 26.0 (110.2, 143.1) 88.1–171.1 71.3 ± 5.6 (62.1, 80.6) 59.8–81.5 2.22 ± 0.4 (1.95, 2.49) 162.0 ± 15 (152.3, 171.8)

EMG (VL, Nloc) 126.1 ± 28.4 (108.1, 144.2) 88.6–179.5 70.9 ± 7.4 (60.8, 81.1) 58.0–81.5 2.25 ± 0.5 (1.95, 2.56) 162.2 ± 13 (154.0, 170.5)

Data are presented as mean ± SD, wpeak peak power; HR, heart rate; SD, standard deviation; RCP, respiratory compensation point; Loc, locomotor muscle, Nloc non-locomotor muscle; VL,

vastus lateralis.

FIGURE 2
Mechanical power at breakpoints of different variables. Note that
there was no significant difference between the breakpoints (boxes
show the range of the central 50% of data, red lines display the
medians, whiskers display minimum and maximum values
of data).
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4 Discussion

Several studies compared a systemic breakpoint with local
muscle breakpoints derived from both NIRS and sEMG signals
(Osawa et al., 2011; Racinais et al., 2014; Boone et al., 2016a; Iannetta
et al., 2017; Inglis et al., 2017; Goulding et al., 2021; Caen et al., 2022).
This study expands on previous research by including local muscle
breakpoints from both the locomotor muscle and the contralateral
non-locomotor muscle. As hypothesized, strong correlations
between systemic breakpoints (RCP) and local muscular EMGBP

and m[HHb]BP in the locomotor muscle (r = 0.90, ICC = 0.92–0.94)

were observed with no significant differences between the power
output at breakpoints. Although breakpoints were not significant
different, substantial mean absolute difference values between
systemic and local breakpoints (8.8–10.2 W) were observed. In
the contralateral non-locomotor muscle, both m[HHb]BP and, in
contrast to our expectations, also EMGBP correlated significantly
with systemic RCP. However, correlation between breakpoints was
smaller in the non-locomotor muscles (r = 0.66–0.77, ICC =
0.74–0.90) than in the active, main locomotor muscle. Also, in
non-locomotor muscle no significant differences were observed
between breakpoints.

FIGURE 4
Relation between m[HHb]BP and RCP (A), EMGBP and RCP (B), and m[HHb]BP and EMGBP (C) in the locomotor VL including respective Pearson
correlation coefficients. The dashed lines represent the line of identity.

TABLE 2 Pearson correlation coefficients, intraclass correlation coefficients, and power differences between breakpoints. Means (CI, 95%)/± SD.

Correlation coefficient ICC (3.1) Bias/regression intercept [W] LoA [W] MAD [W]

RCP vs. m[HHb]BP r = 0.90 (0.67, 0.97)
(p < 0.01)

ICC = 0.92 (0.63, 0.98)
(p < 0.01)

28.3 ± 15.7 (p = 0.10) 7.7 (−12.8, 28.1) 10.2 ± 7.7

RCP vs
EMGBP

r = 0.90 (0.66, 0.97)
(p < 0.01)

ICC = 0.94 (0.80, 0.98)
(p < 0.01)

32.0 ± 15.2 (p = 0.06) 0.67 (−22.1, 23.4) 8.8 ± 7.1

m[HHb]BP vs
EMGBP

r = 0.67 (0.16, 0.90)
(p < 0.05)

ICC = 0.80 (0.34, 0.94)
(p < 0.01)

38.1 ± 31.2 (p = 0.25) 7.0 (−32.5, 46.5) 16.7 ± 12.5

LoA, Level of Agreement (Bland Altman), ICC, intraclass correlation coefficient; MAD mean absolute difference.

FIGURE 3
Bland-Altman plots displaying agreement between power (W) corresponding with RCP and VL loc m[HHb] (A), RCP and VL Loc EMG BP (B), and VL
Loc EMG BP and VL Locm[HHb] (C). The horizontal solid line represents the mean difference and the horizontal dashed line the 95% limits of agreement.
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4.1 Locomotor muscle

During an incremental exercise, an increasing number of motor
units (from Type I → Type IIa → Type IIx) are recruited in the
locomotor muscle (Henneman, 1957). This can be observed in the
sEMG signal by an increased amplitude which further increases when
type IIx fibers are recruited (EMGBP). Within the muscle, O2

extraction increases, leading to a decrease in m [O2Hb] and an
increase in m[HHb]. With progressive recruitment of Type II
fibers, it appears that O2 extraction reaches its limits and a plateau
occurs in m[HHb], which allows to detect a m[HHb]BP (Boone et al.,
2016b). Furthermore, the progressive recruitment of motor units
induces metabolic acidosis including H+ and lactate production in
the muscle which will be transported to the blood system. The
decrease of pH level from H+ will increase ventilation to maintain
the acid-base balance which can be observed by the second inflection
of the linear increase in ventilation at RCP (Wasserman et al., 1994).

When comparing systemic RCP and local muscle breakpoints
for EMGBP or m[HHb]BP, our results in the locomotor muscle
(VL right leg) align with prior studies on cycling that demonstrated a
strong correlation (Racinais et al., 2014; Boone et al., 2016a; Iannetta
et al., 2017; Goulding et al., 2021). The correlationmagnitudes in our
study were similar or slightly lower to earlier findings. While we
found a correlation between RCP and EMGBP of r = 0.90, others
reported correlations as high as 0.97 (Iannetta et al., 2017). The
correlation between RCP and NIRS breakpoints with r = 0.90 was
higher than r = 0.57 reported by (Racinais et al., 2014) but similar to
other reported r-values ranging between 0.90–0.96 (Boone et al.,
2016a; Goulding et al., 2021). As reported in the review by Sendra-
Pérez et al. (2023), high relationships are also observed in other
muscles (e.g., gastrocnemius) and different types of movements (e.g.,
running or rowing) with a combined intraclass correlation
coefficient of 0.80 between NIRS breakpoints (based on muscle
oxygen saturation SmO2) and the 2nd ventilatory breakpoint.

In the present study, no significant differences between RCP and
the local breakpoints were observed. However, differences in the
occurrence and sequence of breakpoints across studies remain
heterogeneous in the literature. For instance, some researchers
reported that EMG breakpoints were detected earlier than RCP
and NIRS breakpoints, with no significant differences among the
latter (Boone et al., 2016a; Goulding et al., 2021). Conversely, other
studies detected EMG breakpoints significantly later than both NIRS
breakpoints and RCP (Osawa et al., 2011; Racinais et al., 2014).
Moreover, in accordance to the present study, Iannetta et al. (2017)
reported no difference between the three types of breakpoints.

This variability in breakpoints can partly be attributed to
differences in the experimental protocol, such as with single-leg
versus classic cycle ergometer tests, and data analysis methods. For
example, some studies employed an individual Mean Response
Time (MRT), adjusting for the delay in local metabolic responses
reaching pulmonary circulation, i.e., the onset of _VO2 after the onset
of the incremental test (Fontana et al., 2015; Caen et al., 2018). This
time duration is often used to align NIRS and EMG data with _VO2

data inducing breakpoint upward shifts of 41–44 s (Boone et al.,
2016a; Caen et al., 2022) towards RCP. Although we did not observe
a significant difference in our data, m[HHb]BP occurred 7.7 W
earlier than RCP, which corresponds to approx. 46 s, similar to
previously reported MRT values.

Furthermore, the methods for determining breakpoints varied,
from visual inspection of RCP (Racinais et al., 2014; Boone et al.,
2016a; Iannetta et al., 2017) to semi-automated methods utilized in
this study. In addition, we modelled sEMG data kinetics with a two-
line regression in accordance to Osawa et al. (2011) and Boone et al.
(2016a) but in contrast to others (Hug et al., 2003; Iannetta et al.,
2017) who account for a first and second EMG breakpoint. To
summarize, while there is a strong underlying physiological
mechanism shared across studies, the results are not
interchangeable due to methodological differences and variations
in experimental protocols.

4.2 Non-locomotor muscle

The presence of physiological breakpoints in non-locomotor
muscles offers intriguing insights into the mechanistic relationship
between local and systemic physiological response to exercise with
increasing workload. However, although meaningful m[HHb]BP
and EMGBP could be detected in all participants, the kinetics of
m[HHb] and EMG was not as consistent in the non-locomotor
compared to the locomotor muscles. This was probably due to
different activation patterns in the different participants of which
some showed clear muscle activity in the non-locomotor muscle,
e.g., to maintain stability on the ergometer. Therefore, m[HHb]
sometimes increased (in 7 out of 12 participants), attenuated (1), or
decreased (4) close to the RCP. This inconsistency was similar in the
sEMG kinetics, however, not directly related to m[HHb].

The presence of a NIRS breakpoint in a non-locomotor muscle
can be explained by several mechanisms whichmay lead to opposing
effects in the m[HHb] signal: 1. A systemic increase of blood flow in
the non-locomotor (Tanaka et al., 2006) might increase O2 delivery
and therefore decrease m[HHb]. 2. The re-distribution of blood flow
during exercise favoring working muscles, respiratory muscles, and
the brain would lead to a decrease in O2 delivery and therefore
increase m[HHb] (Ogata et al., 2004). 3. The changes in HHb
concentration from the locomotor (and respiratory) muscles are
transported via the systemic blood flow to the non-locomotor
muscle (Özyener et al., 2012; Yogev et al., 2022; Sendra-Pérez
et al., 2024a). Hence, the m[HHb] might show a similar behavior
as in the locomotor muscle. Close to the RCP this could lead to an
attenuation or even a decrease of m[HHb]. 4. NIRS breakpoints
could be attributed to the minor yet increasing muscle activity
needed to stabilize the body’s position through co-contraction.
For instance, during single-leg cycling, the contralateral leg’s
muscles might not be directly involved in the pedaling action but
play a crucial role in maintaining stability and distributing load,
which could lead to changes in activity and would also lead to an
increase m[HHb]. This was already hypothesized by several authors
(Özyener et al., 2012; Yogev et al., 2022; Sendra-Pérez et al., 2024a)
but muscle activity was not tested because of the lack of EMG
measurements in these studies. In the present study, we could clearly
observe co-contraction in the sEMG-data of the non-locomotor
muscles (see also Figure 1). Although absolute sEMG values were
much lower compared to those of the locomotor muscle, muscular
activation that increased with increasing workload was present. This
result contrasted findings from Tanaka et al. (2006) who did not
observe any sEMG activity on the non-working muscle and was
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therefore not anticipated in our experiment. The minor but
consistent activation of the non-locomotor muscles in the present
study also led to the non-expected occurrence of EMG breakpoints
which were significantly related and not different to RCP or other
breakpoints. Hence, our hypothesis that non-locomotor muscles will
not show EMG breakpoints must be rejected due to the reasons
explained. Therefore, our results cannot augment the physiological
framework by Boone et al. (2016a) by non-locomotor muscles yet.
However, for future studies, we recommend to better control the
activity of non-locomotor muscles.

4.3 Practical applications and
physiological mechanism

The use of local breakpoints derived by NIRS (Murias et al., 2013),
sEMG (Hug et al., 2003), or both (Iannetta et al., 2017) to estimate
systemic breakpoints as a marker between heavy and severe exercise
intensity has been studied extensively.While a general relationship with
strong correlations has been shown consistently, a high degree of
individual variability with large limits of agreement between the
breakpoints suggest that systemic and local breakpoints should not
be used interchangeably. This is supported by findings that a) training
induced changes in systemic breakpoints (RCP) were not related to
changes in NIRS breakpoints (Caen et al., 2018; Caen et al., 2022) and
b) NIRS breakpoints from the same muscle differed between exercises
in different body positions (Goulding et al., 2021). Our results support
these conclusions as we also observed large limits of agreement between
the breakpoints. Such results led to an ongoing discussion about a
possible mechanistic link between local and systemic breakpoints (Caen
and Boone, 2023; Goulding et al., 2023). Based on previous and our
findings in the present study, we assume that the mechanistic link
between the different breakpoints is the relationship between single
muscles and the overall systemic cardio-respiratory and metabolic
responses. With increased workload, physiological events like the
sequential recruitment of muscle fibers combined with maximal O2

extraction occur in the working muscle and its effects are then
transferred to the (cardio-respiratory and metabolic) system and
non-working muscles. A comparison between local and systemic
breakpoints is insofar difficult as many different muscles are
involved in complex (whole body) movements like running or
cycling which cumulatively create a systemic response (Yogev et al.,
2022). The contribution of a single muscle to the systemic response is
dependent on the activation and the size of a muscle and, therefore,
dependent on intermuscular coordination. Although the contribution
of bigger muscles to systemic responses should be generally greater
than from smaller muscles, even behavior of smaller muscles
during single joint movements (Spendier et al., 2020; Tilp et al.,
2022) can be observed in systemic measures. During a movement
with several (bigger and smaller) muscles involved, these muscles
can be activated differently to share the work load. This will lead to
very distinct activation patterns which are difficult to anticipate.
Some muscles might increase their activation continuously until
exhaustion while others might attenuate or decrease their
activation at a certain point because other muscles take over their
share of load. In the present study, we could observe all different types
of sEMG-profiles (increasing, decreasing, attenuating) in the working
muscle (VL) close to the power output at RCP.

The described relationship between the behavior of single muscles
and systemic response can explain several unclear observations from the
literature. Firstly, although the systemic conditions are mostly driven by
the metabolic processes of the main working muscles it is not always
possible to draw conclusions to single working muscles from systemic
measures, especially in complex exercise where several muscles are
involved. Systemic measures represent the cumulative effect of several
muscles engaged in a specific movement. When these muscles with
different sizes display individual local breakpoints at different workloads
during a task with increasing effort, their cumulative systemic response
may not accurately mirror their individual behavior. Sendra-Pérez et al.
(2024a) recently showed nicely the heterogeneity in individual
breakpoints from SmO2 of different muscles (see their Figure 2),
although their means from 26 athletes were not significantly different.
Conversely, if these muscles display their local breakpoints at the same
workload, this breakpoints may coincide with the systemic breakpoint,
possibly delayed by the time of the systemic response (Fontana et al.,
2015). Hence, local breakpoints from individual muscles may (Snyder
and Parmenter, 2009; Sendra-Pérez et al., 2023) or may not (Possamai
et al., 2024; Arnet et al., 2025) coincide with systemic boundaries of
physiological domains, depending on type of sport and intermuscular
coordination. Secondly, training-induced changes in systemic variables
(e.g., increase in RCP) must not necessarily be related to changes in local
responses of a specific muscle tested as observed, e.g., by Caen et al.
(2022). The training-induced improvements are likely related to the
structural and functional improvements of several muscles and also
related to improved intermuscular coordination. Thirdly, local muscle
breakpoints from specific muscles must not necessarily appear at the
same instant when determined from similar exercises in different
positions. Goulding et al. (2021) observed different NIRS breakpoints
during cycling in a sitting or supine position and they concluded due to
their observation that RCP and NIRS breakpoints do not represent the
same underlying physiological phenomenon. However, different body
positions lead to different muscle lengths and contraction velocities and
therefore to favorable or unfavorable contractile conditions for different
muscles, therefore to different neuromuscular activation (Hug andDorel,
2009), probably also depending on the individual anthropometry.Hence,
it is not surprising that local breakpoints from a specific muscle show
different kinetics in different body positions.

Although local muscular breakpoints cannot be used
interchangeably with systemic breakpoints due to the reasons
explained above, determining these breakpoints can be of great value.
During movements where several muscles are involved, determining
local breakpoints from several muscles could help in understanding
which muscles are stressed earlier than others and therefore represent a
bottleneck for improved performance. Specific training of these muscles
could then improve overall performance. Exemplary types of sport
would, e.g., be rowing or climbing, where both leg and arm muscles are
responsible for overall performance. Furthermore, the effect of athletes’
position on different muscles during exercise could be tested to
determine efficient movement conditions for specific muscles.

4.4 Limitations

Although an a priori power analysis has been performed, the
sample with 12 participants including males and females with
heterogenous performance levels limits the generalization of

Frontiers in Physiology frontiersin.org08

Tilp et al. 10.3389/fphys.2025.1465344

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2025.1465344


results. Furthermore, the results of the breakpoint determination
depend crucially on the applied model and model constraints.
However, the applied models and constraints are common in the
literature. Contrary to our expectations, the non-locomotor muscle
exhibited inconsistent activity in stabilizing the movement, thereby
impacting the results. Unilateral cycling is very specific exercise
which is technically difficult and the test is very much limited by the
ability of the participants to pull the pedal up (hip flexor). For similar
future experiments we recommend a counterweighted single-leg
exercise (Iannetta et al., 2019) or a more isolated exercise as applied
by Spendier et al. (2020). In general, the measurement of a single leg
could have affected our results as wide limits of agreement in SmO2

values have been reported between the dominant and non-dominant
leg during incremental cycling (Skotzke et al., 2024; Sendra-Pérez
et al., 2024b). However, Iannetta et al. (2019) reported no difference
in [HHb] breakpoints between the dominant and non-dominant leg
during single-leg or counterweighted single-leg exercise.

4.5 Conclusion

In the locomotor muscles, the study revealed strong correlations
between systemic breakpoints, particularly the respiratory compensation
point (RCP), and local muscle breakpoints derived from both muscular
activity (EMG) and oxygenation (NIRS signals). However, high
individual variability and substantial absolute differences were
observed which indicates that these breakpoints cannot be used
interchangeably. Non-locomotor muscles exhibited varying behaviors
in the signals, with m[HHb] and sEMG showing inconsistent patterns.
However, meaningful m[HHb]BP and EMGBP were detected in non-
locomotor muscles and correlated significantly with systemic RCP.
These findings emphasize the complexity of the interplay between
systemic and local physiological responses during exercise,
highlighting the intricate nature of these relationships based on
individual muscle coordination.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Ethics
committee of the University of Graz. The studies were conducted
in accordance with the local legislation and institutional
requirements. The participants provided their written informed
consent to participate in this study.

Author contributions

MT: Conceptualization, Formal Analysis, Investigation,
Methodology, Project administration, Resources, Software, Supervision,
Validation, Visualization, Writing–original draft, Writing–review and
editing. NM: Conceptualization, Data curation, Formal Analysis,

Investigation, Methodology, Software, Writing–original draft,
Writing–review and editing. GS-T: Conceptualization, Formal
Analysis, Methodology, Software, Visualization, Writing–original draft,
Writing–review and editing. AK: Conceptualization, Data curation,
Methodology, Writing–original draft, Writing–review and editing. PB:
Conceptualization, Data curation, Methodology, Writing–original draft,
Writing–review and editing. GT: Conceptualization, Formal Analysis,
Methodology, Project administration, Resources, Writing–original draft,
Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. The
publication is funded by the University of Graz.

Acknowledgments

The authors acknowledge the support by Norbert Schrapf
during the acquisition of data and the financial support by the
University of Graz.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that Generative AI was used in the
creation of this manuscript. Throughout the preparation of this
work, the authors utilized OpenAI’s ChatGPT to improve
readability and refine language, thus assisting in formulating and
organizing the content. Subsequently, the authors meticulously
reviewed and edited the content as necessary, assuming full
responsibility for the publication’s content.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphys.2025.1465344/
full#supplementary-material

Frontiers in Physiology frontiersin.org09

Tilp et al. 10.3389/fphys.2025.1465344

https://www.frontiersin.org/articles/10.3389/fphys.2025.1465344/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2025.1465344/full#supplementary-material
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2025.1465344


References

Arnet, J., Knaier, R., Schoch, R., D’Hulst, G., Bruggisser, F., Feldmann, A., et al. (2025).
Determination of ventilatory thresholds using near-infrared spectroscopy in recreational
endurance andCrossFit athletes. Int. J. Sports Physiol. Perform., 1–10. doi:10.1123/ijspp.2024-0265

Barstow, T. J. (2019). Understanding near infrared spectroscopy and its application to
skeletalmuscle research. J. Appl. Physiol. 126, 1360–1376. doi:10.1152/japplphysiol.00166.2018

Beaver, W. L., Wasserman, K., and Whipp, B. J. (1986). A new method for detecting
anaerobic threshold by gas exchange. J. Appl. Physiol. 60, 2020–2027. doi:10.1152/jappl.
1986.60.6.2020

Binder, R. K., Wonisch, M., Corra, U., Cohen-Solal, A., Vanhees, L., Saner, H., et al.
(2008). Methodological approach to the first and second lactate threshold in
incremental cardiopulmonary exercise testing. Eur. J. Prev. Cardiol. 15, 726–734.
doi:10.1097/HJR.0b013e328304fed4

Bland, M. J., and Altman, D. G. (1986). Statistical methods for assessing agreement
between two methods of clinical measurement. Lancet 327, 307–310. doi:10.1016/
S0140-6736(86)90837-8

Boone, J., Barstow, T. J., Celie, B., Prieur, F., Bourgois, J., Boone, J., et al. (2016a). The
interrelationship between muscle oxygenation, muscle activation, and pulmonary
oxygen uptake to incremental ramp exercise: influence of aerobic fitness. Appl.
Physiol. Nutr. Metab. 41, 55–62. doi:10.1139/apnm-2015-0261

Boone, J., Vandekerckhove, K., Coomans, I., Prieur, F., and Bourgois, J. G. (2016b). An
integrated viewon the oxygenation responses to incremental exercise at the brain, the locomotor
and respiratory muscles. Eur. J. Appl. Physiol. 116, 2085–2102. doi:10.1007/s00421-016-3468-x

Caen, K., and Boone, J. (2023). Response to Goulding et al. (2022): are whole-body
and local thresholds mechanistically linked? Eur. J. Appl. Physiol. 123, 421–422. doi:10.
1007/s00421-022-05081-4

Caen, K., Bourgois, J. G., Stassijns, E., and Boone, J. (2022). A longitudinal study on
the interchangeable use of whole-body and local exercise thresholds in cycling. Eur.
J. Appl. Physiol. 122, 1657–1670. doi:10.1007/s00421-022-04942-2

Caen, K., Vermeire, K., Bourgois, J. G., and Boone, J. (2018). Exercise thresholds on
trial: are they really equivalent?Med. Sci. Sports Exerc. 50, 1277–1284. doi:10.1249/MSS.
0000000000001547

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Routledge.
doi:10.4324/9780203771587

Contreras-Briceño, F., Espinosa-Ramirez, M., Keim-Bagnara, V., Carreño-Román, M.,
Rodríguez-Villagra, R., Villegas-Belmar, F., et al. (2022). Determination of the respiratory
compensation point by detecting changes in intercostal muscles oxygenation by using
near-infrared spectroscopy. Life 12, 444. doi:10.3390/life12030444

Ertl, P., Kruse, A., and Tilp, M. (2016). Detecting fatigue thresholds from
electromyographic signals: a systematic review on approaches and methodologies.
J. Electromyogr. Kinesiol. 30, 216–230. doi:10.1016/j.jelekin.2016.08.002

Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. (2007). G*Power 3: a flexible
statistical power analysis program for the social, behavioral, and biomedical sciences.
Behav. Res. Methods 39, 175–191. doi:10.3758/BF03193146

Fontana, F. Y., Keir, D. A., Bellotti, C., De Roia, G. F.,Murias, J.M., and Pogliaghi, S. (2015).
Determination of respiratory point compensation in healthy adults: can non-invasive near-
infrared spectroscopy help? J. Sci. Med. Sport 18, 590–595. doi:10.1016/J.JSAMS.2014.07.016

Goulding, R. P., Marwood, S., Lei, T. H., Okushima, D., Poole, D. C., Barstow, T. J.,
et al. (2021). Dissociation between exercise intensity thresholds: mechanistic insights
from supine exercise. Am. J. Physiol. - Regul. Integr. Comp. Physiol. 321, R712–R722.
doi:10.1152/ajpregu.00096.2021

Goulding, R. P., Marwood, S., Lei, T. H., Okushima, D., Poole, D. C., Barstow, T. J., et al.
(2023). Time to retire the notion that local and whole-body exercise thresholds are
mechanistically linked? Eur. J. Appl. Physiol. 123, 419–420. doi:10.1007/s00421-022-05082-3

Henneman, E. (1957). Relation between size of neurons and their susceptibility to
discharge. Science 126, 1345–1347. doi:10.1126/science.126.3287.1345

Hermens, H. J., Freriks, B., Disselhorst-Klug, C., and Rau, G. (2000). Development of
recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr.
Kinesiol. 10, 361–374. doi:10.1016/s1050-6411(00)00027-4

Hofmann, P., and Tschakert, G. (2011). Special needs to prescribe exercise intensity
for scientific studies. Cardiol. Res. Pract. 1, 209302. doi:10.4061/2011/209302

Hug, F., and Dorel, S. (2009). Electromyographic analysis of pedaling: a review.
J. Electromyogr. Kinesiol. 19, 182–198. doi:10.1016/j.jelekin.2007.10.010

Hug, F., Laplaud, D., Savin, B., and Grélot, L. (2003). Occurrence of
electromyographic and ventilatory thresholds in professional road cyclists. Eur.
J. Appl. Physiol. 90, 643–646. doi:10.1007/s00421-003-0949-5

Iannetta, D., Passfield, L., Qahtani, A., MacInnis, M. J., and Murias, J. M. (2019).
Interlimb differences in parameters of aerobic function and local profiles of deoxygenation
during double-leg and counterweighted single-leg cycling. Am. J. Physiol. - Regul. Integr.
Comp. Physiol. 317, R840-R851–R851. doi:10.1152/ajpregu.00164.2019

Iannetta, D., Qahtani, A., Millet, G. Y., and Murias, J. M. (2017). Quadriceps muscles
O2 extraction and EMG breakpoints during a ramp incremental test. Front. Physiol. 8,
686. doi:10.3389/fphys.2017.00686

Inglis, E. C., Iannetta, D., and Murias, J. M. (2017). The plateau in the NIRS-derived
[HHb] signal near the end of a ramp incremental test does not indicate the upper limit
of O 2 extraction in the vastus lateralis. Am. J. Physiol. Integr. Comp. Physiol. 313, R723-
R729–R729. doi:10.1152/ajpregu.00261.2017

Meyer, T., Lucía, A., Earnest, C. P., andKindermann,W. (2005). A conceptual framework for
performance diagnosis and training prescription from submaximal gas exchange parameters -
theory and application. Int. J. Sport. Med. 26, S38–S48. doi:10.1055/s-2004-830514

Murias, J. M., Spencer, M. D., Keir, D. A., and Paterson, D. H. (2013). Systemic and vastus
lateralis muscle blood flow and O 2 extraction during ramp incremental cycle exercise. Am.
J. Physiol. Integr. Comp. Physiol. 304, R720–R725. doi:10.1152/ajpregu.00016.2013

Ogata, H., Reyihan, A., and Yano, T. (2004). Kinetics of oxygenation in inactive
forearm muscle during ramp leg cycling. J. Physiol. Anthropol. Appl. Hum. Sci. 23, 7–17.
doi:10.2114/jpa.23.7

Osawa, T., Kime, R., Hamaoka, T., Katsumura, T., and Yamamoto, M. (2011).
Attenuation of muscle deoxygenation precedes EMG threshold in normoxia
and hypoxia. Med. Sci. Sport. Exerc. 43, 1406–1413. doi:10.1249/MSS.0b013e3182100261

Özyener, F., Whipp, B. J., and Ward, S. A. (2012). The contribution of “resting” body
muscles to the slow component of pulmonary oxygen uptake during high-intensity
cycling. ©Journal Sport. Sci. Med. 11, 759–767.

Perrey, S., Quaresima, V., and Ferrari, M. (2024). Muscle oximetry in sports science: an
updated systematic review. Sport. Med. 54, 975–996. doi:10.1007/s40279-023-01987-x

Possamai, L. T., Borszcz, F. K., de Aguiar, R. A., Lucas, R. D. de, and Turnes, T. (2024).
Comparison of NIRS exercise intensity thresholds with maximal lactate steady state,
critical power and rowing performance. Biol. Sport 41, 123–130. doi:10.5114/biolsport.
2024.129486

Racinais, S., Buchheit, M., and Girard, O. (2014). Breakpoints in ventilation, cerebral
and muscle oxygenation, and muscle activity during an incremental cycling exercise.
Front. Physiol. 5 (APR), 142. doi:10.3389/fphys.2014.00142

Sendra-Pérez, C., Encarnacion-Martinez, A., Salvador-Palmer, R., Murias, J. M., and
Priego-Quesada, J. I. (2024a). Profiles of muscle-specific oxygenation responses and
thresholds during graded cycling incremental test. Eur. J. Appl. Physiol. 125, 237–245.
doi:10.1007/s00421-024-05593-1

Sendra-Pérez, C., Priego-Quesada, J. I., Murias, J. M., Felipe, |, Carpes, P., Salvador-Palmer,
R., et al. (2024b). Evaluation of leg symmetry inmuscle oxygen saturation during submaximal
to maximal cycling exercise. Eur. J. Sport Sci. 25, e12230. doi:10.1002/ejsc.12230

Sendra-Pérez, C., Sanchez-Jimenez, J. L., Marzano-Felisatti, J. M., Encarnación-Martínez,
A., Salvador-Palmer, R., and Priego-Quesada, J. I. (2023). Reliability of threshold
determination using portable muscle oxygenation monitors during exercise testing: a
systematic review and meta-analysis. Sci. Rep. 13, 12649. doi:10.1038/s41598-023-39651-z

Shiroishi, K., Kime, R., Osada, T., Murase, N., Shimomura, K., and Katsumura, T.
(2010). Decreased muscle oxygenation and increased arterial blood flow in the non-
exercising limb during leg exercise. Adv. Exp. Med. Biol. 662, 379–384. doi:10.1007/978-
1-4419-1241-1_55

Skinner, J. S., and Mclellan, T. M. (1980). The transition from aerobic to anaerobic
metabolism. Res. Q. Exerc. Sport 51, 234–248. doi:10.1080/02701367.1980.10609285

Skotzke, P., Schwindling, S., and Meyer, T. (2024). Side differences and
reproducibility of the Moxy muscle oximeter during cycling in trained men. Eur.
J. Appl. Physiol. 124, 3075–3083. doi:10.1007/s00421-024-05514-2

Snyder, A. C., and Parmenter, M. A. (2009). Using near-infrared spectroscopy to
determine maximal steady state exercise intensity. J. Strength Cond. Res. 23, 1833–1840.
doi:10.1519/JSC.0b013e3181ad3362

Spendier, F., Müller, A., Korinek, M., and Hofmann, P. (2020). Intensity thresholds
and maximal lactate steady state in small muscle group exercise. Sports 8, 77. doi:10.
3390/sports8060077

Tanaka, H., Shimizu, S., Ohmori, F., Muraoka, Y., Kumagai, M., Yoshizawa, M., et al.
(2006). Increases in blood flow and shear stress to nonworking limbs during
incremental exercise. Med. Sci. Sport. Exerc. 38, 81–85. doi:10.1249/01.mss.
0000191166.81789.de

Tilp, M., Kitzberger, L., Schappacher-Tilp, G., Birnbaumer, P., and Hofmann, P. (2022).
Electromyographic and systemic physiological thresholds in single-joint elbow flexion
movements. Int. J. Sports Physiol. Perform. 17, 241–248. doi:10.1123/ijspp.2021-0163

van der Zwaard, S., Jaspers, R. T., Blokland, I. J., Achterberg, C., Visser, J. M., den Uil,
A. R., et al. (2016). Oxygenation threshold derived from near-infrared spectroscopy:
reliability and its relationship with the first ventilatory threshold. PLoS One 11,
e0162914. doi:10.1371/journal.pone.0162914

Wasserman, K., Stringer, W. W., Casaburi, R., Koike, A., and Cooper, C. B. (1994).
Determination of the anaerobic threshold by gas exchange: biochemical considerations,
methodology and physiological effects. Z. Kardiol. 83 (Suppl. 3), 1–12.

Yogev, A., Arnold, J., Clarke, D., Guenette, J. A., Sporer, B. C., and Koehle, M. S.
(2022). Comparing the respiratory compensation point with muscle oxygen
saturation in locomotor and non-locomotor muscles using wearable NIRS
spectroscopy during whole-body exercise. Front. Physiol. 13, 818733. doi:10.
3389/fphys.2022.818733

Frontiers in Physiology frontiersin.org10

Tilp et al. 10.3389/fphys.2025.1465344

https://doi.org/10.1123/ijspp.2024-0265
https://doi.org/10.1152/japplphysiol.00166.2018
https://doi.org/10.1152/jappl.1986.60.6.2020
https://doi.org/10.1152/jappl.1986.60.6.2020
https://doi.org/10.1097/HJR.0b013e328304fed4
https://doi.org/10.1016/S0140-6736(86)90837-8
https://doi.org/10.1016/S0140-6736(86)90837-8
https://doi.org/10.1139/apnm-2015-0261
https://doi.org/10.1007/s00421-016-3468-x
https://doi.org/10.1007/s00421-022-05081-4
https://doi.org/10.1007/s00421-022-05081-4
https://doi.org/10.1007/s00421-022-04942-2
https://doi.org/10.1249/MSS.0000000000001547
https://doi.org/10.1249/MSS.0000000000001547
https://doi.org/10.4324/9780203771587
https://doi.org/10.3390/life12030444
https://doi.org/10.1016/j.jelekin.2016.08.002
https://doi.org/10.3758/BF03193146
https://doi.org/10.1016/J.JSAMS.2014.07.016
https://doi.org/10.1152/ajpregu.00096.2021
https://doi.org/10.1007/s00421-022-05082-3
https://doi.org/10.1126/science.126.3287.1345
https://doi.org/10.1016/s1050-6411(00)00027-4
https://doi.org/10.4061/2011/209302
https://doi.org/10.1016/j.jelekin.2007.10.010
https://doi.org/10.1007/s00421-003-0949-5
https://doi.org/10.1152/ajpregu.00164.2019
https://doi.org/10.3389/fphys.2017.00686
https://doi.org/10.1152/ajpregu.00261.2017
https://doi.org/10.1055/s-2004-830514
https://doi.org/10.1152/ajpregu.00016.2013
https://doi.org/10.2114/jpa.23.7
https://doi.org/10.1249/MSS.0b013e3182100261
https://doi.org/10.1007/s40279-023-01987-x
https://doi.org/10.5114/biolsport.2024.129486
https://doi.org/10.5114/biolsport.2024.129486
https://doi.org/10.3389/fphys.2014.00142
https://doi.org/10.1007/s00421-024-05593-1
https://doi.org/10.1002/ejsc.12230
https://doi.org/10.1038/s41598-023-39651-z
https://doi.org/10.1007/978-1-4419-1241-1_55
https://doi.org/10.1007/978-1-4419-1241-1_55
https://doi.org/10.1080/02701367.1980.10609285
https://doi.org/10.1007/s00421-024-05514-2
https://doi.org/10.1519/JSC.0b013e3181ad3362
https://doi.org/10.3390/sports8060077
https://doi.org/10.3390/sports8060077
https://doi.org/10.1249/01.mss.0000191166.81789.de
https://doi.org/10.1249/01.mss.0000191166.81789.de
https://doi.org/10.1123/ijspp.2021-0163
https://doi.org/10.1371/journal.pone.0162914
https://doi.org/10.3389/fphys.2022.818733
https://doi.org/10.3389/fphys.2022.818733
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2025.1465344

	The relationship and agreement between systemic and local breakpoints in locomotor and non-locomotor muscles during single- ...
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Experimental design
	2.3 Cardiopulmonary measurements
	2.4 Near-infrared spectroscopy
	2.5 Electromyography
	2.6 Data analysis
	2.6.1 Systemic variables
	2.6.2 Local muscle variables

	2.7 Statistical analysis

	3 Results
	3.1 Locomotor muscle
	3.2 Non-locomotor muscle

	4 Discussion
	4.1 Locomotor muscle
	4.2 Non-locomotor muscle
	4.3 Practical applications and physiological mechanism
	4.4 Limitations
	4.5 Conclusion

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


