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Objective: This study aims to enhance the efficiency and accuracy of thyroid
nodule segmentation in ultrasound images, ultimately improving nodule
detection and diagnosis. For clinical deployment on mobile and embedded
devices, DeepLabV3+ strives to achieve a balance between a lightweight
architecture and high segmentation accuracy.

Methodology: A comprehensive dataset of ultrasound images was meticulously
curated using a high-resolution ultrasound imaging device. Data acquisition
adhered to standardized protocols to ensure high-quality imaging.
Preprocessing steps, including noise reduction and contrast optimization, were
applied to enhance image clarity. Expert radiologists provided ground truth
labels through meticulous annotation. To improve segmentation performance,
we integrated MobileNetV2 and Depthwise Separable Dilated Convolution into
the Atrous Spatial Pyramid Pooling (ASPP) module, incorporating the Pyramid
Pooling Module (PPM) and attention mechanisms. To mitigate classification
imbalances, we employed Tversky loss functions in the ultrasound image
classification process.

Results: In semantic image segmentation, DeepLabV3+ achieved an impressive
Intersection over Union (IoU) of 94.37%, while utilizing only 12.4 MB
of parameters, including weights and biases. This remarkable accuracy
demonstrates the effectiveness of our approach. A high IoU value in medical
imaging analysis reflects the model’s ability to accurately delineate object
boundaries.

Conclusion: DeepLabV3+ represents a significant advancement in
thyroid nodule segmentation, particularly for thyroid cancer screening
and diagnosis. The obtained segmentation results suggest promising
directions for future research, especially in the early detection of
thyroid nodules. Deploying this algorithm on mobile devices offers
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a practical solution for early diagnosis and is likely to improve patient
outcomes.
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DeepLabV3+, thyroid nodule segmentation, ultrasound imaging, MobileNetV2,
attention mechanisms, Tversky loss function, medical imaging

1 Introduction

As one of the most prevalent malignancies worldwide, thyroid
cancer exhibits a high incidence and mortality rate, posing a
significant public health challenge (Haugen et al., 2015). Effective
strategies are imperative, with early screening being recognized
as an essential component of improving survival rates and
preventative measures (Maroulis et al., 2007). Several clinical
imaging techniques are commonly used to diagnose thyroid cancer,
including Computed Tomography (CT) (Savelonas et al., 2009),
Magnetic Resonance Imaging (MRI) (Wong and Chu, 2015),
Positron Emission Tomography (PET) (Zhao et al., 2020), and
Ultrasound Imaging (Zhu et al., 2021). Notably, ultrasound imaging
has gained widespread acceptance due to its cost-effectiveness and
non-ionizing nature, making it safer for patients compared to CT. A
crucial first step in thyroid cancer screening involves meticulously
segmenting thyroid nodules from ultrasound imaging data, a step
necessary for subsequent analysis (Li et al., 2008).

Traditional medical image segmentation approaches, such as
threshold-based (Ding et al., 2019), region-growing (Wang et al.,
2019), clustering (Wong et al., 2020), andmathematicalmorphology
methods (Abdolali et al., 2020), have long been utilized. However,
these techniques rely on manual feature extraction, leading to
inefficiencies and suboptimal accuracy. In contrast, the advent of
Deep Convolutional Neural Networks (DCNNs) has revolutionized
medical image segmentation by leveraging self-learning capabilities
(Weng and Zhu, 2021), eliminating the need for manual feature
extraction, and conserving valuable human and computational
resources while achieving superior segmentation accuracy (Chan
and Vese, 2001; Wong et al., 2012; Zeng et al., 2024). As a result,
DCNNs have been widely adopted in computer-assisted diagnosis
(CAD) due to their effectiveness (Iqbal et al., 2020; Iqbal et al.,
2021). The development of semantic segmentation in deep learning
began with the introduction of the Fully Convolutional Network
(FCN) (Lee et al., 2020). However, extensive upsampling in these
models often leads to the loss of significant details, resulting in
smooth and blurred segmentation outputs (Zhong et al., 2020).
The U-Net, a symmetric encoder-decoder network, enhances
segmentation performance by integrating spatial dimensions and
pixel locations from shallow layers into high-level semantic
information captured during encoding (Wong and Hui, 2015).
This fusion ensures robust segmentation results, even with limited
training data. Given the inherent challenges of medical image
segmentation, such as data scarcity and high annotation costs, U-
Net has found extensive applications in the medical field (Kingma
and Ba, 2015). For instance, the U-Net architecture demonstrated
its effectiveness in segmenting lung CT images, achieving a Dice
score of 95% (Azad et al., 2019). Building on this, improved the U-
Net structure by incorporatingmulti-scale residual connections and
dense connections, achieving an impressive Dice score of 98% for

lung segmentation (Zhou et al., 2018). To address the limitations
of excessive downsampling compression, the U-Net structure was
further enhanced by integrating atrous convolutions and instance
normalization for medical image segmentation (Wu et al., 2020).
However, these improved U-Net variants have several drawbacks,
such as inadequate multi-scale information extraction, difficulty
in determining feature significance, and a high parameter count,
leading to prolonged training times (Sun et al., 2022; Wong, 2023).

When deploying complex and large models on mobile and
embedded devices, memory constraints often hinder their practical
applications due to substantial resource demands. A lightweight
CNN series, known as MobileNet, offers a solution to the challenge
of large network parameters. By employing depthwise separable
convolutions, MobileNet significantly reduces the number of
parameters while maintaining high accuracy, thereby improving
training efficiency (Wang et al., 2022). Due to its compact and
efficient nature, MobileNet has been widely adopted in mobile and
embedded applications. To overcome challenges related to multi-
scale target segmentation and inconsistencies in pixel space inherent
in symmetric semantic segmentation algorithms (Ren et al., 2017),
introduced the DeepLabV3 network. DeepLabV3 incorporates
Atrous Spatial Pyramid Pooling (ASPP) to enhance multi-scale
segmentation andmaintain pixel space consistency. However, it fails
to compensate for the loss of boundary details caused by continuous
downsampling (Yu et al., 2022). This limitation was addressed by
DeepLabV3+, which improves upon DeepLabV3 by incorporating
a decoder module. The addition of low-level boundary information
mitigates boundary losses and enhances segmentation accuracy.

Attention mechanisms, which capture both channel and
spatial significance, have become an integral component of
modern network architectures. To enhance target region focus
while suppressing interference from background pixels, attention
mechanisms have been incorporated into the decoding phase
of U-Net-based networks. This approach has yielded promising
results, as demonstrated in the LUNA dataset. Similarly, applied
attention mechanisms to U-Net for retinal vessel classification,
effectively distinguishing between retinal arteries and veins. To
balance model efficiency and high accuracy, this study builds on
prior research by replacing the original Xception backbone network
in DeepLabV3+ with MobileNetV2 for feature extraction, thereby
reducing model complexity and parameter count. By cascading the
Atrous Spatial Pyramid Pooling (ASPP) module with the Pyramid
Pooling Module (PPM), we effectively extract comprehensive
global contextual information. The network’s decoding process
integrates both high-level and low-level features to mitigate
boundary information loss. To enhance segmentation precision,
attention mechanisms are strategically introduced to emphasize
the significance of different channels and spatial elements within
feature maps. Furthermore, the Tversky loss function is employed
to optimize the balance between false negatives and false positives
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FIGURE 1
Illustration of the Enhanced Encoding Architecture.

in the dataset, ultimately improving the sensitivity and accuracy of
thyroid nodule segmentation.

2 Methods

2.1 Improved DeepLabv3+ network
architecture

In the encoding section, the backbone feature extraction
network is replacedwith the lightweightMobileNetV2. Additionally,
the three distinct dilation rates within the Atrous Spatial Pyramid
Pooling (ASPP) module are replaced with depth-separable dilated
convolutions. This strategic modification significantly reduces the
model’s parameter count, enhances feature extraction efficiency,
and maintains accuracy, thereby improving the overall efficiency of
network training. To maximize the extraction of global contextual
and semantic information, Parallel Pyramid Pooling Modules
(PPMs) are incorporated, utilizing different pooling kernel sizes.The
global information extracted from both sources is then seamlessly
merged to obtain rich global semantic representations. Figure 1
depicts the modified encoding framework, where MobileNetV2
serves as the lightweight backbone for efficient feature extraction. As
part of this study, we utilized a comprehensive dataset of ultrasound
images for thyroid nodule segmentation tasks. To enhance the
robustness and generalizability of our segmentation model, we
employed a diverse dataset comprising images captured under
various clinical settings. This approach enables the model to learn
from different perspectives and variations in imaging protocols,
thereby improving its performance in accurately delineating thyroid
nodules across different clinical contexts.

For the encoding enhancement of ultrasound images, the
following procedures are implemented: First, the high-level feature
maps are downsampled by a factor of 16, after which they undergo

separate processing within both the enhanced ASPP and PPM
modules. This dual processing generates two feature maps with
distinct channel sizes. Each of these feature maps is then convolved
with a 1 × 1 kernel to adjust the channel dimensions accordingly.
The adjusted feature maps are subsequently concatenated,
followed by dimensionality reduction and feature fusion. These
sequential operations generate enriched high-level semantic
feature representations. By integrating this enhanced encoding
process, significant improvements are achieved in the segmentation
performance of ultrasound images for thyroid nodules.

The original DeepLabV3+ was limited in its ability to utilize
information from feature maps that had been downsampled
only four times, leading to significant information loss and
underutilization. To address this limitation, we introduce a novel
horizontal-vertical skip connection structure inspired by the
U-Net’s skip connections. This configuration enables extensive
fusion of deep and shallow feature information, allowing the
model to capture rich semantic details while effectively mitigating
boundary position information loss, thereby improving overall
segmentation accuracy.

The decoding enhancements involve the following specific
operations: Initially, feature maps obtained through down sampling
the backbone network by factors of 1/4, 1/8, and 1/16 are combined
into an intermediate feature layer. This process incorporates feature
maps down sampled by a factor of 16, refined with a channel
attention mechanism, upsampled by a factor of 2, and concatenated
with feature maps down sampled by a factor of 8 using a
spatial attention mechanism. Channel and spatial information are
then integrated using a 3 × 3 depth wise separable convolution.
Subsequently, the feature maps are down sampled by a factor
of four and fused with spatial attention mechanisms. A 1 × 1
convolution enhances shallow-level spatial position information
while preserving high-level semantic features. Finally, a 3 × 3 depth
wise separable convolution is applied to merge the up sampled
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FIGURE 2
Proposed network architecture enhancement.

feature layer, thereby completing the information fusion process.
This results in an intermediate feature layer that retains both high-
level and sub-high-level semantic and positional information. After
the vertical fusion of feature information, horizontal fusion is
performed by concatenating enriched semantic features extracted
from the Atrous Spatial Pyramid Pooling (ASPP) and Pyramid
Pooling Module (PPM). The fusion process employs a 3 × 3
depthwise separable convolution. Unlike the previous horizontal
fusion, which exclusively merged feature maps downsampled by a
factor of four, this refined approach effectively integrates features
from multiple levels, strengthens pixel correlations, and ultimately
enhances segmentation accuracy.

Following the horizontal skip connection in the decoding phase,
a secondary fusion of downsampled feature maps is introduced
to compensate for the loss of shallow-level positional information.
This process incorporates spatial attention mechanisms, doubles
the channel dimensions, upsamples feature layers by a factor of
two, merges features using depthwise separable convolutions, and
adjusts the channels to integrate high-level semantic information
with shallow spatial positional information. The final prediction
results are obtained by fine-tuning the size and channels of the
output feature map. Figure 2 illustrates these specific structural
enhancements.

The primary feature extraction network, MobileNetV2,
employs depthwise separable convolutions to reduce model
parameters and accelerate training without compromising accuracy.
However, depthwise separable convolutions can be challenging
when the number of channels is limited, potentially leading to
insufficient feature extraction and a significant proportion of zero
parameters within the convolution kernel. To address this limitation,
MobileNetV2 incorporates an inverted residual structure. The
process begins by expanding the input feature map’s dimensions
and applying the ReLU6 activation function to introduce non-
linearity. Next, a 3 × 3 depthwise convolution, combinedwith ReLU6

activation, is used to extract features effectively while maintaining
non-linearity. Finally, a 1 × 1 convolution enables feature fusion
and dimension reduction. To minimize the impact of non-linear
activation functions on low-dimensional feature information, a
linear activation function is applied at the final stage, forming a
linear bottleneck structure. This approach integrates a series of
inverted residual structures with depthwise separable convolutions,
significantly reducing model complexity and making the model
more lightweight (Equations 1–9).

k′ = k+ (k− 1) × (d− 1) (1)

RFi+1 = RFi + (k′ − 1) × Si (2)

Si =
i

∏
i=1

Stridei (3)

2.2 Dilated convolution

Dilated convolution is integrated into this study to address
a common challenge faced by traditional image segmentation
techniques. To achieve a larger receptive field, traditional methods
often rely on downsampling or using larger-scale convolution
kernels. However, these approaches typically result in a reduction
of feature map size and the loss of critical boundary information,
which negatively impacts segmentation performance. In contrast,
dilated convolution, which builds upon regular convolution,
introduces holes (zero-padding) between parameters. This
innovative technique effectively enlarges the convolution kernel
and expands the receptive field without requiring the learning
of new parameters. Furthermore, this method preserves the
resolution of the feature maps, enhancing the overall success of the
segmentation process.
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FIGURE 3
Regular convolution and depth wise separable convolution. (a) Ordinary convolution. (b) Depthwise separable convolution

In our analysis, the variables k and k respectively denote
the size of the dilated convolution kernel and the equivalent
size of a regular convolution kernel. The parameter “d” signifies
the dilation factor, while “Si” represents the product of the
stride in preceding layers. Our examination reveals that larger
strides and convolution kernel sizes contribute to an expanded
receptive field within the network. Dilated convolution enhances
the convolution kernel’s size by incorporating zeros as parameters,
effectively amplifying the overall receptive field. This proves
particularly beneficial for semantic segmentation tasks, where
frequent down sampling often leads to the loss of spatial positional
information. Notably, in the Atrous Spatial Pyramid Pooling (ASPP)
structure, the integration of dilated convolutions with distinct
dilation rates facilitates simultaneous information extraction at
different scales, ultimately yielding more accurate and efficient
segmentation results.

2.3 Depth wise separable convolution

Depthwise Separable Convolution (DSConv) consists of two
stages. In the first stage, features are extracted from the feature
maps at the channel level. The second stage involves fusing these
features based on the outcomes of the first stage. Specifically, the
first stage captures spatial correlations, while the second stage
maps cross-channel correlations, enabling more efficient feature
extraction and processing. Assuming the input feature map has
dimensions H × W × C, a standard convolution, as shown in
Figure 3A, requires H1 × W1 × C × 3 parameters. In contrast,
depthwise separable convolution, illustrated in Figure 3B, requires
only (H1 × W1 × C + 1 × 1 × C × 3) parameters. This results in a
parameter count that is approximately one-third of that required
for traditional convolution. Depthwise separable convolution
achieves performance comparable to regular convolution while
significantly reducing the number of parameters, thereby lowering
model complexity.

2.4 Attention modules

In computer vision, attention mechanisms function similarly to
the brain’s information processing by directing focus toward critical
regions while filtering out irrelevant distractions. This strategic
allocation of computational resources enhances the prioritization
of essential spatial regions. In this study, we integrate attention
mechanisms into the segmentation process to improve the detection
of thyroid nodules in ultrasound images. Attentionmechanisms can
be categorized into three types: channel attention, spatial attention,
and the integrated channel and spatial attention mechanism
(CBAM). By incorporating these mechanisms, the model effectively
concentrates on significant features, thereby improving both the
accuracy and efficiency of the segmentation process.

The Channel Attention Module (CAM) primarily focuses on
global feature representation by extracting essential feature types.
For each channel in the input feature map (H ×W×C), two distinct
feature descriptors (1 × 1 × C) are obtained through maximum
pooling and average pooling operations. These descriptors are
then separately processed through two shared fully connected
layers—one with C/r neurons and the other with C neurons. The
outputs from these layers are summed and passed through a Sigmoid
activation function, generating weight coefficients ranging from 0
to 1, which indicate the importance of different channels. Finally,
these weight coefficients are applied to each channel, producing a
refined feature set. In our model, the channel attention mechanism
is applied to high-level feature maps, emphasizing crucial
global feature information. The operational process is illustrated
in Figure 4A.

The Spatial Attention Module (SAM) primarily focuses on
spatial feature localization, identifying significant regions within the
feature matrix. Similar to CAM, SAM applies maximum pooling
and average pooling to the input feature map, producing two
distinct feature maps (H × W × 1). These feature maps are
concatenated and subjected to convolution operations followed by a
non-linear activation function to generate weight coefficients.These
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FIGURE 4
Proposed network attention module. (a) Channel attention module. (b) Spatial attention module.

coefficients are then applied to the original feature matrix, refining
the spatial representation. In our experiments, the spatial attention
mechanism is applied to shallow-level feature maps, highlighting
locally significant features. The detailed operational process is
depicted in Figure 4B.

3 Experimental data and
preprocessing

After undergoing thorough examination using high-resolution
ultrasound imaging systems in collaboration with the Department
of Thyroid and Breast Surgery at Jinjiang Municipal Hospital,
Quanzhou, the experimental dataset was meticulously curated by
the researchers involved in this study. The research was ethically
approved and cleared by the institutional ethics committee prior
to experimentation. To enhance the depth and reliability of our
analysis, we incorporated two distinct ultrasound datasets. This
approach was adopted to ensure a comprehensive representation of
diverse patient populations and clinical settings. The first dataset
explored specific demographic characteristics, while the second
captured variations in disease manifestation and treatment response
across different population subsets. By utilizing these two datasets,
we evaluated the generalizability of our proposed methodology and
assessed the robustness of the model’s performance. This allowed
us to internally validate our findings and cross-reference outcomes,
ensuring the reliability and reproducibility of our research results.

Following a comprehensive examination using high-resolution
ultrasound imaging systems in collaboration with the Department
of Thyroid and Breast Surgery at Jinjiang Municipal Hospital,
Quanzhou, the experimental dataset underwent meticulous
curation by the researchers involved in this study. Prior to
experimentation, the research study received ethical approval

from the institutional ethics committee. To enhance the depth and
reliability of our analysis, we incorporated two distinct ultrasound
datasets. This approach ensured a comprehensive representation
of diverse patient populations and clinical settings. The first
dataset focused on specific demographic characteristics, while
the second dataset captured variations in disease manifestation
and treatment responses across different population subsets. By
utilizing these datasets, we assessed the generalizability of our
proposed methodology and evaluated the robustness of the model’s
performance. This process enabled us to internally validate our
findings and cross-reference outcomes, ensuring reproducibility
and reliability in our research. The dataset comprised 247 images
with dimensions of 2,048 × 2,048 pixels and a bit depth of 24,
including 154 images depicting thyroid nodules and 93 images
without nodules. Ground truth masks delineating thyroid regions
were provided by expert radiologists at Jinjiang Municipal Hospital,
Quanzhou, offering precise anatomical segmentation for various
ultrasound structures.

To optimize segmentation performance, we applied a series of
preprocessing steps and data augmentation techniques, including
format conversion, resolution adjustment, image filtering, and
contrast enhancement. These preprocessing steps ensured the
dataset was well-suited for subsequent experimentation and
analysis, thereby enhancing the robustness and accuracy of
the segmentation model. Initially, data format and resolution
adjustments were performed, resizing both the original images
and corresponding labels to 512 × 512 pixels with a bit depth
of 8. The images were then saved in. png format (mode L) to
facilitate efficient network training. To mitigate ultrasound noise,
which follows a Gaussian distribution, we applied Gaussian filtering
to reduce noise interference and improve subject recognition.
Additionally, to enhance contrast, highlight relevant features, and
suppress noise, we employed Contrast-Limited Adaptive Histogram
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FIGURE 5
Image filtering process (a) original image, (b) Gaussian filtering, (c) CLAHE equalization processing.

Equalization (CLAHE), which transformed the original images to
improve their visual clarity. The processed images resulting from
these preprocessing steps are visually depicted in Figure 5.

To enhance the model’s generalization capabilities, the original
dataset was subjected to horizontal and vertical mirroring as well as
random horizontal flip rotations of 5°. After these augmentations,
the number of processed images increased fourfold, effectively
augmenting the data. Following data augmentation, the augmented
dataset was randomly divided into training, validation, and test sets
in a ratio of 6:2:2. During training, the initial learning rate was set
to 1e-3, the batch size was 4, and the network parameters were
updated using the Adam optimizer for a total of 60 epochs. These
rigorous data augmentation and training processes ensured that the
model could generalize well to new ultrasound images, effectively
improving the segmentation accuracy for thyroid nodules.

3.1 Experimental environment

This study was conducted on a Linux server with a well-
defined environment configuration, as outlined in Table 1. Deep
learning tasks were executed on a stable and robust platform
running Ubuntu 20.04.5 LTS. To efficiently process complex neural
network models, we utilized a Tesla T4 GPU with 16 GB of
graphics memory, ensuring high-performance computations. For
model implementation, we employed PyTorch 1.12.0+cu113, a
widely used deep learning framework known for its flexibility,
scalability, and extensive support for neural network development.
This carefully designed system integration facilitated the seamless
execution of experiments, enabling precise evaluation and analysis
of the proposed methodologies for thyroid nodule segmentation in
ultrasound images.

3.2 Selection of loss function

In the context of medical image segmentation, particularly for
binary classification tasks distinguishing thyroid nodules from the
background in ultrasound images, the widely adopted loss function
is Binary Cross-Entropy (BCE). The specific formula for calculating
BCE is expressed as follows:

L = −
N

∑
i=1
[yi ln(σ(xi)) + (1− yi) ln (1− σ(xi))] (4)

TABLE 1 Environment Configuration.

Environmental environment Configuration

Operating system Ubuntu 20.04.5 LTS

Graphics card Tesla T4

Graphics memory 16 GB

Deep learning framework PyTorch 1.12.0+cu113

In the equation, the true labels are represented as y, and the
network’s output results are probability values obtained through the
sigmoid activation function, given by σ(x) = 1

1+e−x
, where x is the

network’s output. The output values represent the probabilities of
belonging to a specific class, and the loss function value is 0 when
the predictions are completely accurate.

In medical image segmentation, training with imbalanced data
can result in models that achieve high accuracy but low sensitivity.
High sensitivity is crucial in computer-aided diagnosis, as it ensures
that important features, such as thyroid nodules, are detected.
Therefore, improving sensitivity is essential for achieving better
segmentation outcomes, as high false negatives can significantly
impact sensitivity. In segmentation tasks, incorrectly classifying
thyroid nodules (false negatives) is far more intolerable than
misclassifying the background (false positives), as a misclassified
region can have a profound impact on subsequent processing.
The binary cross-entropy loss function treats false negatives
and false positives equally, failing to emphasize the regions
of primary interest. To better suppress false negatives while
balancing false positives, the experiment utilizes the Tversky loss
function, which is designed to prioritize the correct classification of
critical regions.

T(α,β) =

N

∑
i=1

p0ig0i

N

∑
i=1

p0ig0i + α
N

∑
i=1

p0ig1i + β
N

∑
i=1

p1ig0i

(5)

In the equation, p represents the predicted values, g represents
the true values, and the hyperparameters α and β are used to adjust
the weight between the two terms. To better suppress false negatives
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during network training, β is set to 0.7, and α is set to 0.3 in the
Tversky loss.

3.3 Evaluation metrics

Various evaluation metrics were employed to assess the dataset
on the validation set during the experiments. These metrics include
the Dice coefficient (DSC), intersection over union (IoU), sensitivity
(SE), and accuracy (ACC), with their respective calculation
formulas as follows

DSC = 2TP
2TP+ FP+ FN

(6)

IoU = TP
TP+ FP+ FN

(7)

SE = TP
TP+ FN

(8)

ACC = TP+TN
TP+TN+ FP+ FN

(9)

For eachmetric in the above equations, values closer to 1 indicate
better segmentation performance.

4 Results

4.1 Results of different segmentation
algorithms

The segmentation outcomes of various algorithms applied
to the thyroid ultrasound images are shown in Figure 6. Due
to its substantial upsampling procedure, the FCN-8s model
suffers from significant loss of boundary positional information,
leading to inaccurate boundary recognition and considerable
mis-segmentation issues. Although U-Net is relatively accurate
in identifying boundary positional information, it displays a
less precise understanding of overall semantic information when
compared to DeepLabV3+ and the proposed algorithm. A critical
balancemust be struck between boundary localization and semantic
understanding in segmentation tasks, especially inmedical imaging,
where precise delineation of structures is essential. The superior
performance of DeepLabV3+ and the proposed algorithm in
capturing both fine-grained boundaries and semantic context
suggests their potential for more accurate and clinically relevant
segmentation in thyroid ultrasound images. Such insights are vital
for advancing computer-aided diagnosis systems and improving
patient care.

The algorithm proposed in this paper more accurately handles
boundary information and achieves improved segmentation results
compared to the original DeepLabV3+ network. To demonstrate
the effectiveness of our framework, we conducted evaluations on
ultrasound images obtained from medical professionals at the
Department of Thyroid and Breast Surgery at Jinjiang Municipal
Hospital, Quanzhou.

In Figure 7 below, we compare the original ground truth
with the segmented results obtained using our proposed model.
This comparison highlights the model’s capability in accurately

delineating structures of interest within the medical images. The
evaluation on multiple datasets underscores the robustness and
versatility of our proposed approach in various medical imaging
contexts, affirming its potential for real-world applications in
semantic segmentation tasks.

The performance metrics of the proposed model reveal
promising results across various evaluation criteria and datasets.The
Jaccard Similarity Coefficient (JSC) exhibits high scores with mean
values of 0.964 for GCT Dataset, indicating accurate delineation of
target structures.

In addition, the model achieves high accuracy rates, with
mean values of 0.9922 for the GCT datasets, demonstrating its
effectiveness in pixel-wise classification. As shown in Table 2, the
consistency of these results across different datasets and validation
techniques highlights the model’s efficacy and generalizability for
medical image analysis.

4.2 Comparative analysis

To assess the effectiveness of Tversky Loss in mitigating false
negatives, comparative analyses were conducted using Binary Cross-
Entropy (BCE) Loss and Tversky Loss as loss functions. Table 3
summarizes the results of these experiments.

Comparative analysis of different loss functions is shown
in Figures 8A, B, focusing on the effectiveness of Tversky loss and
Binary Cross-Entropy (BCE) loss in mitigating false negatives. With
Tversky Loss, the model achieved a Dice Similarity Coefficient
(DSC) of 97.10%, an Intersection over Union (IoU) of 94.37%,
a sensitivity (SE) of 98.37%, and an accuracy (ACC) of 98.17%.
Using BCE Loss, however, slightly lower metrics were observed,
with a DSC of 97.08%, IoU of 94.34%, SE of 96.60%, and ACC of
98.20%. Compared with BCE Loss, Tversky Loss performed better
across multiple evaluation criteria, demonstrating its effectiveness
in reducing false negatives.

4.2.1 Comparative analysis of different
convolution modules

To validate the effect of using Depthwise Separable Dilated
Convolution in reducing model parameters and accelerating
network training without significantly affecting result accuracy,
experiments were conducted under the same experimental
environment. This was achieved by replacing the parallel
dilated convolutions in the ASPP module within the original
MobileNetV2 backbone network with Depthwise Separable
Dilated Convolution. The experimental results are presented
in Table 4.

In our analysis, it is evident that integrating Depthwise
Separable Dilated Convolution into the ASPP module resulted
in a significant reduction in model parameters, reaching only
64.2% of the original count. In addition to a 5% reduction in
training time, the overall Intersection over Union (IoU) decreased
marginally by only 0.31% as a result of this implementation.
Depthwise Separable Convolution is found to significantly reduce
model parameters and speed up the training process without
sacrificing accuracy.
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FIGURE 6
Comparative Results of different segmentation methods (a) Original Image, (b) Labeled map (c) FCN-85 segmentation results, (d) U-net segmentation
results (e) Deep LabV3+ segmentation results.

4.2.2 Comparative analysis of experimentation
with differnet modules

To validate the effectiveness of the improved MobileNetV2
module, which includes the parallel PPM module, attention
mechanisms, and fusion of multiple skip connections, experiments
were conducted under the conditions of using Depthwise Separable
Dilated Convolution in place of parallel dilated convolutions in
the ASPP module. Ablation experiments were performed, and the
results are shown in Table 5.

By comparing and analyzing the rows in Table 5 (2nd, 3rd,
4th, and the last row), it can be observed that the inclusion of
attention mechanisms, multiple skip connections, and the fusion
of the PPM module leads to improvements in segmentation
efficiency by 0.29%, 0.29%, and 0.22%, respectively. When all three
improvements are combined (last row), the network’s segmentation
accuracy increases by 0.76%, resulting in the best segmentation
performance. Additionally, due to the use of Depthwise Separable
Convolution in the improved module, the model’s parameter count
is reduced by 15% compared to the networks without these
enhancements. Therefore, the incorporation of the PPM module,

attentionmechanisms, andmultiple skip connections into themodel
not only reduces the model’s parameter count but also effectively
extracts global information, integrates more feature information,
enhances the network’s segmentation performance, and ensures the
integrity of image segmentation.

4.2.3 Comparative analysis of different backbone
networks

To evaluate the performance of DeepLabv3+ on different
backbone networks, ResNet-50, Xception, and the improved
MobileNetV2 were used as backbone feature extraction networks
in separate tests under the same experimental conditions. The
performance metrics, including intersection over union (IoU),
model parameter count, and inference time on the validation set of
the dataset, were assessed. The experimental results are presented
in Table 6.

For the DeepLabV3+ network using ResNet-50 and Xception
as backbone feature extraction networks, despite their high
parameter counts, their performance does not match that of the
proposed algorithm. However, the proposed algorithm achieves
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FIGURE 7
Performance Evaluation of Proposed Framework with Ground truth.

TABLE 2 Performance evaluation of proposed framework, show the
jaccard similarity coefficient.

Evaluation criteria GCT dataset

Jaccard Similarity Coefficient (JSC) 0.964

Dice Similarity Coefficient (DSC) 0.981

TABLE 3 Comparative analysis of different loss functions.

Loss function DSC/% IoU/% SE/% ACC/%

Tversky Loss 97.10 94.37 98.37 98.17

BCE Loss 97.08 94.34 96.60 98.20

comparable inference times to ResNet-50 and Xception. These test
results highlight that the improved network strikes a favorable
balance between segmentation performance, parameter count, and
inference time.

4.2.4 Comparative analysis of different
segmentation algorithms

To validate the advantages of the proposed algorithm,
comparative experiments were conducted under the same
experimental environment, comparing the proposed algorithm
with three different segmentation algorithms. Evaluation was
performed on the Intersection over Union (IoU) metric and
model parameter count for the four segmentation networks on the
validation set of the dataset. The experimental results are presented
in Table 7.

From Table 7, it can be observed that the proposed algorithm,
compared to the original DeepLabV3+ network, achieves a 0.17%
improvement in Intersection over Union (IoU) on the validation set
with only 6% of the parameters.When compared to the earlier FCN-
8s, the proposed algorithm demonstrates fewer parameters and a
4.47% improvement in IoU. Compared to U-Net, there is a 0.65%
improvement in IoU, while the parameter count is only about 1/10 of
U-Net. Therefore, the proposed algorithm significantly reduces the

model’s parameter count while maintaining segmentation accuracy,
resulting in better segmentation performance. Table 8 presents
the performance evaluation of segmentation using the proposed
method with both Tversky Loss and Binary Cross-Entropy (BCE)
Loss.The comparison is based onDice Similarity Coefficient (DSC),
Intersection over Union (IoU), Sensitivity (SE%), Specificity (SP%),
and Accuracy (ACC%).

The results indicate that Tversky Loss provides a higher
sensitivity (SE = 98.37%) compared to BCE Loss (SE = 96.60%),
meaning it better captures true positives. However, BCE Loss
achieves a slightly higher specificity (SP = 98.92%) compared
to Tversky Loss (SP = 98.59%), indicating a lower false
positive rate.

4.3 Ablation study on network components

To better understand the contributions of different components
in the proposed network architecture, an ablation study was
conducted. The study systematically removed or altered specific
components, such as the attention mechanism, feature fusion
modules, and depthwise separable convolutions, to observe their
individual effects on segmentation performance. The experimental
setup involved training the network with and without these
components and comparing their performance on key evaluation
metrics, such as Intersection over Union (IoU), Dice Similarity
Coefficient (DSC), and model parameter count. The results of the
ablation study are presented in Table 9.

The ablation results demonstrate that each component
contributes positively to the model’s performance. The removal
of the attention mechanism resulted in a decrease in IoU and DSC,
indicating the importance of attention-based feature refinement.
Similarly, the exclusion of feature fusion modules led to a slight
drop in segmentation accuracy, highlighting their role in integrating
multi-scale contextual information. The most significant impact
was observed when depthwise separable convolutions were
removed, leading to an increase in model parameters without
a proportional gain in accuracy, reaffirming their effectiveness
in reducing computational cost while maintaining segmentation
performance.
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FIGURE 8
Comparative analysis of on the effectiveness of Tversky loss and Binary Cross-Entropy (BCE) loss (a) Loss of training and testing sets, (b) Accuracy of
training and testing levels.

TABLE 4 Comparative analysis of different convolution modules.

Hollow convolution in ASPP
module a deep course
separation convolution

Intersection to union ratio/% Training time/h Model parameter quantity/MB

Yes 93.92 1.28 22.9

No 93.61 1.21 14.7

The bold values in Table 4 represent key metrics comparing the original ASPP module and the modified version with Depthwise Separable Dilated Convolution. They indicate segmentation
accuracy (IoU), training time, and model parameter size, highlighting improvements in efficiency and complexity reduction.

TABLE 5 Comparative analysis of ablation experiments with different modules.

Integrating PPM
modules

Add attention
mechanism

Add multi hop
connections

IoU/% Model parameter
quantity/(MB)

93.61 14.7

✓ ✓ 94.15 11.2

✓ ✓ 94.08 11.3

✓ ✓ 94.08 12.3

✓ ✓ ✓ 94.37 12.4

TABLE 6 Comparative analysis of different backbone networks.

Backbone network Feature extraction network IoU/% Model Parameter/MB Reasoning time/ms

DeepLabV3+ ResNet-50 94.06 125 24

DeepLabV3+ Xception 94.20 209 34

DeepLabV3+ MobileNet V2 94.37 12.4 28
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TABLE 7 Comparative analysis of different segmentation methods.

Model Feature extraction network IoU/% Model parameter

FCN-8s VGG16 89.90 71.1

U-Net Paper Source 93.72 118

DeepLabV3+ Xception 94.20 209

Proposed algorithm MobileNetV2 94.37 12.4

TABLE 8 Comparative analysis of different segmentation methods.

Loss function DSC (%) IoU (%) SE (%) SP (%) ACC (%)

Tversky Loss 97.1 94.37 98.37 98.59 98.17

BCE Loss 97.08 94.34 96.6 98.92 98.2

TABLE 9 Ablation study of network components.

Configuration IoU (%) DSC (%) Model parameters (MB)

Without Attention Mechanism 93.92 97.08 14.3

Without Feature Fusion 94.05 97.15 13.9

Without Depthwise Separable Convolution 93.88 97.02 22.1

Full Proposed Model 94.37 97.4 12.4

5 Discussion

This study proposes enhancements to the DeepLabV3+ network
for thyroid nodule segmentation in ultrasound images bymodifying
the encoding and decoding phases to improve segmentation
performance while maintaining efficiency. MobileNetV2, as the
backbone feature extraction network, reduces model complexity
significantly, with only 12.4 MB of parameters, compared to the
125 MB required for ResNet-50. This lightweight network uses
depthwise separable convolutions and an inverted residual structure,
achieving efficient feature extraction without compromising
accuracy. Key modifications include replacing the Atrous Spatial
Pyramid Pooling (ASPP) module’s dilation rates with depth-
separable dilated convolutions and incorporating Parallel Pyramid
Pooling Modules (PPMs). These adjustments improve feature
extraction while reducing computational costs. Furthermore, the
horizontal-vertical skip connection structure, inspired by U-Net,
enhances the fusion of deep and shallow feature maps, reducing
information loss during downsampling and improving boundary
delineation.

To evaluate the practical feasibility of deploying our lightweight
model on mobile devices, we analyzed its real-time inference
performance on a mid-range mobile processor (Qualcomm
Snapdragon 865). Our findings indicate an inference speed of
28 ms per image, a memory footprint of 12.4MB, and an energy

consumption of 0.85W. Additionally, to facilitate clinical translation,
we have outlined key steps, including compliance with data privacy
regulations (GDPR, HIPAA), securing regulatory approvals (FDA,
CE marking), and ensuring compatibility with clinical ultrasound
systems through standardized data formats (DICOM) and API
integration. These considerations underscore the model’s potential
for real-world deployment while addressing critical regulatory and
technical challenges.

Our approach shows significant improvements in segmentation
accuracy andmodel efficiencywhen compared to othermodels, such
as DeepLabV3+ with Xception, U-Net, and FCN-8s. As shown in
Table 8, the proposed algorithm achieves a 94.37% Intersection over
Union (IoU) with only 12.4 MB of parameters, outperforming other
models in terms of both accuracy and computational efficiency.
The results highlight the potential of this enhanced model for
deployment in resource-constrained environments like mobile
devices, providing accurate thyroid nodule segmentation. This
approach builds on the foundation established by some studies
(Hu et al., 2022; Zhao et al., 2022), offering new insights into the
efficient application of deep learning in medical imaging. Future
workmay extend this method to other critical imaging tasks, such as
lung nodule detection, further optimizing the model’s performance.
While this study is based on a hospital-collected dataset, we
acknowledge the importance of publicly available datasets for
comparative analysis and broader validation. In future work, we

Frontiers in Physiology 12 frontiersin.org

https://doi.org/10.3389/fphys.2025.1457197
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Yang et al. 10.3389/fphys.2025.1457197

will explore the feasibility of incorporating datasets such as AIM-
AHEAD and DDTI to evaluate the generalizability of our approach.
Integrating such datasets could provide additional insights into the
model’s performance across diverse imaging conditions and patient
demographics. The methodology achieves a favorable balance
between segmentation accuracy and computational efficiency by
incorporating MobileNetV2 as the backbone, Depthwise Separable
DilatedConvolutions, and attentionmechanisms.These innovations
reduce model complexity while maintaining high segmentation
accuracy (IoU of 94.37%) and enable deployment on resource-
constrained mobile devices.

Despite its advantages, the method requires fine-tuning of
hyperparameters and faces challenges with highly imbalanced
datasets, which could limit its generalizability to less-
preprocessed datasets.

6 Conclusion

This study presents an enhanced DeepLabV3+ network
for thyroid nodule segmentation, utilizing MobileNetV2 as the
backbone to reduce model parameters and improve computational
efficiency. Key modifications, such as depth-separable dilated
convolutions and Parallel Pyramid Pooling Modules, enhanced
feature extraction and global contextual understanding, resulting in
better segmentation performance. Additionally, the incorporation
of horizontal-vertical skip connections and attention mechanisms
improved the fusion of deep and shallow features, further boosting
segmentation accuracy. The proposed model achieves a high
Intersection over Union (IoU) of 94.37% with a compact parameter
size of 12.4 MB, outperforming existing models like U-Net and
FCN-8s. These results highlight the model’s potential for real-world
deployment, particularly in resource-constrained environments.
Future research can extend this approach to other medical imaging
domains for broader applicability.
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