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Introduction: Prostate cancer (PCa) is the most frequent diagnosed malignancy
in male patients in Europe and radiation therapy (RT) is a main treatment option.
However, current RT concepts for PCa have an imminent need to be rectified in
order to modify the radiotherapeutic strategy by considering (i) the personal PCa
biology in terms of radio resistance and (ii) the individual preferences of
each patient.

Methods: To this end, a mechanistic multiscale model of prostate tumor
response to external radiotherapeutic schemes, based on a discrete entity and
discrete event simulation approach has been developed. Following technical
verification, an adaptation to clinical data approach is delineated. Multiscale data
has been provided by the University of Freiburg. Additionally, a sensitivity analysis
has been performed.

Results: The impact of model parameters such as cell cycle duration, dormant
phase duration, apoptosis rate of living and progenitor cells, fraction of dormant
stem and progenitor cells that reenter cell cycle, number of mitoses performed
by progenitor cells before becoming differentiated, fraction of stem cells that
perform symmetric division, fraction of cells entering the dormant phase
following mitosis, alpha and beta parameters of the linear-quadratic model
and oxygen enhancement ratio has been studied. The model has been shown
to be particularly sensitive to the apoptosis rate of living stem and progenitor cells,
the fraction of dormant stem and progenitor cells that reenter cell cycle, the
fraction of stem cells that perform symmetric division and the fraction of cells
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entering the dormant phase followingmitosis. A qualitative agreement of themodel
behavior with experimental and clinical knowledge has set the basis for the next
steps towards its thorough clinical validation and its eventual certification and
clinical translation. The paper showcases the feasibility, the fundamental design and
the qualitative behavior of the model in the context of in silico experimentation.

Discussion: Further data is being collected in order to enhance the model
parametrization and conduct extensive clinical validation. The envisaged digital
twin or OncoSimulator, a concept and technologically integrated system that our
team has previously developed for other cancer types, is expected to support both
patient personalized treatment and in silico clinical trials.

KEYWORDS

cancer, prostate cancer, radiation therapy, multiscale modeling, in silico oncology, digital
twin, virtual twin, in silico medicine

1 Introduction

In silico medicine (ISM) aims to support disease prevention,
diagnosis and prognosis, patient-individualized optimization of
therapeutic treatment and clinical trials by conducting in silico
experiments, i.e., experiments on a computer. From a historical
perspective, the domain of in silico radiation oncology, which is
addressed by the present paper, has proved the first paradigm of
broader ISM. The formulation of in silico radiation oncology has also
served as the historic founding landmark of ISM (Stamatakos et al.,
2001; Stamatakos et al., 2002; The Yuan, 2022; The Yuan, 2023).
Since its founding in 2002, ISM has progressed fast so as to become
the focal point and a key objective of several academic, industrial,
and regulatory initiatives and societies such as the Virtual
Physiological Human Institute (VPH Institute, 2024b) and the
Avicenna Alliance–Association for Predictive Medicine (Avicenna
Alliance–Association for Predictive Medicine, 2024). Mechanistic
multiscale modelling (Deisboeck and Stamatakos, 2011; Kolokotroni
et al., 2024), eventually hybridized with artificial intelligence and/or
advanced statistics, frequently serves as the core of digital (or
otherwise known as virtual) twins in medicine. Digital twins are
an emerging technology that builds on in silico representations of an
individual or parts of it that dynamically reflect their multiscale
biological, physiological, pathological and medical status over time
(Bruynseels et al., 2018; VanDerHorn and Mahadevan, 2021;
Hernandez-Boussard et al., 2021). A paradigm of digital twin is
the OncoSimulator—the first digital twin in oncology and beyond
(VPH Institute, 2024a; Stamatakos et al., 2007; Stamatakos, 2011;
Stamatakos et al., 2014; European Commission, Cordis, EU
Research Results, 2024; Kolokotroni et al., 2024). The primary
aim of the OncoSimulator is to optimize cancer treatment and
make it more patient specific by conducting in silico experiments.
Additionally, it constitutes a platform for investigating the natural
phenomenon of cancer, supporting the design and interpretation of
clinical trials and training doctors, researchers and interested
patients alike. The importance and the great clinical potential of
cancer digital twins has been recently revisited (Hernandez-
Boussard et al., 2021; Stahlberg et al., 2022). The work presented
here serves as the core of the prostate cancer OncoSimulator.

Prostate cancer (PCa) is the most frequently diagnosed
malignancy in male patients in Europe and radiation therapy
(RT) is a main treatment option. However, current RT concepts

for PCa have an imminent need to be rectified in order to modify the
radiotherapeutic strategy by considering (i) the personal PCa
biology in terms of radio resistance and (ii) the individual
preferences of each patient. To this end, a number of mechanistic
computational models of prostate cancer growth (Lorenzo et al.,
2016; Phan et al., 2020) and relapse (Stura et al., 2016) with
miscellaneous proposed clinical applications have appeared in the
literature. Artificial intelligence has also been adopted to improve
prostate cancer diagnosis and prognosis (Yi et al., 2022; John et al.,
2021). However, due to the multiplicity of prostate cancer treatment
approaches, no single computational model appears to be applicable
to all treatment options.

In this context, a clinically-oriented, mechanistic, multiscale,
spatiotemporal simulation model of prostate tumor free growth and
response to radiotherapy is presented and investigated. It is to be
noted that free growth is an approximation to restricted growth of a
tumor within the soft organ of the prostate, where mechanical
deformations are allowed to take place to a certain extent. It is
also noted that the term soft is used here in the sense of tissue other
than bone or cartilage. The model core stems from previous work of
the In silico Oncology and In silico Medicine Group, National
Technical University of Athens (Stamatakos, 2024). The model
addresses tumors well beyond their initiation phase and aims at
simulating their spatiotemporal evolution. It has been designed to
incorporate patient-specific data such as imaging-based (e.g., MRI),
histopathological (e.g., Gleason score, apoptotic index), molecular
(e.g., Ki-67) and treatment data (e.g., radiotherapy dose per session,
number of fractions, intervals between fractions). The proposed
model is primarily based on a discrete entity and discrete event
simulation approach (Stamatakos et al., 2010; Kolokotroni et al.,
2016; Kyroudis et al., 2019).

Following technical verification, an adaptation to clinical data
approach is outlined through the utilization of two patients data and
an initial exploration of the model’s potential is delineated. The
clinical adaptation approach is meant to serve as a proof-of-concept
procedure, aiming at demonstrating the feasibility of using cancer
modeling in clinical practice in order to optimize radiotherapy
treatment. Real data has been provided by the University of
Freiburg, within the framework of the European Commission
(EC) supported project PersoRad (ERAPERMED2019-299).

Additionally, a parametric and a sensitivity analysis, which have
revealed the impact of particular model parameters on the overall
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model behavior, have been performed. This constitutes one of the
first steps in increasing the robustness of the model. Such a study is
essential, inter alia, for the identification of plausible parameter
value ranges in order to guarantee a biologically relevant virtual
tumor behavior. Furthermore, aspects of the interplay and possible
interdependencies of the biological mechanisms modeled, which
often cannot be grasped intuitively, can be enlightened and
experimental biological observations can be deciphered. Finally,
sensitivity analysis helps to explore the model’s behavior in
relation to the value of each chosen input parameter, with the
primary aim to deepen and advance quantification of our
understanding of tumor response to treatment. Indicative aspects
of the model addressed by the sensitivity analysis include the
temporal evolution of the following quantities: tumor volume
reduction, fraction of tumor stem cells, fraction of terminally
differentiated tumor cells and fraction of dead tumor cells. A
qualitative agreement of the proposed model behavior with
published experimental and clinical knowledge and data for two
patients has set up the basis for the next steps towards its thorough
clinical validation and its eventual certification and clinical
translation. It is pointed out, however, that this paper represents
initial work. Its goal is to demonstrate the feasibility and the
fundamental design and behavior of the model as the key
component of a digital twin. Further multiscale clinical data is
being collected by our team in order to enhance the model
parametrization and implement a formal clinical validation of the
model. The corresponding digital twin or OncoSimulator, a concept
and a technologically integrated system that our team has previously
developed and validated for other cancer types (Stamatakos et al.,
2014; European Commission, Cordis, EU Research Results, 2024), is
expected to serve both as a clinical decision support system for
patient individualized treatment and as a platform for in silico
clinical trials.

2 Materials and methods

The model presented is based on an algorithmic description of
discrete events (such as the change of the cell cycle phase from phase
G2 to mitosis) which happen in discrete entities (such as a tumor
cell). Space and time are discretized and all state transitions are
implemented algorithmically within the framework of a discretizing
mesh superimposed onto the anatomic region of interest
(Stamatakos, 2011; Kolokotroni et al., 2016). Therefore, no
differential equations are employed in this approach. The discrete
algorithmic application of biological and physical laws and rules
generates the spatiotemporal evolution of the tumor as well as the
time course of the states of all cell populations considered. Specific
information contained in the imaging slices (e.g., MRI slices)
considered, such as regions with high and low oxygenation, are
exploited by appropriately marking the corresponding regions of the
3D reconstruction of the tumor and by changing the values of
pertinent parameters such as the probability of a dormant cell to re-
enter the cell cycle (Stamatakos et al., 2002).

In this section as a first initiating step, an algorithmic and
graphical description of the tumor growth and response to
treatment model is outlined. This includes the description of the
involved major biological processes, including the cytokinetic model

as well as the model implementation choices. Subsequently, the full
simulation procedure is outlined.

2.1 The tumor growth and response to
treatment component model—model
description

2.1.1 The cytokinetic model—biological processes
considered

Tumors usually consist of a cluster of heterogeneous cell
populations with variable proliferative potential. Experimental
observations have indicated that tumor sustenance is attributed
to the so-called cancer stem cells (Bjerkvig et al., 2005; Gupta
et al., 2009), a cell population exhibiting stem cell-like properties,
such as unlimited self-renewal and differentiation capacity.
Moreover, tumors, not only among different but also within the
same tumor type, are characterized by variable differentiated cell
composition. The model takes into account cells of distinct mitotic
potential and supports the simulation of tumors of different
differentiation degree as reflected in the relative percentage of
proliferating and differentiated cells.

The adopted cytokinetic model shown in Figure 1 incorporates
the biological mechanisms of cell cycling, quiescence, recruitment,
differentiation and loss via apoptosis (either spontaneous or
treatment-induced) and necrosis (starvation-induced). Tumor
sustenance is attributed to the presence of the cancer stem cells,
which have the ability to preserve their own population. Two types
of cancer stem cell division are possible: symmetric and asymmetric.
Usually, symmetric cell division produces two daughter cells of the
same fate, either stem cells or more differentiated progenies; while
asymmetric cell division produces daughter cells of different fates.
(Chao et al., 2024; Majumdar and Liu, 2020). As a first
approximation, in this paper a symmetric cancer stem cell
division gives rise to two daughter cells, both with a cancer stem
cell fate, whereas an asymmetric cancer stem cell division gives rise
to one daughter cell with cancer stem cell fate and one daughter cell
with limited mitotic potential or committed progenitor cancer cell
fate that follows the path towards differentiation. Specifically, the
following five categories of cancer cells are considered in the model:

i. Stem cells: cells able to perform unlimited number
of divisions.

ii. Limited mitotic potential (LIMP) or restricted/committed
progenitor cells: cells able to perform a limited number of
divisions before becoming terminally differentiated.

iii. Differentiated cells: terminally differentiated cells with no
mitotic capacity.

iv. Apoptotic cells: cells that have died through apoptosis.
v. Necrotic cells: cells that have died through necrosis.

Stem, LIMP and differentiated cells constitute three categories
with distinct mitotic potential.

A proliferating tumor cell (stem or LIMP) goes through the four
phases of the cell cycle: gap 1 (G1) phase, DNA synthesis (S) phase,
gap 2 (G2) phase and mitosis (M) phase. After the completion of
mitosis, a fraction of newborn cells will enter the dormant phase, due
to insufficient nutrient supply and oxygenation, whereas the rest will

Frontiers in Physiology frontiersin.org03

Stamatakos et al. 10.3389/fphys.2025.1434739

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2025.1434739


continue to cycle. Under conditions of lack of nutrients, dormant
cells are assumed to survive only for a limited time length. After the
expiration of this time, dormant cells die through necrosis, unless
the local conditions of nutrient and oxygen supply have been
reinstated, allowing the re-entering of the dormant cell into the
active cell cycle. Any cell may die through spontaneous apoptosis.
Differentiated cells may die through apoptosis or necrosis. Table 1
lists the model parameters and the corresponding biological
mechanisms as described above.

For a given cancer cell, if it has been decided to enter the cell
cycle, it is assumed that there is adequate oxygenation through all
cell cycle phases till the completion of mitosis. This is a
simplification assumption, that may create a very small/
differential local quantization error, which is nevertheless
expected by a complex model. Just after completion of mitosis, a
new decision for the fate of its two offspring cancer cells is taken.
They could either enter the hypoxic dormant phase G0 or enter the
cell cycle. Therefore, at any given time point a cell could either reside
in the G0 phase due to hypoxia or reside within the cell cycle and be
aerobic (well oxygenated).

It should be noted that for practical simplification reasons, the
decision as to whether a tumor cell is to proceed to mitosis is taken
before the latter enters the cell cycle phase G1. Following the latest
mitosis, the two newborn cells re-enter together the cell cycle, in case
the oxygenation level in the region they reside is adequate.
Otherwise, they enter the dormant G0 phase. If within the time
interval TG0, oxygenation has not become adequate for cell cycling
and division, both cells enter necrosis. In case that imaging data
provides spatial information on the oxygenation distribution within
the tumor, this along with empirical rules describing the expected
time course of the expansion or shrinkage of well oxygenated areas
within a tumor (Stamatakos et al., 2002) is taken into account when
deciding on the cycling, dormancy or necrosis fate of a tumor cell.
Otherwise, a constant mean value of each one of the two pertinent
parameters: “fraction of cells entering the G0 phase following
mitosis (Psleep) and “fraction of dormant (stem and LIMP) cells
that re-enter cell cycle (PG0toG1)” (Table 1) is considered
throughout a given simulation. Suitable mean values for the latter
are provided by the calibration of the model for different tumor
subtypes through the clinical adaptation procedure. The latter

FIGURE 1
Generic cytokinetic model (cell category/phase transition diagram) for tumor response to radiotherapy. Symbols and abbreviations: LIMP: LImited
Mitotic Potential tumor (cell), also called committed or restricted progenitor cell. DIFF: terminally DIFFerentiated tumor (cell). G1: Gap 1 cell cycle phase.
S: DNA synthesis phase. G2: Gap 2 phase. M: Mitosis phase. G0: dormant, resting phase. OER: Oxygen Enhancement Ratio, α: alpha parameter of the
Linear-Quadratic (LQ) model, β: beta parameter of the LQ model, Psym: probability of a stem cell to perform symmetric division (or equivalently,
fraction of stem cells that perform symmetric division), RA: apoptosis rate of living stem and LIMP tumor cells (fraction of cells dying through apoptosis per
unit time), Tc: cell cycle duration, Psleep: fraction of cells entering the G0 phase following mitosis, PG0toG1: fraction of dormant (stem and LIMP or Limited
Mitotic Potential) cells that re-enter cell cycle, TG0: G0 (dormant phase) duration, i.e., time interval before a dormant cell enters necrosis, RNDIFF: necrosis
rate of differentiated tumor cells, RADIFF: apoptosis rate of differentiated tumor cells, TN: Time needed for both necrosis to be completed and its lysis
products to be removed from the tumor, TA: Time needed for both apoptosis to be completed and its products to be removed from the tumor.
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TABLE 1 Code input parameters.

Parameter
symbol

Description Unit Value range

Cell phase durations

Tc [class
a] Cell cycle duration hour —

TG0 [class
a] G0 (dormant phase) duration, i.e., time interval before a dormant cell enters necrosis hour —

TN [regionb] Time needed for both necrosis to be completed and its lysis products to be removed from the
tumor

hour —

TA [regionb] Time needed for both apoptosis to be completed and its products to be removed from the
tumor

hour —

Cell category/phase transition rates and fractions

RA Apoptosis rate of living stem and LIMP tumor cells (fraction of cells dying through apoptosis
per unit time)

hour−1 0–1

RNDiff Necrosis rate of differentiated tumor cells hour−1 0–1

RADiff Apoptosis rate of differentiated tumor cells hour−1 0–1

PG0toG1 [class
a][regionb] Fraction of dormant (stem and LIMP) cells that re-enter cell cycle — 0–1

Psleep [regionb] Fraction of cells entering the G0 phase following mitosis — 0–1

Psym [regionb] Fraction of stem cells that perform symmetric division — 0–1

Miscellaneous parameters

Cell density Number of biological cells normally contained within a unit volume mm−3 106

Voxel dimension Dimension of voxel/GC edge mm 1 or 2, depends on tumor size and
computing resources

NLIMP Number of mitoses performed by LIMP cells before becoming differentiated — ≥1

xdim, ydim, zdim Number of geometrical cells along the x, y, z-axis respectively — Depends on tumor size and computing
resources

tumor _length Dimensions of the three tumor axes in mm in the case a triaxial ellipsoidal tumor is
considered

— Depends on tumor imageable
characteristics

tumor_breadth

tumor_width

necrotic _length Dimensions of the necrotic region along the three axes in GCs in case a triaxial ellipsoidal
tumor is considered

— Depends on tumor imageable
characteristics

necrotic _breadth

necrotic _width

Execution time Execution stop time after initialization day —

Spatial evolution? Will geometric spatial evolution be included in the simulations? — 0 or 1

“True”: yes. The functions for tumor differential expansion/shrinkage are enabled

“False”: no. The functions for tumor differential expansion/shrinkage are disabled

margin_percent Acceptable temporary over-loading or under-loading of each geometrical cell as a fraction of
unity

— 0.0–0.5

color_criterion Minimum percentage of tumor cells that should be dead in order to denote (“paint”) the
corresponding geometrical cell as necrotic

— 0.9–0.999

Input image? True: consider the input image file — 0 or 1

False: no input image file

Image filename Name of the input image file — —

Output directory Name of the directory where the output files are stored — —

mode The tumor course to be simulated — 1: Free growth, 2: treatment response

(Continued on following page)
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approach has been applied to the specific clinical cases addressed by
the present paper.

Cell killing by irradiation is described by the Linear-Qadratic
(LQ) Model, which is widely used in the pertinent literature (Steel,
2002) (Equation 1):

S D( ) � exp − αD + βD2( )[ ] (1)
where S(D) is the surviving fraction after a (uniform) dose D (Gy) of
radiation to a population of cells and α (alpha) (Gy−1) and β (beta)
(Gy−2) are the radiosensitivity parameters of the LQ model (see also
Table 1). Surviving fraction (SF) of tumor cells is the ratio of colonies
produced to tumor cells plated, with a correction necessary for
plating efficiency. Cell radiosensitivity varies considerably
throughout the cell cycle (Steel, 2002; Perez and Brady, 1998). S
phase is considered the most radioresistant cell cycle phase
(proliferating phase), while all cell cycle phases are more
radiosensitive than G0. The model currently uses different values
for the radiosensitivity parameters of the LQ model for the S phase
(αs, βs), the remaining proliferating phases G1, G2, M (αp, βp), and
the G0 phase (αG0, βG0). The values of αs, βs and αG0, βG0 can be
derived as perturbations of the (αp, βp) values (Dionysiou et al., 2006;
Carlson et al., 2006):

αG0 � αp/OER (2)
βG0� βp/OER2 (3)

αs � 0.6 αp + 0.4 αG0 (4)
βs � 0.6 βp + 0.4 βG0 (5)

where OER is the Oxygen Enhancement Ratio (Equations 2–5).
When a tumor is radio therapeutically treated, a fraction of

cancer cells are lethally hit, i.e., destined to die due to irradiation.
Lethally hit cycling tumor cells enter a rudimentary cell cycle that
leads to necrotic death after two mitotic divisions. This assumption
is based on the experimental finding that most solid cancers activate
some cell cycle checkpoints and try to repair the damage. As a result,
cells tend to successfully complete one or two mitoses, but, due to
accumulating damages, the cells fail to complete more rounds of cell
division and succumb in a mitotic catastrophe (Joshi et al., 1982).
Marking of a cell as hit by the radiation is assumed to take place at
the instant of radiation administration.

2.1.2 Model implementation
choices—basic notions

The model implementation is based on the consideration of a
discrete time and space stochastic cellular automaton, representing
the tumor region. More specifically, a three dimensional (3-D) cubic
discretizing mesh is superimposed upon the anatomical region of
interest. The elementary cube of the mesh is called geometrical cell
(GC) The size of the GC can be defined by the user. Typical values
considered are 1 × 1 × 1 or 2 × 2 × 2 mm3. The exact choice depends
on tumor size and available computational resources. Each GC
occupied by the tumor corresponds to a cluster of heterogeneous
cells found in various states. More specifically, the biological cells
residing within each occupied GC are distributed into the five
categories mentioned above, i.e., the stem, LIMP, differentiated,
apoptotic and necrotic categories. From the mathematical
standpoint each cell category defines an equivalence class.
Distribution of the cells into the five equivalence classes creates
one level of biological cell population partitioning within each GC.
At each given instant each stem or LIMP cell can be either
proliferating or dormant. Proliferation or dormancy creates
another level of cell population partitioning. Cell cycle phases
(G1, S, G2, M) introduce a finer partitioning of proliferating cells
(stem and LIMP) into subclasses. A further partitioner in the case of
therapeutic intervention is treatment hitting, i.e., a Boolean variable
denoting whether a biological cell has been hit by treatment. Each
occupied GC is assumed to initially contain a fixed Number of
Biological Cells (NBC). This number is based primarily on
radiobiological observations available in pertinent literature, e.g.,
106 biological cells/mm3 (Begg and Steel, 2002), unless histology
based specific data are available. The cytokinetic model regulates the
transitions between the various cell states, whereas adequately
shaped morphological rules are introduced in order to regulate
the cell movement throughout the tumor volume, as described in the
following sections.

Time is discretized. Since the duration of the shortest cell cycle
phase, which is mitosis (Bast et al., 2000), is approximately 1 h, the
discrete time unit, which separates two temporally consecutive
virtual scans of the discretizing mesh, is taken equal to 1 h. For
any given instant the biological cells belonging to the same cell
category and cell cycle phase within a given GC are assumed
synchronized. However, biological cells belonging to different

TABLE 1 (Continued) Code input parameters.

Parameter
symbol

Description Unit Value range

Radiotherapy parameters

Tradio,adm [n] Time point of nth radio administration, n = 1,. . . day Depends on clinical data

α alpha parameter of the LQ model Gy−1 Literature based

β beta parameter of the LQ model Gy−2 Literature based

OER Oxygen Enhancement Ratio — Literature based

Cell kill factor Factor adapting cell killing probability to stem cells — 0–1

aDefined separately for stem and LIMP, cells [class: {stem, LIMP}].
bDefined separately for proliferating and necrotic region [region: {proliferating, necrotic}].

See Section 3.1.1 for specific table parameter value ranges pertinent to the analysis conducted in this article and ranges of other quantities utilized in the process of clinical adaptation of the

model.
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GCs or to different categories and cell cycle phases within the same
GC are not assumed synchronized. From the computational
standpoint a sufficient number of registers are used to describe
the state of each GC occupied by the tumor. They include i. a. the
number of biological cells residing in each equivalence class and
subclass and the time spent at each subclass.

The duration of mitosis phase is considered constant and equal
to 1 h (Bast et al., 2000). The rest of the cell cycle phases durations
are computed based on (Chu and Sartorelli, 2012) after having taken
into consideration the above assumption regarding the constant
duration of mitosis. More specifically the following equations are
used: TG1 = TS = 0.41 (Tc-TM), TG2 = 0.18 (Tc-TM), TM = 1 h.

The simulation code has been implemented in C++.

2.1.3 Simulation procedure
A flowchart of the simulation algorithm is depicted in Figure 2,

whereas a more detailed description is provided in Figure 3. The
major steps involved are described below.

2.1.3.1 STEP 0: tumor definition
The model supports the simulation of three-dimensional tumors of

arbitrary shape, as well as the division of tumor area into regions of
different metabolic activity (e.g., necrotic and proliferative). Mesh
initialization involves the definition of occupied and non occupied
GCs, based on the available patient-specific imaging data. Occupied
GCs (i.e., GCs that belong to the tumor region) can be further
subdivided into necrotic or proliferative, provided that the relevant
info has been foreseen in the segmented tumor images. The values
assigned to the model input parameters can be defined for each type of
GC in relation to the considered metabolic subregions. Patient-specific
data such as histological data (e.g., type, stage and differentiation grade)
and molecular data, as well as other tumor specific data, can be
incorporated for further refinement of the values attributed to the
model input parameters. For the two prostate tumor cases considered,
the Gleason score is ≤8. Therefore, the fact that we are dealing with
prostate cancer has dictated boundaries for tumor growth fraction and
doubling time, whereas the fact that Gleason score is ≤8 has dictated a
practical absence of necrosis. Apart from this type of histological data,
the specific examples presented exploit MRI data pertaining to the
spatial boundaries and the volume of the tumor before and after
treatment (through tumor 3D reconstruction from the available 2D
MRI segmented via slice interpolation slices) and the precise
radiotheraputic treatment scheme for each patient. More generally,

values of critical proliferation features of the virtual tumors, e.g., growth
rate, growth fraction, the fraction of stem cells and necrotic and
apoptotic cells, are informed by clinical studies in literature for
prostate cancer. For example, the literature review conducted reveals
a very wide range of tumor doubling times (based on PSA
measurements) spanning from a couple of months to infinity (stable
tumors), while growth fraction is usually low. Furthermore, necrosis is
not seen in prostate tumors characterized by the Gleason scores of the
cases considered in our study (≤8). The combination of parameter
values ensures that the percent of necrosis, is negligible in all virtual
tumor implementations, in line with literature observations. More
information on the parametrization methodology along with the
mathematical derivations used to link proliferation features with
model parameters can be found in (Kolokotroni et al., 2016;
Kolokotroni et al., 2024; Kyroudis et al., 2019). In case of
macroscopically homogeneous tumors, all occupied GCs are
characterized by identical values. It should be noted that in the
absence of 3D imaging data the tumor shape is approximated with
a triaxial ellipsoid. The length of each axis of the ellipsoid is assumed
equal to the maximum tumor diameter(s) as measured based on, e.g.,
ultrasound examination.

2.1.3.2 STEP 1: free growth condition check
Based on the cytokinetic model described previously, stem cells

are responsible for sustaining the cancer and their behavior plays a
determinant role for cancer free growth evolution. Depending on the
values assigned to the model parameters that describe the life course
of stem cells, it is possible to simulate cancer with variable degree of
aggressiveness in terms of growth rate. Furthermore, there exist
certain “forbidden” value combinations of these parameters that
lead to biologically irrelevant cancers, i.e., cancers that diminish over
time of their own accord, unable to sustain growth.

A condition is applied to check whether the value combination
of input parameters leads to a growing or self-diminishing cancer.
The condition has been derived (Kolokotroni et al., 2011) from an
analytical treatment of model assumptions following the
methodology of (Bertuzzi et al., 1997) (Equation 6).

1 + Psym( ) 1 − Psleep + Psleep
PG0toG1/TG0

RA + 1/TG0
( ) e−RATC ≥ 1 (6)

In order to take into account any divergence between the
simulation results and the above condition we assume that for

FIGURE 2
Flow chart of the simulation procedure for a macroscopically homogeneous solid tumor of arbitrary shape.
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values of the left side of the above inequality lower than 0.9 cancer
free growth cannot be sustained, whereas for values above 1.1 free
growth is ensured. In the middle value range the cancer free growth
is checked based on simulation results during the
turmogenesis process.

2.1.3.3 STEP 2: adaptation of initial tumor cell category
fractions to free tumor growth cell kinetics

The technique applied for the determination of tumor’s cell
composition is critical, so as to avoid latent artificial tumor growth
behaviors. A decrease in tumor volume followed by a volume
increase is a very common pattern (Kolokotroni et al., 2008). In
order to avoid an abnormal free growth behavior at the beginning of
the simulation, the automatic tumor initialization methodology has
been developed (Stamatakos et al., 2010). The principle of the tumor
constitution initialization technique is to start with a small number
of stem cells and with specific cell category transition rates that are
assumed to hold true for a relatively small time interval around the
treatment baseline. Specific values are assigned to the phase
durations and transition rates. Gradually, all cell categories and
phases become populated and after sufficient time the relative cell
categories populations tend to reach an equilibrium state. If in
subsequent simulations the GCs are initialized using the cell
category/phase relative population values corresponding to this
equilibrium state, a mathematically monotonous and biologically
realistic free growth behavior will be achieved. The challenge is to
successfully locate the point beyond which equilibrium has been
achieved and use the relative populations (or ‘‘fractions of
populations’’) after that point for the correct initialization of the
tumor. Certain combinations of category/phase transition rates
cannot sustain tumor growth (see Section 2.1.3.2 for the
condition for monotonic free growth). In such cases the method
will correctly fail to create the initial tumor and a relevant warning
message will be issued by the simulation system. More specifically,
the technique consists of the following steps: i) A limited number of
geometrical cells NGCs are considered. ii) Each GC initially contains
a small number of stem cells, e.g., 100, residing in the various cell
cycle phases (G1, S, G2, M) and the G0 phase. iii) Time initialization,
i.e., the time already spent by clustered stem cells in the phase they
reside is assigned using a pseudorandom generator. iv) Different
random number sets are assigned to different GCs. The aim is to
avoid artificial synchronizations which would result in the group of
GCs considered behaving as one big GC. v) The system is left to
evolve and produce all cell category populations (distributed to the
various cell phases). vi)The code execution has to continue until
equilibrium is reached and the various cell categories population
percentages have been stabilized. The parameter value ranges
appearing in Section 3.1.1 in conjunction with further literature
information pertaining to the prostate tumor subtypes considered
can be exploited by this procedure in the case of prostate cancer.

2.1.3.4 STEP 3: initialization of tumor occupied geometrical
cells of the mesh

The biological cells residing within each geometrical cell of the
mesh are distributed into the 5 cell categories (i.e., stem, LIMP,
differentiated, apoptotic, necrotic), based on the fractions calculated
during the previous step. The initial distribution of the proliferating
cells throughout the cell cycle phases (G1, S, G2, M) is assumed to be

proportional to the corresponding cell cycle phases durations. The
mean time spent by the biological cells of a given equivalence
subclass in the same subclass is initialized using a random
number generator (Monte Carlo technique). The time under
consideration can vary between 0 and the maximum time of the
corresponding phase. As mentioned above biological cells belonging
to different GCs or to different categories and cell cycle phases
within the same GC are not assumed synchronized.

At each hourly time step, the discretizing mesh covering the
anatomical region of interest is virtually scanned in order to apply
the basic rules that govern the spatiotemporal evolution of the tumor
system. For practical reasons each complete virtual scan can be
viewed as consisting of two mesh scans: one dealing with the
application of the metabolic, cytokinetic, radiobiological laws and
rules and one dealing with the mechanical rules.

2.1.3.5 STEP 4: simulation of tumor response to treatment
based of the cytokinetic diagram (first mesh scan)

The first scan aims at updating the state of each GC according to
the proposed and adopted approximate cytokinetic model of
Figure 1. The time registers of the various cell subclasses within
each geometrical cell are updated and the cytokinetic diagram is
applied within each GC as follows. Spontaneous apoptosis induced
cell loss from each non treatment perturbed cell cycle phase and the
G0 phase is calculated for each cell category based on the
spontaneous apoptotic rates assumed. Any necessary transitions
between equivalence subclasses (G1→S, S→G2, G2→M, M→G1 or
M→G0) take place for biological cells clustered in the same subclass.
The latter depends on the updated value of the corresponding time
registers. If the mean time that the clustered cells have spent in the
corresponding phase has become equal to or larger than the phase
duration then the cells enter a new phase and equivalence subclass.

In any one of the cases of dormant (including stem and LIMP),
differentiated, necrotic and apoptotic cells a fraction of the
corresponding subclass (es) population may be transferred to
another subclass or disappear from the tumor at each time step
according to the cytokinetic model (Figure 1). Therefore the
following transitions may take place. For stem and LIMP cells:
G0→G1 or G0→Necrosis or G0→Apoptosis. For differentiated
cells: Differentiated→Necrosis or Differentiated→Apoptosis. For
dead cells of any mitotic potential category: Apoptosis→Cell
disappearance, Necrosis→Cell disappearance. Most of the
corresponding rates are parameters of the model (Table 1).

Cell killing by irradiation is described by the Linear-Quadratic
(LQ) Model (1).

2.1.3.6 STEP 5: application of morphological/mechanical
rules for tumor shrinkage/expansion (second mesh scan)

The second scan aims at simulating tumor expansion or
shrinkage, while preserving a roughly uniform cell density
throughout the tumor volume. To this end, adequately shaped
morphological rules are introduced, which may lead to tumor
expansion, as is the case in free tumor growth, or no change in
tumor volume or tumor shrinkage as is usually the case after
treatment administration. The adopted morphological rules
(Stamatakos et al., 2006) aim at preserving the cohesion and
initial shape figure of the tumor under the assumption that the
mechanical properties of the surrounding normal tissues are
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invariant throughout the simulation, while preventing the tumor to
acquire an artificial shape. During the above process artificial tumor
fragmentation may, however, occur and a special procedure has
been devised in order to achieve macroscopic tumor cohesion
(Stamatakos et al., 2006). The latter usually characterizes tumor
shrinkage following treatment.

For practical reasons at any given time point the total cell population
that can be accommodated in each GC is allowed to fluctuate between a
minimum (0.9*NBC) and a maximum (1.1*NBC) value. If the total
population exceeds the maximum value of 1.1*NBC then a procedure is
initiated that attempts to unload the total GC population minus NBC to
neighboring GCs (26 GC neighborhood is considered) possessing empty
space, i.e., GCs with total cell population less than NBC. The procedure
starts from the neighboring GC possessing the maximum free space. If
two ormore neighboringGCs possess the same free space then a random
number generator is used so as to select the visiting order of theGCs. The

procedure is repeated until all the excess cells have been transferred,
provided this is possible. If the procedure fails to reduce the total
population of the GC under consideration below the upper limit
(maximum value) then an adjacent GC is freed from its contents
which are moved outwards. The latter push the contents of a chain
of geometrical cells outwards too. The excess contents of the GC under
consideration are placed into the newly freed adjacent GC. The previous
process leads to differential tumor expansion. The position of the GC to
be freed from its contents relative to the GC with the excess contents is
determined using a random number generator. The shifting of the chain
of GCs mentioned above can take place along any randomly selected
direction. The direction is selected based on a randomnumber generator.

On the other hand if the GC’s total cell population is below
the minimum value then a similar procedure attempts to unload
all cells to neighboring GCs possessing free space. If the GC
becomes empty then a chain of GC contents is shifted towards the

FIGURE 3
Detailed simulation flow diagram (simulation model description). See also Section 2.1.3 and in this figure. Symbols and abbreviations: RT: radiotherapy, LQ:
linear-quadratic model, t: time, GC: geometrical cell of the discretization mesh superimposed onto the anatomic region of interest. Td: doubling time, Psym:
fraction of stemcells that perform symmetric division, Psleep: fraction of cells entering theG0phase followingmitosis, PG0toG1: fraction of dormant (stem and LIMP
or LimitedMitotic Potential) cells that re-enter cell cycle, RA: apoptosis rate of living stem and LIMP tumor cells (fraction of cells dying through apoptosis per
unit time), TG0: G0 (dormant phase) duration, i.e., time interval before a dormant cell enters necrosis, Tc: cell cycle duration. Note that the term “chemo” refers to
the eventual (additional) administration of chemotherapy in a more generic context. which is not., however, addressed in this paper.
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GC under consideration so as to fill the vacuum generated. The latter
leads to differential tumor shrinkage. Shifting of the GC content chain
takes place as follows. Six lines of random direction are chosen based
on a random number generator. The outermost non-empty GC along
each one of these directions is detected and its “6-Neighbor” GCs
belonging to the Tumor (NGCT) are counted. The direction
corresponding to the maximum NGCT is selected.

The above procedure, however, may give rise to the following
“side effects”. (a) Tumor fragmentation: some GCs belonging to
the tumor become separated from the main tumor mass. (b)
Vacuum enclosures: holes that correspond to empty GCs are
created inside the tumor. In order to avoid the occurrence of the
above side effects an algorithm has been developed that (I)
detects tumor occupied GCs that are surrounded by empty
GCs in a “6-GCs Neighborhood” and moves their contents (by
1 GC at each time step) towards the tumor’s center of mass. The
direction of movement is chosen based on the minimum distance
of the GC under consideration from the center of mass along the
x, y, z coordinates. The corresponding quantity to be calculated
each time is the following:

min abs GC.x − center.x( ), abs GC.y − center.y( ), abs GC.z − center.z( ){ }
(7)

where abs () denotes absolute value, GC. x, GC.y and GC. z are the x,
y and z coordinates of the GC respectively and center. x, center. y
and center. z are the x, y and z coordinates of the tumor’s center of
mass respectively (Equation 7). If more than one direction is
characterized by the same minimum distance then a random
number generator is used for the selection of the movement
direction. (II) Detects empty GCs that are surrounded by
occupied GCs in a “6-GCs Neighborhood” and fills them with
the contents of adjacent GCs by applying the tumor shrinkage
procedure described above.

3 Results

3.1 Preliminary parametric studies:
qualitative assessment

Following technical verification of the proposed model, an
indicative sensitivity analysis and a preliminary adaptation study
are presented in this section. Since our adaptation approach can best
demonstrate the histological handling strategy of the proposed
model, it is described first, i.e., before the sensitivity analysis,
where histological handling is of great importance. Both
investigations also provide an initial confirmation of the correct
operation of the core simulation model of the OncoSimulator
digital twin.

3.1.1 A preliminary adaptation study
In this section a proof of concept clinical adaptation paradigm

is presented. More specifically, the core of the In Silico Oncology
and In Silico Medicine Group discrete model presented previously
has been applied to the case of prostate cancer neoadjuvant
radiotherapy treatment. More specifically, the model has been
applied to a clinical data set of two patients with primary
prostate cancer, treated with two consecutive plans, A and B
(Figure 4). Radiation is administered daily with a pause during
weekend. The patient specific data that have been exploited by the
model are the applied radiotherapeutic scheme (fraction dose,
administration instants) and the volume reduction as defined from
the 3D image of the tumor as reconstructed from MRI imaging
data (Figure 4). The sets of imaging data were provided for two
time instants before and after the completion of the treatment. Due
to the non availability of data related to any distinct internal
metabolic regions, the virtual tumors implemented are
homogeneous. The study is focused on quantifying the

FIGURE 4
Radiation schedule and tumor measurement time points for the two clinical cases considered. GTV: Gross Tumor Volume.
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radiosensitivity of the specific tumor, i.e., the parameters α (Gy-1)
and β (Gy-2) of the LQ model. It is noted that α and β refer to the
most radiosensitive proliferating phases, i.e., G1, G2 and M. Here,
a plausible value range of parameter α is suggested following the
exploitation of cancer-specific literature data, the actual clinical
data and the simulation outcome.

In the following, the results of the clinical adaptation are
presented. We examined five different, biologically reasonable, in
silico representations (virtual tumors) of the patient. For each of
these five virtual tumors, we adjusted the α, β parameters of the LQ
model so that the observed volume reduction of the tumor is
achieved (i.e. 17.51%). Table 2 lists the parameter values of the
five solutions. Table 3 summarizes the growth rate and the resulting
tumor cell composition at the start of the simulation for each
solution. Figures 5, 6 include graphs expressing the time
evolution of various tumor characteristics.

In order to best adjust the model to the available prostate
cancer radiotherapy literature data, a literature review has been

conducted in order to identify the approximate value ranges of
the following major aspects of the model. It is noted, however,
that due to remarkable differences in the value ranges reported
in literature, value ranges larger than the ones already
identified in literarure have been considered in the
present analysis.

Cell cycle duration (e.g., Cunningham and You, 2015; Wang et al.,
2019; Liu et al., 2020) [cell cycle duration Tc: ~30 h], quiescence (e.g.,
Pulianmackal et al., 2021) [G0 (dormant phase) duration TG0:
4–20 days extension of (Durand and Sham, 1998)], growth rate
(e.g., Lee et al., 1995; Howard et al., 2017; Ng et al., 2009) [doubling
time Td: ~100, 200 and 500 days ], growth fraction (e.g., Khor et al.,
2009; Wilkins et al., 2018; Richardsen et al., 2017) [growth fraction GF:
<10%], spontaneous apoptosis (e.g., Dachille et al., 2008) [apoptotic
index = percentage of apoptotic cells in a tumor cell population: ~0.5%],
hypoxia and necrosis (e.g., McKeown, 2014; Hompland et al., 2018;
Bhattacharya et al., 2019; Mai et al., 2019) [prostate cancer is hypoxic
tolerant, no necrosis for tumors of Gleason Score ≤8,], cancer stem cells

TABLE 2 Parameter values for 5 virtual tumors created.

Parameter Solution-1 Solution-2 Solution-3 Solution-4 Solution-5

Tc (h) 31 30 31 30 31

TG0 (h) 131 113 146 109 373

TN (h) 29 98 5 143 186

TA (h) 7 16 1 4 17

NLIMP 8 7 9 7 7

RA (10−4 h−1) 44.999 5.425 69.285 46.744 10.230

RNDiff (10
−4 h−1) 5.951 2.775 0.189 0.600 0

RADiff (10
−4 h−1) 4.062 16.102 0.845 1.102 2.591

PG0toG1 (h
−1) 0.5 0.5 1 1 1

Psleep 0.308 0.255 0.288 0.289 0.179

Psym 0.474 0.190 0.453 0.278 0.090

a/β (Gy) 3 3 3 3 3

OER 1.960 2.187 2.989 2.942 2.388

α (10−3 Gy−1) of patient 1 10.068 9.969 25.998 16.496 9.336

α (10−3 Gy−1) of patient 2 26.795 28.185 — — —

No solutions 3-5 of α in the value range 0.0-0.4 (Gy-1) could be found for Patient 2 (see Section 3.1.1.2).

TABLE 3 Characteristics of 5 virtual tumors generated.

Doubling
time (days)

Growth
rate
(10−4 h−1)

Necrotic and
apoptotic cell
fraction (%)

Growth
fraction (%)

Stem cell
fraction (%)

Differentiated cell
fraction (%)

G0 cell
fraction
(%)

Solution-1 91 3.189 2.785 7.046 1.291 85.145 7.809

Solution-2 97 2.986 6.954 6.911 0.374 85.835 7.254

Solution-3 224 1.291 0.007 1.411 0.150 97.337 1.252

Solution-4 223 1.295 0.875 1.273 0.102 97.651 1.075

Solution-5 484 0.597 0.447 1.057 0.040 97.176 1.768
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(e.g., Franco et al., 2016; Ishizawa et al., 2010; Li et al, 2020; Skvortsov
et al., 2018) [percentage of cancer stem cells: <~1%)], radiosensitivity
(e.g., Carlson et al., 2004; van Leeuwen et al., 2018; Wang et al., 2003;
Dasu and Toma-Dasu, 2012) [alpha parameter of the LQ model:
0.026 Gy-1 – 0.34 Gy-1; α/β: 3 Gy, Five virtual tumors with specific
proliferation and radiosensitivity characteristics were considered.
Initially, random values within the specified ranges were assigned
to model parameters related to free growth: TC, TG0, RA, PG0toG1,
Psym, NLIMP, and radiosensitivity: α/β and OER were considered.
For each combination of these parameter values, the parameters Psleep
and RADiff, were adjusted to achieve the specified tumor doubling time
(Td) and growth fraction (GF) as per (Kolokotroni et al., 2011;
Kolokotroni et al., 2016). Finally, the radiosensitivity parameter
alpha (α) of the Linear-Quadratic (LQ) model was adjusted to
match the observed tumor size reduction. This adaptation of α was
carried out automatically using an optimization procedure. Specifically,
the fzero command in MATLAB was employed to find the root of the
difference between the observed volume reduction (based on the two
DICOM data sets) and the volume reduction of the simulated tumor.

3.1.1.1 First patient–virtual tumors
The following observations can be made (Figures 5, 6). The

five virtual tumors refer to three different proliferation

scenarios in terms of doubling time and growth fraction.
In the virtual tumors with a short doubling time (less than
or comparable to the observation window) (Solution-1
and Solution-2) two phases can be distinguished: the
regression phase and the regrowth phase. In contrast, in
the virtual tumors with a longer doubling time, only one
phase is distinguished, the regression one, and the volume
decrease is monotonous until the time of the follow-up
image acquisition. The radiosensitivity parameter α (Gy-1)
ranges between 0.01 and 0.024 for all virtual tumors,
implying a radioresistant tumor.

A good fitting between the simulation results and the patient
volumetric data has been achieved in all cases. The respective
deviation has been less than 0.1%. The results indicate a feasible
value range of the radiosensitivity parameter α (Gy-1). However, a
larger number of possible virtual tumor implementations might
further support the generality of the approach presented. This will be
the subject of future work.

3.1.1.2 Second patient–virtual tumors
For patient 2 (Figures 7, 8), only the high proliferation profile is

compatible with the observed tumor regression. Virtual tumors with
a very low growth fraction (~1%) (combinations 3-5 in Figures 7, 8)

FIGURE 5
Comparison of five different virtual tumors (Table 2), all compatible with patient’s volumetric data (solutions) (Figure 4, Patient 1), in terms of the time
evolution of tumor volume reduction (A) and the fraction of selected tumor subpopulations [stem cells (B), terminally differentiated cells (C), cells that
have died through necrosis or apoptosis (D), proliferating cells in the active cell cycle (E) and cells in a reversible G0 state (F)]. The radiation schedule of
Figure 4 (Patient 1) has been simulated. Symbols and abbreviations: GF: growth fraction, Td: tumor doubling time.
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could not regress to the observed magnitude, even with high
radiosensitivity (α = 0.4 Gy−1). The radiosensitivity parameter α
(Gy−1) ranges between 0.01 and 0.024 for patient 1 and is
approximately 0.03 for patient 2 (for the virtual tumors of
Solutions 1-2 implemented), indicating higher radiosensitivity.
The radiosensitivity parameter for Combinations 3-5 (Patient 2)
has been taken α = 0.4 Gy−1. These estimated radiosensitivities
correlate with the observed volume reductions, with patient
1 showing only an ~18% reduction, while patient 2 exhibits an
~80% reduction.

3.1.1.3 Three dimensional visualization ofmodel predictions
Since the specific tumors from two patients considered

appeared microscopically homogeneous, only their initial
shapes and their initial volumes were extracted from the
corresponding MRI imaging data and utilized. Figure 9
provides the initial shapes and volumes of the two tumors
considered along with their simulated shrinked shapes and
volumes. It is noted, however, that the proposed model can
handle spatial inhomogeneities of parameters such as
oxygenation. The final shrinked tumor predicted shapes are
relatively close to their actual MRI reconstructed counterparts,
based on rather qualitative visual inspection.

3.1.2 Parametric and sensitivity analysis
3.1.2.1 Parametric analysis

Here, we present a qualitative assessment of key model parameters,
as a preliminary sensitivity analysis study. Patient 1 has been considered
as reference. (Table 2). We present 6 variations of a baseline solution
(Case-0 that corresponds to Solution-5 of the preliminary adaptation
study), which corresponds to a value assignment to the model
parameters that accurately represents the patient considered in silico.
In each variation, we tweak the values of a limited number of model
parameters, in order to observe the isolated effect that each parameter
has on the virtual patient scenario. That way, we create 6 different
exploratory cases of the baseline.

Table 4 lists the parameter values of the six different cases (seven
together with the baseline Case-0). Table 5 summarizes the growth
rate and the resulting tumor cell composition at the start of the
simulation for each case, while Figures 10, 11 include graphs
expressing the time evolution of the relevant characteristics.

The following observations can be made Figures 10, 11: Baseline
Case-0 is a solution of patient 1 and refers to a scenario in which the
tumor doubling time is approximately 500 days, the growth fraction is
1.3%, the initial tumor is basically composed of differentiated cells and
the fraction of dead cells is very low. The scenario concerns a slowly
developing tumor, a picture compatible with prostate cancer. In Case-1,

FIGURE 6
Comparison of five different virtual tumors (Table 2), all compatible with patient’s volumetric data (solutions) (Figure 4, Patient 1), in terms of the time
evolution of tumor volume (A) and selected tumor subpopulations [stem cells (B), terminally differentiated cells (C), cells that have died through necrosis
or apoptosis (D), proliferating cells in the active cell cycle (E) and cells in a reversible G0 state (F)]. The radiation schedule of Figure 4 (Patient 1) has been
simulated. Symbols and abbreviations: GF: growth fraction, Td: tumor doubling time.

Frontiers in Physiology frontiersin.org13

Stamatakos et al. 10.3389/fphys.2025.1434739

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2025.1434739


we approach the minimally necrotic and apoptotic tumor scenario by
minimizing TN and TA. The initial necrotic and apoptotic cell fraction is
minimized to 0. The necrotic and apoptotic cell fraction is preserved to
0 through time, since necrotic and apoptotic cells are instantly
eliminated and not accumulated. The rest of the tumor
characteristics preserve the Case-0 reference behavior. In Case-2, the
loss rate of differentiated cells is minimized. Again, the initial necrotic
and apoptotic cell fraction is minimized to 0. As opposed to Case-1, the
necrotic and apoptotic cell fraction is increased during therapy, since
necrotic and apoptotic cells are accumulated over time. Moreover, the
tumor composition changes. The differentiated cell population is
increased. As a result, the stem and G0 cell fractions, as well as the
growth fraction are decreased. Finally, the tumor volume reduction is
decreased compared to the Case-0 reference behavior. In Case-3, we
approach an aggressive tumor scenario byminimizing Psleep. Decreasing
Psleep causes less cells to enter the dormant G0 phase and the number of
proliferating cells is increased. As a result, mitosis happens more
frequently and the number of stem cells is also increased. Since the
proliferating cell population is the one that is primarily increased,
the initial differentiated and G0 cell fractions are decreased. Finally, the
tumor does not respond to therapy, grows exponentially and, as a result,
all cell populations, even G0, differentiated, apoptotic and necrotic,
increase. In Case-4, we approach an aggressive tumor scenario by
maximizing Psym. Increasing Psym causes more stem cells being

produced by the more frequent incidence of symmetric division. As
a result, the proliferating and G0 cell populations are also increased and
the initial differentiated cell fraction is decreased. Finally, the tumor
does not respond to therapy, grows exponentially and, as a result, all cell
populations, even differentiated, apoptotic and necrotic, increase.
Case-5 is obtained by maximizing the values of parameters α, β of
the LQ model. Increasing α and β causes the survival fraction to
decrease and the cell kill ratio to increase. As a result, more living
and non-differentiated cells are hit by therapy. The differentiated
cell fraction is consequently increased and the growth fraction,
stem cell and G0 cell fractions are decreased. Finally, a higher
tumor shrinkage compared to Case-0 is observed. Case-6 is
obtained by reducing the OER, which results in an increase in
the cell kill ratio. Observations agree with Case-5. The previous
observations are compatible with the scientific knowledge and
intuition concerning the simulated biological processes, which
confirms the correct operation of the OncoSimulator.

3.1.2.2 Systematic sensitivity analysis
3.1.2.2.1 Methods utilized. The one-factor-at-a-time sensitivity
index (SI) was used to quantitatively rank the strength of the relationship
between the outputmeasure and themodel parameters, employing a ±5%
change in inputs (Hamby, 1994). Each input parameter was perturbed
by ±5% from its baseline value, and the resulting percentage change in the

FIGURE 7
Comparison of five different virtual tumors (Table 2), all compatible with patient’s volumetric data (solutions) (Figure 4, Patient 2), in terms of the time
evolution of tumor volume reduction (A) and the fraction of selected tumor subpopulations [stem cells (B), terminally differentiated cells (C), cells that
have died through necrosis or apoptosis (D), proliferating cells in the active cell cycle (E) and cells in a reversible G0 state (F)]. The radiation schedule of
Figure 4 (Patient 2) has been simulated. Symbols and abbreviations: GF: growth fraction, Td: tumor doubling time.
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output measure—final tumor volume, initial growth fraction, and initial
growth rate—was recorded, with all other model parameters held at their
baseline values. For input parameters with a strong influence on the
output, where a ±5% variation results in biologically unrealistic tumor
growth, a ±2.5% variation was considered.

The percentage changes in the output were then normalized to
a ±1% variation in the input by dividing by the percentage change of
the input, using the following formulas (Equations 8, 9):

SI+% � Ybase+% − Ybase( )/Ybase

pi,base+% − pi,base( )/pi,base

(8)

SI-% � Ybase−% − Ybase( )/Ybase

pi,base−% − pi,base

∣∣∣∣ ∣∣∣∣/pi,base

(9)

where pi,base: the baseline value of the ith parameter, pi,base+(−)%: the value
of the ith parameter 5% or 2.5% above (or below) its baseline value,
Ybase: the output measure with all parameters at their baseline values,
Ybase+(−)%: the output measure with only the ith parameter set at 5% or
2.5% above (or below) its baseline value.

For simplification, all simulations assumed macroscopically
homogeneous tumors, meaning that the model parameter values
represent their spatial average throughout the tumor. The treatment
schedule from Figure 4 was applied.

3.1.2.2.2 Sensitivity analysis results. This section
quantitatively ranks the sensitivity of the model parameters.
Patient 1 has been considered as reference. Figure 12 depicts the
percentage change in selected simulation outcomes resulting
from a ±1% change in each model parameter around its baseline
value. The simulation outcomes considered are the initial
growth rate, the initial growth fraction, and the tumor
volume at the time of post-treatment MRI acquisition
(119 days after the first pre-treatment imaging study). The
latter outcome is a standard measure of the response to
radiotherapy in the clinical setting.

We observe that the percentage change in the output is
asymmetric for changes above and below the baseline value of
the parameters. The key biological mechanisms influencing the
therapy outcome (Figure 12A) are:

a. The fraction of the dormant cells re-entering the cell
cycle—PG0toG1. This mechanism indicates how the
oxygenation and nutrients’ availability status of the tumor
plays a role in the model.

b. The oxygen and nutrients availability status of the tumor as
represented mainly by the fraction of cells entering the
dormant phase following mitosis—Psleep.

FIGURE 8
Comparison of five different virtual tumors (Table 2), all compatible with patient’s volumetric data (solutions) (Figure 4, Patient 2), in terms of the time
evolution of tumor volume (A) and selected tumor subpopulations [stem cells (B), terminally differentiated cells (C), cells that have died through necrosis
or apoptosis (D), proliferating cells in the active cell cycle (E) and cells in a reversible G0 state (F)]. The radiation schedule of Figure 4 (Patient 2) has been
simulated. Symbols and abbreviations: GF: growth fraction, Td: tumor doubling time.
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c. The balance between the symmetric and asymmetric modes of
stem cell division, reflecting intrinsic properties of stem cells and/
or extrinsic controls from their microenvironment (represented
by the fraction of stem cells that divide symmetrically—Psym).

d. The apoptosis rate of living stem and committed progenitor
(LIMP) tumor cells—RA.

These parameters significantly influence the tumor’s growth
rate and growth fraction (Figures 12B, C). In contrast,
the radiosensitivity parameters have a relatively small
effect on tumor volume reduction. The local sensitivity
is highly dependent on the baseline values of the parameters
under investigation. The baseline values used correspond

FIGURE 9
Visual comparison of shape between initial true (red, transparent) and final simulated (blue) tumors at the respective first and second imaging time
points. For patient 1, during the simulation period (day 1–119), the tumor volume decreases by 17.51%. For patient 2, during the simulation period (day
1–176), the tumor volume decreases by 80.34%. Solution 1 of Table 2 has been simulated for both patients.

TABLE 4 Parameter values for the 6 different cases (7 including the baseline Case-0) tested with the imaging data of the patient considered for the
qualitative study of the OncoSimulator. Patient 1 has been considered as reference.

Parameter Case-0 Case-1 Case-2 Case-3 Case-4 Case-5 Case-6

Tc (h) 31 31 31 31 31 31 31

TG0 (h) 373 373 373 373 373 373 373

TN (h) 186 1 186 186 186 186 186

TA (h) 17 1 17 17 17 17 17

NLIMP 7 7 7 7 7 7 7

RA (10−4 h−1) 10.230 10.230 10.230 10.230 10.230 10.230 10.230

RNDiff (10
−4 h-1) 0 0 0 0 0 0 0

RADiff (10
−4 h−1) 2.591 2.591 0 2.591 2.591 2.591 2.591

PG0toG1 (h
−1) 1 1 1 1 1 1 1

Psleep 0.179 0.179 0.179 0.060 0.179 0.179 0.179

Psym 0.090 0.090 0.090 0.090 0.15 0.090 0.090

α (10−3 Gy−1) 9.254 9.254 9.254 9.254 9.254 150.000 9.254

a/β (Gy) 3 3 3 3 3 3 3

OER 2.388 2.388 2.388 2.388 2.388 2.388 1.00

NOTE: for each column, the values that are different from those of Case-0, are indicated in bold font.
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to Case 0 in Table 4, which represents a typical
proliferation profile of prostate cancer with a low growth
rate and growth fraction, and a negligible dead cell
compartment.

4 Discussion

The work presented in this paper has provided the basics of the
proposed model constitution, parameter handling and behavior, in

TABLE 5 Resulting tumor characteristics for the 6 different cases (7 including the baseline Case-0) testedwith the imaging data of the patient considered for
the qualitative study of the OncoSimulator. Patient 1 has been considered as reference.

Doubling
time (days)

Growth
rate
(10−4 h−1)

Necrotic and
apoptotic cell
fraction (%)

Growth
fraction (%)

Stem cell
fraction (%)

Differentiated cell
fraction (%)

G0 cell
fraction (%)

Case-0 484 0.597 0.447 1.057 0.040 97.176 1.768

Case-1 484 0.597 0 1.057 0.040 97.176 1.768

Case-2 485 0.596 0.009 0.208 0.008 99.444 0.348

Case-3 31 9.319 0.474 3.928 0.081 94.329 1.742

Case-4 30 9.561 0.523 4.071 0.203 90.22 5.708

Case-5 484 0.597 0.447 1.057 0.040 97.176 1.768

Case-6 484 0.597 0.447 1.057 0.040 97.176 1.768

FIGURE 10
Effect ofmodel input parameters on the time evolution of tumor volume reduction (A) and the fraction of selected tumor subpopulations [stem cells
(B), terminally differentiated cells (C), cells that have died through necrosis or apoptosis (D), proliferating cells in the active cell cycle (E) and cells in a
reversible G0 state (F)]. The radiation schedule of Figure 4 (Patient 1) has been simulated. Case-0 is a solution of the clinical case considered, i.e., it is
compatible with the patient’s volumetric data (Figure 4, Patient 1). Case-1 up to Case-6 have been derived fromCase-0 after changing the value of a
limited number of model parameters (Table 4). Case-1 and Case-2 correspond to scenarios of small dead cell compartment, Case-3 and Case-4
correspond to more proliferative profiles and Case-5 and Case-6 simulate tumors of higher radiosensitivity. Symbols and abbreviations: GF: growth
fraction, Td: tumor doubling time.
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relation to existing clinical and experimental knowledge in the
prostate cancer radiotherapy domain. However, further in silico
experimentation (e.g., more virtual tumors with differing
characteristics to be considered and studied) and a thorough
clinical validation and certification are needed in view of the
envisaged clinical translation of the model. This will be the
subject of future work. Specific aspects of the work presented are
discussed below.

Regarding the mitotic potential of progenitor or LIMP tumor
cells| (Figure 1), as a first approximation, LIMP cells are considered
to stop differentiating after a specific number of divisions. Based on
the results of the sensitivity analysis conducted (Figure 12), the
model appears to be minimally sensitive on the exact number of
mitoses performed by LIMP cells before becoming differentiated
(NLIMP). Plausible average values of 7 up to 9 for NLIMP have been
used and explored in the executions presented in this paper,
including the clinical adaptation procedure.

As a first approximation, Psym; Psleep and PG0toG1 have been
considered constant over the simulated time for the case of an
apparently homogeneously oxygenated tumor. Their values reflect
the average values of the corresponding parameters over time.

However, if oxygenation inhomogeneities are detectable on the
imaging data (e.g., MRI), algorithmic rules approximating the
boundaries of the well and the poorly oxygenated regions of the
tumor as time evolves, such as the ones proposed in (Stamatakos
et al., 2002), could be used instead. The values of Psleep and
PG0toG1 would then differ in the well and the poorly oxygenated
regions. Since no inhomogeneities have been detectable on the
imaging data (MRI slices) corresponding to the patient cases
considered in this paper, oxygen biotransport has not been
explicitly addressed. Nevertheless, average values of the related
model parameters Psleep and PG0toG1 have been calculated as
part of the solutions finding process during the proposed
clinical adaptation methodology.

It is noted that as a first approximation, certain rather generic
radiobiological parameter values for the prostate cancer treatment
context addressed have been used in the present exploration. In a
future more refined exploration of the model behavior, slightly
better substantiated parameter values could be used.
Approximations refer basically to the cancer cell density and the
α/β value. Nevertheless, since the total tumor volume reduction
percentage is one of the key outcomes of the exploration, no

FIGURE 11
Effect of model input parameters on the time evolution of tumor volume (A) and selected tumor subpopulations [stem cells (B), terminally
differentiated cells (C), cells that have died through necrosis or apoptosis (D), proliferating cells in the active cell cycle (E) and cells in a reversible G0 state
(F)]. The radiation schedule of Figure 4 (Patient 1) has been simulated. Case-0 is a solution of the clinical case considered, i.e., it is compatible with the
patient’s volumetric data (Figure 4. Patient 1). Case-1 up to Case-6 have been derived from Case-0 after changing the value of a limited number of
model parameters (Table 4). Case-1 and Case-2 correspond to scenarios of small dead cell compartments, Case-3 and Case-4 correspond to more
proliferative profiles and Case-5 and Case-6 simulate tumors of higher radiosensitivity. Symbols and abbreviations: GF: growth fraction, Td: tumor
doubling time.
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major changes are intuitively expected to arise if slightly different
cell densities of cancer cells per cubic centimeter for prostate tumors
are considered. Regarding the α/β value, the value of α/β = 3 has been
considered. This value lies within the interval of the values of α/β
that have been calculated for prostate cancer, e.g., by (Pedicini et al.,

2013; Wang et al., 2003). In a future more refined analysis of the
model behavior, slightly better substantiated parameter values
could be used.

In silico studies related to in vivo radiosensitivity estimates in
conjunction with the molecular profile of a patient appear to be

FIGURE 12
Sensitivity Analysis. Sorting of model parameters (see Table 1) based on their effects on: (A) radiation-induced tumor shrinkage, (B) growth fraction
before radiation treatment, and (C) growth rate before radiation treatment. The sensitivity index for each input parameter is defined as the percentage
change in the respective characteristic for every ±1% change in the input parameter. A positive correlation between an input parameter and the output
measure is translated to a positive SI+% and a negative SI-%. On the other hand, a negative correlation between an input parameter and the output
measure is translated to a negative SI+% and a positive SI-%. The highest the absolute value of SI, the strongest the correlation and, hence, the influence of
the input parameter on the output measure. The radiation schedule of Figure 4 (Patient 1) has been simulated. The final tumor volume corresponds to day
119 after pretreatment MRI acquisition.
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good candidates for the identification of radioresistance and
radiosensitivity profiles. To this end, machine learning can also
be recruited in order to distinguish among radio sensitivity
phenotypes and to quantify tumor cell response to treatment,
based on whole genome analysis data, gene expression profiles
and transcriptomic or proteomic signatures. Eventually, such
studies could allow for the prediction of treatment outcome. If
appropriate data is available (e.g., Ki-67 index and apoptotic
index at diagnosis, imaging data before and during or shortly
after therapy or radiosensitivity estimates based on molecular
or genetic data), the OncoSimulator could predict the tumor
evolution for the next few months. Such a prediction could
support clinical decisions concerning modified treatments and/
or the best time for surgery in the patient specific context. It is
noted that Ki-67 is an excellent marker to determine the growth
fraction (GF) of a given cell population (Wikipedia, 2024).
Therefore, availability of Ki-67 can lead to a credible
estimation of growth fraction (GF), of which the use is
delineated, inter alia, in Section 3.1.1.

Regarding the limiting assumption of tumor free growth
within the substantially deformable soft organ of prostate
(Section 1, Introduction), the model could be improved
regarding its mechanical (shape) related aspects, by
combining our discrete entity–discrete event approach with
the Finite Elements method for biomechanics. Such an
approach has already been applied to the case of
glioblastoma growth simulation by Bauer et al. (2012).

As far as model parametrization and clinical validation are
concerned, a large number of multiscale data series in the
context of both retrospective and prospective clinical studies is
currently being collected. These include inter alia data
originating from our team’s work in the context of the German
clinical study HypoFocal-SBRT (German Clinical Trial Register,
2024) and the work published inMarinescu et al. (2022). It should be
made clear, however, that the present paper has presented the initial
steps of the work towards the development of a prostate cancer
OncoSimulator. Its aim has been to showcase the feasibility, the
fundamental design and the qualitative behavior of the model.

Regarding the side effects of radiation therapy on normal
tissues, including gastrointestinal and genito-urinary sequels
that shape an important part of the individual preferences of
the patient, these can be addressed as follows. An extended
discretizing mesh is superimposed on the anatomic region of
interest. The latter, apart from the tumor foci, also covers the
adjacent irradiated normal tissues. Following calculation of the
expected absorbed radiation dose at each geometrical cell of the
mesh, the bio-simulation part begins. Application of the key
biological, physiological, physical, chemical and biomechanical
laws and/or rules, which collectively represent the overarching
principle of homeostasis at each geometrical cell filled by specific
normal tissue–and eventually affected by its neighboring
geometrical cells - leads to the prediction of a crucial part of
the expected side effects of treatment (acute and late toxicity). This
can be implemented in a way quite similar to the one adopted
above for the case of tumor response to treatment. Such an
approach has already been applied by the authors’ team to the
case of glioblastoma multiforme treated by radiotherapeutic
schemes (Antipas et al., 2007). By comparing the expected

response of the tumor with that of the irradiated normal tissues
to each candidate radiotherapeutic scheme and by also taking into
account the patient preferences regarding both the irradiation
procedure (e.g., number of irradiation sessions per week and
total irradiation duration) and the expected treatment side
effects (e.g., incontinence, impotence), a more advanced level of
personalized treatment optimization could be achieved. Such an
approach is, however, highly demanding in terms of modelling and
simulation effort; therefore, this will be the subject of future work.

5 Conclusion

A multiscale mechanistic computational model of prostate
tumor growth and response to radiotherapy has been presented as
a first step towards the development of a prostate cancer digital
twin (OncoSimulator). Special emphasis has been put on the
histological constitution of the tumor and its temporal
response to radiotherapeutic treatment. Following technical
verification, an adaptation to clinical data approach has been
delineated and an initial exploration of its potential has been
outlined. In addition, a parametric and sensitivity analysis, which
has revealed the impact of particular model parameters on the
overall model behavior, has been performed. A qualitative
agreement of the proposed model behavior with published
experimental and clinical knowledge and data for two patients
has set up the basis for the next steps towards its thorough clinical
validation and its eventual clinical translation. It is pointed out,
however, that the content of this paper is of preliminary nature. Its
outcome has been the demonstration of the feasibility, the basic
design and the core behavior of the model. Further data is being
collected in order to enhance model parametrization and conduct
a rigorous clinical validation. The envisaged digital twin or
OncoSimulator, to be built around the model
presented—provided that both clinical validation and
regulatory certification are favorable—is to be exploited for
both patient individualized treatment and in silico clinical trials
in the context of prostate cancer treated with radiation therapy.
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