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Editorial on the Research Topic
Artificial intelligence for smart health: learning, simulation, and
optimization

With rapid developments in medical sensing and imaging, we now live in an era of data
explosion in which large amounts of data are readily available in clinical environments. The
fast-growing biomedical and healthcare data provide unprecedented opportunities for data-
driven scientific knowledge discovery and clinical decision support. Our Research Topic
aims to catalyze synergies among biomedical informatics, machine learning, computer
simulation, operations research, systems engineering, and other related fields with three
specific goals: (1) develop cutting-edge data-driven models to accelerate scientific
knowledge discovery in biomedicine using healthcare data collected from laboratory
systems, imaging systems, and medical and sensing devices; (2) develop advanced
simulation and calibration algorithms to build personalized digital twins by effectively
assimilating patient-specific medical data with population-level computer models,
facilitating precision medical planning; (3) develop innovative optimization algorithms
for optimal medical decision making in the face of uncertainty factors, conflicting
objectives, and complex trade-offs. This Research Topic, containing 10 articles, will
offer a timely collection of information to benefit researchers and practitioners working
in the broad fields of biomedical informatics, healthcare data analytics, medical image
processing, and health-related AI.

Jiang et al. investigated the development and implementation of a high-fidelity
simulation training course for fostering medical and nursing collaboration in China,
guided by the Fink integrated curriculum design model. This training course was
delivered to 14 nursing students and 8 clinical medicine students between March and
July 2022. The results showed high satisfaction, increased self-confidence, and positive
evaluations across various teaching practice dimensions. The study underscores the value of
standardized simulation curricula in advancing healthcare education in China.

Rovati et al. evaluated the usability, workload, and acceptance of a digital twin
application designed to simulate patient clinical trajectories based on EHR data for
critical care education. Tested with 35 first-year internal medicine residents, the
application demonstrated good usability and low to moderate workload. Residents
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expressed interest in using the digital twin application for ICU
training and suggested improvements in clinical fidelity, interface
design, learning experience, gaming elements, and implementation
strategies.

Xie et al. developed a multi-branching ResNet model for atrial
fibrillation detection from single-lead ECG signals. This method
combines continuous wavelet transform for feature extraction with a
multi-branching architecture to handle class imbalance in ECG datasets.
Their framework was evaluated on two databases: PhysioNet/CinC
challenge 2017 and private datasets from the University of Oklahoma
Health Sciences Center. Their model achieved F1 scores of 0.8865 and 0.
7369 on the two datasets respectively, demonstrating strong performance
in balancing precision and recall.

Patharka et al. provided a systematic review of research
challenges in modeling biomedical temporal data, including
missing values, capturing multi-dimensional correlations, and
accounting for short- and long-term temporal patterns. This
paper categorizes time series models into statistical, machine
learning, and deep learning approaches, and further discusses
their strengths and limitations. Strategies such as model
enhancement, ensemble forecasting, and hierarchical models are
examined for improving clinical predictions. It also explores
implementation challenges in biomedical data modeling and
outlines future directions for integrating AI in healthcare.

Kim et al. developed a Timely Early Warning System for Septic
Shock (TEW3S), which emphasizes predicting the onset timing of
septic shock to assist proactive clinical interventions. Utilizing
machine learning and EHRs from the MIMIC-IV database,
TEW3S achieved 94% accuracy in predicting all shock events
with a maximum lead time of 8 h. By addressing the limitations
of traditional risk-based prediction systems, this approach highlights
the critical role of timeliness in improving patient outcomes during
acute deterioration in hospital settings.

Rao et al. developed a multi-scale long short-term memory
(LSTM) neural network trained with a variety of time scale data
for classifying fetal heart rate patterns during labor. They employed
preprocessing techniques to mitigate negative effects such as missing
signals and artifacts on the model, and further utilized data
augmentation techniques to address the data imbalance issue.
Their framework was evaluated on the CTU-UHB dataset and
achieved superior performance compared with traditional LSTM.

Stanik et al. developed a predictive model to identify stroke
survivors at high risk of seizures following an infection, using data
from the Long-Term Care Minimum Data Set. Data balancing
techniques and feature selection methods are incorporated into
machine learning models (Logistic Regression, Random Forest,
XGBoost, Neural Network), achieving high accuracy in seizure
prediction. Key factors contributing to seizure risk identified by
this article included therapy hours, independence in daily
activities, and mood.

Trevena et al. developed a graph-based patient simulation
application designed to model critically ill patients with sepsis.
The authors utilize directed acyclic graphs to represent the
complex physiological and medication interactions during the
first 6 h of critical illness. Their system consists of three core
components: a cross-platform frontend for clinicians and
trainees, a cloud-hosted simulation engine, and a graph database
to determine the progression of each simulation. The simulation

architecture demonstrates the potential to help train future
generations of healthcare professionals and facilitate clinicians’
bedside decision-making.

Wang et al. developed a three-phase methodology for emotion
recognition from electroencephalography signals. Their framework
addresses the challenges of capturing the complex, nonlinear, and
nonstationary dynamics of brain activity by integrating manifold
embedding, multilevel heterogeneous recurrence analysis, and
ensemble learning. Evaluated on the SJTU-SEED IV database,
their method demonstrates superior performance compared to
existing commonly used techniques.

Meyers et al. investigated the sources of variability affecting
operating room (OR) efficiency. The OR process was segmented
into eight stages to quantify key process times, such as procedure
duration and start time delay. The authors developed linear
mixed models to evaluate the effects of factors such as the
primary surgeon, anesthesia provider, and procedure type on
OR efficiency. This study emphasizes the importance of
segmenting the OR process into finer stages for better
understanding of efficiency.

Finally, we extend our sincere gratitude to the reviewers for their
thoughtful and constructive feedback on the manuscripts submitted
to this Research Topic. Their insightful evaluations have
significantly contributed to enhancing the quality and impact of
this Research Topic.
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