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Introduction: Exercise physiology investigates the complex and multifaceted
human body responses to physical activity (PA). The integration of electrical
bioimpedance (EBI) has emerged as a valuable tool for deepening our
understanding of muscle activity during exercise.

Method: In this study, we investigate the potential of using the EBI technique for
human motion recognition. We analyze EBI signals from the quadriceps muscle
and extensor digitorum longus muscle acquired when healthy participants in the
range 20–30 years of age performed four lower body PAs, namely squats, lunges,
balance walk, and short jumps.

Results: The characteristics of EBI signals are promising for analyzing PAs. Each
evaluated PA exhibited unique EBI signal characteristics.

Discussion: The variability in how PAs are executed leads to variations in the EBI
signal characteristics, which, in turn, can provide insights into individual
differences in how a person executes a specific PA.
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1 Introduction

Exercise physiology, which is a multidisciplinary domain, explores the sophisticated
mechanisms that dictate the human body’s physiological response to exercise. This field
serves as a nexus between biomechanics, physiology, and biochemistry (Kent and Hayes,
2021), shedding light on the intricate dynamics among these systems and their respective
adaptations in response to exercise. Physical activity (PA), a fundamental aspect of human
existence, is defined as any energy-consuming body movement produced by skeletal
muscles and includes a broad array of movements ranging from everyday tasks to
intentional exercises such as walking, running, martial arts, and more (Posadzki et al.,
2020). Over the decade spanning from 2012 to 2022, there was a significant surge in research
publications on human motion wearables, with an annual count escalating from roughly
250 to nearly 1,400 articles (Huang et al., 2023). There is an interest in measuring a person’s
PA both for the individual, the healthcare services, and for different research fields. There is
also an interest in determining what movement is performed and how it is executed.
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Various techniques are employed for human motion
recognition, PA monitoring, and posture assessment. Three-
dimensional Optical Motion Capture systems are considered the
golden standard method for motion capture (Hindle et al., 2021; Gu
et al., 2023). Renowned for their provision of highly accurate and
comprehensive motion data, they play a pivotal role in these
domains. However, their utility is constrained by the necessity
for a controlled environment, susceptibility to occlusion, and the
relatively higher complexity and computational cost (Gutemberg,
2005) compared to Inertial Measurement Unit (IMU)-based
techniques. IMUs, on the other hand, have found extensive
application across diverse fields (Huang et al., 2023; Meng et al.,
2020), particularly in sports, where they are utilized for the
classification of human motion through various classification
approaches (Kranzinger et al., 2023). Despite offering notable
advantages in terms of ease of use, flexibility, and cost-
effectiveness, IMU-based techniques necessitate careful
consideration of sensor drift (Cheng et al., 2023), sensor
placement (Niswander et al., 2020), and environmental factors
(Patrizi et al., 2022) to ensure the accuracy and reliability of
human motion recognition and monitoring.

Three-dimensional Optical Motion Capture systems or IMU
sensors measure the direction of the body movement but do not
analyze the muscles involved. IMU sensors have shown limited
capability to detect age related deteriorations in how to perform a
PA (Swanson and Fling, 2021). Over the past decades, electrical
bioimpedance (EBI) has emerged as a versatile and non-invasive
tool, offering valuable insights into diverse aspects of physiological
function (Naranjo-Hernández et al., 2019; Platt, 1998). In fields such
as sports and exercise research and practice, novel approaches for
measurements utilizing EBI are continuously evolving. By assessing
the resistance of biological tissue to electrical current flow, EBI
encompasses several modalities, such as bioelectrical impedance
analysis (BIA), a method employed for assessing body composition
and recognized for its non-invasive nature. It is also utilized to
evaluate hydration and injury, particularly yielding optimal results
when applied to soft tissue injuries (Castizo-Olier et al., 2018). The
recent strides in microelectronics have catalyzed the creation of
system-on-chip solutions tailored specifically for EBI. These
advancements have enhanced the portability and user-friendliness
of EBI devices significantly, rendering them highly suitable for both
research endeavors and practical applications.

Electrical impedance myography (EIMG), among the modalities
of EBI, is used in clinical settings and research domains for assessing
muscle conditions. It operates by measuring the resistance in
biological tissues, a parameter influenced by both tissue geometry
and composition (Cebrián-Ponce et al., 2021). EIMG can be used for
the detection of inflammation in muscles (Mortreux et al., 2019) and
muscle fatigue (Huang et al., 2020), and in evaluation of
neuromuscular disorders (Sanchez and Rutkove, 2017).

EIMG has also been evaluated for measurements of muscle
status before and directly after exercise, the week after exercise, and a
longer time after exercise (Cebrián-Ponce et al., 2021). Changes in
impedance magnitude and phase angle were shown to decrease after
exercise compared to before exercise (Huang et al., 2020; Freeborn
and Fu, 2019; Fu and Freeborn, 2018). Measurements performed
during muscle contraction show a nonlinear increase in the
resistance and reactance (Shiffman et al., 2003). The phase angle

is directly related to the strength of the muscle and aerobic fitness
(Martins et al., 2022). However, even though there are several studies
investigating the topic, EIMG is still a new method for muscle
assessment and the technology is far from being considered as a
consolidated technique (Sanchez et al., 2021). The underlying
mechanisms involved in EIMG during muscle contraction are
not fully known (Sanchez et al., 2021).

By using EBI technology for humanmotion recognition, it might
be possible to get information on how the muscles handle PAs
performed. In the current literature, limited studies focus on human
motion recognition utilizing EBI. From 2015 to 2023, investigations
have successfully utilized EBI specifically used different electrode
positions and algorithms for hand gesture recognition (Zhang and
Harrison, 2015; Chen et al., 2021; Ma et al., 2023). A notable study
published in January 2024 illustrates the utilization of single-channel
EBI sensing between wrists, and IMUs, for recognizing various
upper and lower body PAs (Liu et al., 2024). To the best of our
knowledge, there are no other studies focusing on human motion
recognition utilizing EBI.

In this study, we aim to investigate the potential of using the EBI
technique for humanmotion recognition and thereby be able to analyze
more than the change in body directions that occur while performing
different PAs. By analyzing EBI signals from the quadriceps muscle and
the extensor digitorum longus muscle acquired during PAs, the study
seeks to uncover the characteristics of the EBI signals for four different
lower body PAs (squats, lunges, balance walk, and short jumps) for
healthy young people.

2 Materials and method

This section first describes the experimental measurement setup
and the data collection procedure. Secondly, it describes the data
processing and characterization of the EBI signals, as well as the
feature extraction and calculation.

2.1 Experimental measurement setup

To enable the investigation of the potential of using EBI
measurements on specific muscles as a technique for human
motion recognition, we employed two EBI devices, the
Max30009EVKIT1 and Max86178EVKIT2. Each kit integrates a
system-on-chip functionality, serving as a low-power, high-
performance analog frontend for EBI measurements. Both kits
include a microcontroller board and are powered by rechargeable
LiPo batteries. Moreover, both can establish communication with
dedicated graphical user interface (GUI) software via Bluetooth.

1 Analog Devices. “MAX30009EVKIT”; https://www.analog.com/en/

resources/evaluation-hardware-and-software/evaluation-boards-kits/

max30009evkit.html#eb-overview [Accessed February 1, 2023].

2 Analog Devices. “MAX86178EVKIT”; https://www.analog.com/en/

resources/evaluation-hardware-and-software/evaluation-boards-kits/

max86178evkit.html#eb-overview [Accessed July 1, 2023].
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The rationale behind selecting and using two different types of EBI
devices was due to encountering a problem where two identical kits
could not operate simultaneously on the same computer due to GUI
limitations and Bluetooth connection issues with identical devices.

The Max30009EVKIT is tailored for EBI measurements and serves
a wide range of applications from wearable fitness devices to medical
equipment. Conversely, the Max86178EVKIT not only provides EBI
measurement capabilities but also includes features for measuring
photoplethysmography (PPG) signals and electrocardiography
(ECG) readings. Its versatility extends to smart clothing applications
and the development of wearable vital sign monitors.

The sensor locations were influenced by the muscles’ capacity to
assess the engagement of lower body muscles during various PAs.
The quadriceps muscle was chosen since it is a large muscle involved
in leg extension, and the extensor digitorum longus muscle was
chosen based on its involvement with flexion of the ankle and foot
stabilization. The extensor digitorum longus muscle is important to
compensate for imbalance.

As shown in Figure 1, a total of eight Ag/AgCl gel electrodes
were positioned on one leg to facilitate the EBI measurements. Based
on a tetrapolar configuration, four electrodes were placed on the
quadriceps muscle and an additional four electrodes on the extensor
digitorum longus muscle. In this setup, the voltage-sensing
electrodes were assigned to the inner electrodes labeled as V,
while the outer electrodes, labeled as I, functioned as the current-
injecting electrodes.

The electrode configuration was selected to minimize the
influence of the skin-electrode interface on the measurement
(Kalvøy et al., 2018). In addition, hair was shaved to reduce
baseline artifacts. The Max86178EVKIT was utilized to collect
data from the quadriceps muscle, while the Max30009EVKIT was
employed for data acquisition from the extensor digitorum longus
muscle. Both kits were carried in a bag fastened around the
participants’ waist.

In this study, the injected current was an alternating current set
at frequencies of 50 kHz, with an amplitude of 1.28 mA for both
devices. The EBI signals for both devices were captured at a
maximum sampling rate of 390 Hz.

Additionally, two cameras (UltraSharp Webcam - WB7022)
were utilized to capture the participants’ PAs during the entire
measurement process. To preserve anonymity and maximize video
quality, the camera angles were carefully selected to focus solely on
the lower part of the body where the electrodes were positioned, with
recordings taken from both lateral and frontal perspectives. OBS
Studio (29.1.3) software was employed to display and record the
feeds from the two cameras simultaneously, as depicted in Figure 1.

2.2 Data collection procedure

The experimental evaluation adhered to the ethical guidelines
sanctioned by the Swedish Ethical Review Authority under the

FIGURE 1
Arrangement of Ag/AgCl gel electrodes with four electrodes on the quadriceps muscle and an additional four on the extensor digitorum longus
muscle. A screenshot of the Max30009EVKIT and Max86178EVKIT GUIs and the recorded video.
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reference code 2022-06690-01. All procedures were conducted in
strict accordance with the principles outlined in the Declaration
of Helsinki.

The experimental evaluation, which took place as part of the
PRE-fall project3, involved 11 young healthy volunteers (8 males and
3 females, aged 20–30). Before placing electrodes and commencing
measurements, all participants received detailed information
regarding the study, and each participant provided
informed consent.

Since the measurements were performed both to investigate the
characteristics of the sensor data and if imbalance occur during the
PAs, we collected EBI data from the participants’ non-dominant leg.
We therefore asked each participant to stand on one leg to determine
the dominant leg. The electrodes were placed on the other leg, from
here on referred to as the sensor leg.

The participants performed a series of four PAs (squats, lunges,
balance walk, and short jumps) as depicted in Figure 2. The choice of
these PAs was driven by their substantial relevance to functional
movements and their ability to engage multiple muscles in the lower
body. The participants were orally and visually instructed on how to
perform the PAs described below:

• For the squats, the participants were told to perform 5 squats as
fast as possible. Participants should bend their knees and descend
quickly toward a chair, without sitting down, and then stand up
again as quickly as possible. The chair guided squat depth.

• For the lunges, the participants were told to perform 3 lunges.
Participants should take a large step forward with the sensor
leg, bend their legs to approximately 90°, and then return to the
starting position without making ground contact with the
sensor leg until fully returned to the starting position.

• For the balance walk, the participants were told to walk in a
straight line with shortened strides, ensuring that the heel of
the front foot was close to the toe of the trailing foot.

• For the short jumps, the participants were told to perform a
70 cm jump with the sensor leg in front of the other one,
followed by walking backward to the starting position for
making a subsequent jump until 3 jumps were performed.

To facilitate the data analysis, the participants were told when to
start performing each PA. A shorter resting period was provided
between the successive PAs.

2.3 Data processing and characterization of
EBI signals

The data recorded from the Max30009EVKIT and
Max86178EVKIT GUI software was stored in two raw datasets.

FIGURE 2
The PAs performed in the experimental evaluation.

TABLE 1 Included and excluded EBI signals for each PA and muscle.

PA Muscle No of included participants Excluded participant id:s

Squats Quadriceps muscle 10 5

Extensor digitorum longus muscle 11 —

Lunges Quadriceps muscle 11 —

Extensor digitorum longus muscle 8 4,5,8

Balance walk Quadriceps muscle 9 6,7

Extensor digitorum longus muscle 8 6,7,11

Short jumps Quadriceps muscle 7 1,3,4,10

Extensor digitorum longus muscle 9 10,11

3 Mälardalen University. “PRE-fall project”; https://www.mdu.se/en/

malardalen-university/research/research-projects/pre-fall [Accessed

October 2, 2024].
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The recorded videos for each participant and the corresponding
EBI sensor data for the four PAs were carefully analyzed using the
ELAN annotation tool (Wittenburg et al., 2006). Two of the authors
reviewed each video together to determine the start and end times
for the PAs. Each video sequence was viewed in slow motion (video
speed 0.5) at least three times to assess the impact of each directional
change of the PA on the two EBI signals and to identify any
observable similarities and differences in EBI signals obtained
from different participants. During this process, casual labels
indicating PA cycles were assigned to the two EBI signals.
Additionally, how the participants executed the PA was analyzed
by reviewing the videos.

EBI signals that did not display the typical characteristics
observed in other participants’ EBI signals were excluded from
the analysis. The number of included EBI signals for each PA
and muscle, and information on which EBI signals that were
excluded are detailed in Table 1.

For the included EBI signals, Daubechies wavelet filtering using
the “db4” wavelet from the “pywt” library in Python version
3.10.13 was applied to the raw EBI signals to suppress noise and
retain critical signal components. This filtering method involves
decomposing the EBI signal into wavelet coefficients through a
multi-level discrete wavelet transform, which isolates noise from the
signal across different scales. Soft thresholding was then applied to
the wavelet coefficients, reducing those below a threshold of 0.1. The
threshold was determined experimentally. The signal was
subsequently reconstructed from the thresholded coefficients
using an inverse wavelet transform. To maintain consistency with
the raw signal, the reconstructed signal was truncated to match the
original length. The final output was the processed EBI signal.

To show the characteristics of the EBI signals and variations in
them, figures representing the signal characteristics of the processed
EBI signals obtained from the PAs were plotted using the
“matplotlib”4 library. Phases within each cycle were highlighted
in the figures. These phases were identified by analyzing the EBI
signals and the corresponding videos simultaneously. For squats and
lunges, the EBI signal from the participant who executed the PA
most effectively while providing the clearest EBI signals were
provided as examples to show the phases in the PA. For balance
walk and short jumps, the phases were presented in all figures since
the EBI signal characteristics are less distinct and sometimes, the
phases were impossible to detect without video observations. The
number of participants displaying different variations in the EBI
signal characteristics for each PA was also counted.

2.4 Feature extraction and calculations

The “SciPy” scientific computation library5 was used to detect
and extract the squat/lunge cycles from the EBI signals of the
included participants. The proposed algorithm analyzes the EBI
signals collected from each of the two muscles by identifying
prominent peaks and local minima within the EBI signals. The

pseudo-code of the cycle extraction algorithm is provided in
Algorithm 1.

1: Establish a threshold for prominent peaks. This is

determined by calculating the difference between

the absolute maximum and the mean value of the

entire EBI signal.

2: Detect the prominent peaks. This is done by selecting

the most prominent peaks exceeding the threshold

from the entire EBI signal. The minimum distance

between the prominent peaks was experimentally

determined to 640 samples, a value corresponding

to almost the length of a full cycle.

3: Determine the ‘Start cycle index’ and ‘End cycle

index’ for each cycle:

for squats, the ‘Start cycle index’ and ‘End cycle

index’ correspond to the first prominent local

minima prior to, and after, a prominent peak.

for lunges, the ‘Start cycle index’ and ‘End cycle

index’ correspond to the second prominent local

minima prior to, and after, a prominent peak.

return cycles: A list representing the start and end

indices of each identified cycle in the EBI signal.

Algorithm 1. Cycle Extraction (EBI signal: A one-dimensional array

representing the signal data).

It should be mentioned that, since the squats were performed at
maximum speed, the first and last of the five squats cycles were excluded
from further analysis to ensure accuracy. As a result, three cycles were
selected for feature extraction and analysis from each included
participant. However, for P1, squat cycles 1, 2, and 5 were included
in the analysis due to balance issues impacting squat cycles 3 and 4.

For lunges, all three cycles were used in the feature extraction
and analysis from each included participant.

For both squats and lunges, the following measurable features, as
depicted in Figure 3, were extracted:

Baseline magnitude: The impedance value before the start of all
cycles (participant in standing position). It reflects the impedance
when the muscle is relatively relaxed.
Endline magnitude: The impedance value after all cycles
(participant in standing position). It reflects the impedance when
the muscle is relatively relaxed.
Start cycle magnitude: The impedance value at the start time of
a cycle.
End cycle magnitude: The impedance value at the end time of
a cycle.
Peak magnitude: The highest impedance value corresponding to
the squat/lunge position in each cycle.

In addition, the following features were calculated for each
squat/lunge cycle:

Squat/Lunge position amplitude: Peakmagnitude−
Start cyclemagnitude + End cyclemagnitude

2
. The impedance

4 https://matplotlib.org/

5 https://scipy.org/
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position amplitude is indicative of the degree of muscle
contraction and the range of motion during the squat/lunge
cycle. A large squat/lunge position amplitude reflects a larger
muscle mass involvement.
Baseline to peak amplitude: Peakmagnitude − Baselinemagnitude.
The impedance value reflects the muscle mass.
Number of fluctuations: The number of occasions where a local
minima and local maxima occur in close proximity to each other
during a squat/lunge cycle. It reflects the imbalance and
coordination problems during each cycle.

The pseudo-code of the algorithm for detecting fluctuations for
squat/lunge cycles is provided in Algorithm 2.

1: Identify all peaks (local maxima) and valleys

(local minima).

2: Identify the prominent peak, i.e., the peak with the

highest amplitude.

3: Identify the two local minima occurring prior to and

after the prominent peak.

IF the distance between the prominent peak and either

local minimum is less than 5 data points, remove the

prominent peak and the two local minima from the list

of peaks and valleys.

ELSE remove only the prominent peak from the list but

retain its index for step 4.

4: Divide remaining peaks and valleys into a left-side

group and right-side group based on those occurring

prior to or after the prominent peak.

5: Compare left-side peaks and their corresponding

valleys. Ensure the valley occurs after the peak.

6: Compare right-side peaks and their corresponding

valleys. Ensure the valley occurs before the peak.

7: Filter valid matches of peak and valley meeting

certain distance and amplitude thresholds.

Distance threshold: 5–72 samples between peak and

valley. Amplitude thresholds:

IF the distance threshold is met, the amplitude

between the peak and valley must be at least 0.005 Ω.

ELSE IF the distance threshold is not met, the

amplitude between peak and valley must not

exceed 0.014 Ω.

ELSE unvalid match.

return Filtered peaks and valleys: A list of indices

representing peaks and valleys that indicate

fluctuations in the cycle.

Algorithm 2. Fluctuation extraction (EBI_signal: A one-dimensional array

representing the signal data of one cycle).

Since the participants were asked to perform the squats as quickly as
possible, also the following feature was calculated for squats:

Duration: End time of a cycle − Start time of a cycle. The
duration reflects the ability to descend into a squat position,
stand up, and make directional changes.

The PA cycles for balance walk and short jumps were considered
difficult to identify in the EBI signal without simultaneous access to
the video recordings. Instead, approximate amplitudes for the
respective PA were calculated. For balance walk, the maximum
and minimum magnitudes in the EBI signal during the first
8–9 steps were determined. For short jumps, the maximum and
minimum magnitudes in the entire EBI signal, i.e., all three short
jumps and the walking back in between, were determined. The
maximum andminimummagnitudes during balance walk and short
jumps respectively were used to calculate the approximate
amplitudes for each included participant. Thereafter, the mean
value of the approximate amplitudes for all included participants
were calculated.

For balance walk, also fluctuations were calculated. However,
since the cycles were difficult to identify, the fluctuations occurring
during the first 8–9 steps were identified using a similar approach as
in the fluctuation extraction algorithm but without detecting the
prominent peaks. The number of fluctuations was divided by the
number of steps taken to determine the number of fluctuations
occurring per step.

To visualize the distribution of these calculated features and
differences across the two muscles and the PAs, scatter plots
representing average data were obtained for squats, lunges, and
balance walk. These scatter plots are presented in Section 3.

3 Results

This section presents examples of EBI signals captured from the
quadriceps muscle and the extensor digitorum longus muscle of the
sensor leg during PA execution. These examples include
explanations of the typical signal characteristics of the EBI signal
for each PA, as well as explanations of some of the variations
observed in the EBI signals. Additionally, the calculated features
are presented.

3.1 Characteristics of the EBI signals
obtained during squats

Squat cycles were extracted from the quadriceps muscle for
10 participants and from the extensor digitorum longus muscle for
all 11 participants. The signal characteristics of the EBI signals
obtained from the quadriceps muscle and the extensor digitorum
longus muscle of P1 are presented in Figure 4. The upward slopes
represent the bending of the knees, the peaks represent the squat
position with knees bent at 90°, the downward slopes represent the
stand-up movement, and the valleys represent the upright position.
Similar signal characteristics were observed for both muscles,
although the EBI signal amplitude was significantly higher for
the quadriceps muscle than the extensor digitorum longus
muscle. The video showed that the unexpected characteristics in
the EBI signal obtained from the extensor digitorum longus muscle
at around 6 s in Figure 4, correspond to balance struggles.

3.1.1 Variations in the EBI characteristics
Several variations in the EBI signals obtained during squats were

observed, including an elevated baseline (start cycle magnitude
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higher than baseline magnitude), signal plateaus, and
fluctuating signals.

An elevated baseline was observed in the obtained EBI signal
from the quadriceps muscle of six participants. An example of
this is shown for P6 in Figure 5A. For three of these observations,
the elevated baseline was due to not fully straightening their legs
when standing up between the squats. One participant also
paused with slightly bent legs after the last squat and
straightened them shortly afterward, causing the elevated
baseline to return to normal. A similar delay in baseline
return to normal after the last squat was also observed for
another participant, despite straightening the legs directly
after all squats.

Six participants exhibited a plateau in their EBI signals while in the
squat position. For three of these participants, this plateau was observed
in the EBI signals obtained from bothmuscles. For two participants, the
plateaus were only observed in the EBI signal obtained from the
quadriceps muscle. For the remaining participant, it was only
observed in the EBI signal obtained from the extensor digitorum
longus muscle. Figure 5B provides an example where fluctuating
plateaus are observed only in the EBI signal obtained from the
quadriceps muscle of P9. The reasons for these plateaus were not
visually discernible from the recorded videos.

An example of a fluctuating EBI signal is shown in Figure 5C.
The cause of these fluctuations P11 could not be determined based
on the video observations.

FIGURE 4
Signal characteristics of the EBI signals for P1 performing squats. The approximate timings for the key phases are color-coded: green for upright
position, blue for bending knees, orange for squat position, and gray for stand-up movement in the EBI signal obtained from the quadriceps muscle.

FIGURE 3
Visualization of measurable features in an EBI signal collected during squats (A) and lunges (B).
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3.1.2 Calculated features
Figure 6 shows scatter plots of the average calculated features for

each included participant and indicates variability in functionality
between the quadriceps muscle and extensor digitorum longus muscles.

The squat position amplitude is generally larger for the quadriceps
muscle than the extensor digitorum longus muscle. This indicates that
the quadriceps muscle has a stronger and more consistent contraction
during the PA than the extensor digitorum longus muscle.

FIGURE 5
Examples of EBI signal characteristics during squats where (A) shows an elevated baseline for the quadriceps muscle of P6, (B) shows fluctuating
plateaus for the quadriceps muscle of P9, and (C) shows fluctuating signals for both muscles of P11.
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Baseline to peak amplitude, which reflects the muscle mass, is
generally larger for the quadriceps muscle than for the extensor
digitorum longus muscle.

The number of fluctuations is generally higher for the quadriceps
muscle than the extensor digitorum longus muscle. This indicates that

the quadricepsmuscle, which ismore involved in the PA, also takes care
of coordination and imbalance problems during it.

The duration of the squats is quite consistent across the two
muscles. This consistency suggests that bothmuscles follow a similar
timing pattern during the squat. However, the duration of squats

FIGURE 6
Scatter plots of the average calculated features during squats for each included participant.

FIGURE 7
The signal characteristics of the EBI signal for P6 performing lunges. The approximate timings for the key phases are color-coded: green for the step
forward with the sensor leg, blue for bending knees, orange for lunge position, gray for leg extension, and yellow for taking the leg back in the EBI signal
obtained from the quadriceps muscle. The V-shapes represent the foot of the sensor leg making contact with and leaving the ground, respectively.
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FIGURE 8
Examples of EBI signal characteristics during lunges where (A) shows a plateau at the bigger hill (P3), (B) shows unclear V-shapes (P11), and (C) shows
an unclear second small hill (P9).
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varies between the participants. The variation in duration indicates
that the participants’ ability to make directional changes vary.

3.2 Characteristics of the EBI signals
obtained during lunges

Lunge cycles were extracted from the quadriceps muscle for all
11 participants and from the extensor digitorum longus muscle for
8 participants. The signal characteristics of the EBI signals obtained
from the quadriceps muscle and the extensor digitorum longus
muscle of P6 are presented in Figure 7. In each lunge cycle, the first
small hill represents the step forward while the first V-shape
indicates when the foot touches the ground. The top of the larger
hill represents the lunge position, where the knees are bent 90°. The
second V-shape represents when the foot leaves the ground on the
way back to the starting position, and the second small hill
represents taking the leg back.

Although similar signal characteristics were observed for both
muscles, the amplitude of the EBI signal obtained from the
quadriceps muscle was significantly higher than that from the
extensor digitorum longus muscle.

3.2.1 Variations in the EBI characteristics
Several variations in the EBI signals obtained during the lunges

were observed, including plateaus, small hills, unclear second small
hills, and fluctuations.

Two participants exhibited a clear plateau in the EBI signal
obtained from the quadriceps muscle while holding the lunge

position. Video analysis revealed that both participants paused in
this position before returning to the starting position. One
participant (P3) displayed a fluctuating EBI signal with a plateau,
as shown in Figure 8A. The cause of this fluctuation could not be
determined from the video observations.

The signal characteristics of the small hills varied, particularly
concerning the presence of the V-shape. Four participants had an
unclear V-shape, and an example of this (P11) is shown in Figure 8B.
Video analysis indicated that two of these four participants put their
toes down first when stepping forward, and that one took a short
step forward.

Additionally, three participants exhibited an unclear second
small hill, and an example of this (P9) is shown in Figure 8C.
Among these three participants, one took a short step forward, while
the other two appeared to stand up before returning the leg to the
starting position.

Examples of fluctuations in the EBI signal are shown in
Figures 8A–C.

3.2.2 Calculated features
Figure 9 shows scatter plots of the average calculated features for

each included participant and indicates variability in functionality
between the quadriceps muscle and extensor digitorum
longus muscle.

The lunge position amplitude is generally larger for the
quadriceps muscle than for the extensor digitorum longus
muscle. This indicates that the quadriceps muscle has a stronger
and more consistent contraction during the PA than the extensor
digitorum longus muscle.

FIGURE 9
Scatter plots of the average calculated features during lunges for each included participant.
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FIGURE 10
Examples of EBI signal characteristics during balance walk. The approximate timings for the key phases are color-coded: green for the swing phase
of the sensor leg, and yellow for the swing phase of the non-sensor leg. A small hill is observed during the swing phase of the sensor leg in (A–D). During
the swing-phase of the non-sensor leg, (A) U-shapes are observed for P8’s extensor digitorum longus muscle, (B) shows small hills for P11, (C, D) no
U-shape or small hill are observed for P2 and P9. The EBI signal characteristics vary between steps and participants.
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Baseline to peak amplitude, which reflects the muscle mass, is
generally larger for the quadriceps muscle than for the extensor
digitorum longus muscle.

The number of fluctuations is higher for the quadriceps muscle
than for the extensor digitorum longus muscle for some of the
participants, but for others, the extensor digitorum longus muscle
has more fluctuations. This indicates that the participants use the
muscles in different ways to take care of coordination and imbalance
problems during the PA.

3.3 Characteristics of the EBI signals
obtained during balance walk

The analysis of balance walk included EBI signals obtained from
the quadriceps muscle for 9 participants and from the extensor
digitorum longus muscle for 8 participants.

As shown in Figure 10, the signal characteristics of the EBI
signals vary significantly. Due to unclear signal characteristics and
the fact that phases were sometimes impossible to detect without
video observations, no balance walk cycles were extracted. The
common signal characteristics observed in the EBI signals are
that the magnitude increases when a participant begins to move
the sensor leg, and that the magnitude is highest during the swing
phase of the sensor leg. The magnitude then decreases and remains
low during the swing phase of the non-sensor leg. A small hill often
occurs during the swing phase of the sensor leg. Four examples of
EBI signals exhibiting the small hill during the swing phase of the
sensor leg are provided in Figure 10.

The swing phase of the non-sensor leg is only occasionally
visible. It can occur as a U-shape or a small hill. The U-shape is
observed in the EBI signal obtained from the extensor digitorum
longus muscle of P8 in Figure 10A. Small hills are observed for
P11 in Figure 10B. For P2 and P9, no U-shapes or small hills are

observed during the swing phase of the non-sensor leg in
Figures 10C, D.

The most significant variation in the EBI signal characteristics
occurs in between the swing phases, i.e., when both feet are on the
ground. This variation reflects the different roles of the muscles in
shifting the center of gravity and maintaining balance. As shown in
Figure 10, the EBI signal between the swing phases varies between
participants, but also between the steps for each participant.

The approximate amplitudes varied among the participants. For
the quadriceps muscle it ranged from 0.89 to 3.7 Ω, with a mean of
1.78Ω, while it ranged from 0.46 to 1.57Ω, with a mean of 1.03Ω for
the extensor digitorum longus muscle.

Figure 11 shows a scatter plot of the average number of
fluctuations per step among the included participants. The
number of fluctuations is often higher for the quadriceps muscle
than for the extensor digitorum longus muscle except for two
participants. This indicates that the participants use the muscles
in different ways to take care of coordination and imbalance
problems during the PA.

The EBI signal from the extensor digitorum longus muscle of
P11 did not display the typical characteristics observed in other
participants’ EBI signals and was thereby excluded. Looking at that
EBI signal we can see a lot of fluctuations. Also, for the quadriceps
muscle P11 had a lot of fluctuations. Video observations show that
P11 struggled with the balance and wobbled during the
balance walk.

3.4 Characteristics of the EBI signals
obtained during short jump

Short jump cycles were extracted from the quadriceps muscle for
7 participants and from the extensor digitorum longus muscle for
9 participants.

FIGURE 11
Scatter plot of the number of fluctuations during balance walk for each included participant.
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The signal characteristics of the EBI signals obtained during
short jumps were often unclear and the phases were sometimes
impossible to detect without video observations. Therefore, no short
jump cycles were extracted. Common signal characteristics observed
are a small hill when stepping forward with the sensor leg, a V-shape
or fluctuations while landing with the sensor leg, and another small
hill when landing with the non-sensor leg, Figure 12.

The V-shape was observed for seven of the EBI signals obtained
from the extensor digitorum longus muscle. The other two EBI
signals exhibited fluctuations where the V-shape typically appeared.

For two participants, the V-shape was also present in the EBI
signal obtained from the quadriceps muscle. The EBI signal for the
remaining five included participants exhibited fluctuations instead
of the expected V-shape.

P6 landed with bent legs after each short jump. In Figure 12A,
this is reflected by an increased EBI signal magnitude for the
quadriceps muscle which decreased when P6 straightened the legs.

There were also differences in the approximate amplitude
among the participants. For the quadriceps muscle, the
amplitudes ranged from 1.68 to 6.81 Ω, with a mean of 3.80 Ω,
and for the extensor digitorum longus muscle exhibited a range of
0.92–3.12 Ω, with a mean of 1.65 Ω.

4 Discussion

While three-dimensional Optical Motion Capture systems or
IMU sensors provide information on the direction of body

FIGURE 12
Examples of EBI signal characteristics during short jumps where (A) a V-shape during the landing is observed for the extensor digitorum longus
muscle while the signal fluctuates for the quadriceps muscle (P6), and (B) the signals are fluctuating during the landing for both muscles (P9). The
approximate timings for the key phases are color-coded: green for step forward with the sensor leg, orange for landing with the sensor leg, and gray for
landing with the non-sensor leg.
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movement, they cannot be used to analyze the muscles involved. In
addition, IMU sensors’ capability to detect age related deteriorations
in how to perform a PA is low (Swanson and Fling, 2021). By using
EBI technology for human motion recognition, it might be possible
to get information on how the muscles handle PAs performed.

In this study, we investigated the potential of using the EBI technique
for human motion recognition for being able to analyze more than the
change in body directions that occur while performing different PAs. By
analyzing EBI signals obtained from the quadriceps muscle and extensor
digitorum longusmuscle while performing four lower body PAs (squats,
lunges, balance walk, short jumps), we found that the signal
characteristics of the EBI signals differ between the four PAs.

The sensor placements were selected to target muscles involved
in the PAs. However, the study does not evaluate the optimal sensor
positions for these kinds of measurements. Interestingly, the signal
characteristics were similar for both muscles.

The selected PAs were chosen due to their relevance in assessing
functional movements and because they engage multiple lower body
muscles. They also require varying levels of strength, power, balance,
speed, and coordination. An objective of the PRE-fall project is to
find sensor solutions capable of detecting differences in sensor
signals obtained from working muscles between different age
groups. This study represents a first step towards that goal by
characterizing EBI signals for the four selected PAs for young,
healthy individuals in the age group 20–30 years old.

Variations in the EBI signal characteristics across participants suggest
individual differences in muscle activation patterns. This could be due to
factors such as fitness level, muscle mass, or how a participant executes
the PA. However, the exact reasons for these variations were not always
evident from the visiblemovements captured in the videos. This indicates
that underlying physiological or biomechanical factors beyond what can
be visually observed might be at play.

The complexity of a PA directly influences the variation in how
participants perform the PA and engage different muscles. Squats, a
relatively simple PA primarily involving the bending of legs and
standing up, showed typical EBI characteristics for all participants
except for participant P5, whose quadriceps muscle readings
differed. Since squats do not significantly challenge balance,
variations in how participants engaged the quadriceps muscle
and extensor digitorum longus muscle were minimal. In contrast,
lunges and short jumps, despite clear instructions, allowed for some
variability in execution and different muscle activation patterns. The
balance walk, while limited in execution variability, required
different muscle engagement strategies to maintain stability.

Variations in balance walk were often observed when the
participant shifted the gravidity from one leg to another while
having both feet on the ground. For short jumps, it was difficult
to distinguish between the short jump and the walking backward to
the starting position. This may be due to the relatively short, 70 cm,
jump which can resemble a large step. Thereby, it is difficult to
differentiate between them in the EBI signal. A more forceful
execution of the short jump would likely make it easier to detect.

In general, the quadriceps muscle exhibits higher magnitudes
and greater variability across most features compared to the extensor
digitorum longus muscle. This is not surprising given the quadriceps
muscles’ larger muscle volume which aligns with its role as the
primary muscle engaged during squats and lunges. The extensor
digitorum longus muscle, on the other hand, functions primarily to

stabilize the leg and foot during these movements but does not
significantly contribute to the core of action. The extensor digitorum
longus muscle contributes more to the core of action during balance
walk and short jumps. However, given its’ relatively smaller muscle
volume, the approximate amplitudes remain small.

Lunges and balance walk resulted inmore fluctuations in the EBI
signal than squats. For one participant, the balance walk led to
pronounced fluctuations, with the video showing visible balance
issues and wobbling. Thereby, at least some of the fluctuations seem
to relate to muscles trying to compensate for the imbalance.
Additionally, the movement during these PAs may have
impacted on the contact between the skin and the electrodes,
potentially influencing the EBI signal. However, if that was the
case, this would likely occur during fast movements, such as squats,
rather than slow activities like balance walk.

Since each participant performed each PA only once, we cannot
determine whether the observed fluctuations, regardless of their
causes, would have occurred consistently across repeated sessions.
Similarly, we cannot confirm if the variations in the EBI
characterization would be present in every repeated session.

None of the participants were excluded from more than two PAs.
Three participants’ EBI signals were excluded from two PAs, with
exclusion occurring for only one muscle per PA for each of them.
Additionally, three participants’ EBI signals were excluded from one PA
for both muscles. The excluded EBI signals exhibited characteristics
unrelated to the PA, including both small and large fluctuations in
magnitude that were not attributable to the participants’ movements.
These anomalies may have resulted from baseline artifacts, potentially
caused by the cables or electrode skin contact. To reduce such
interference in future studies, it is recommended that the cables are
more securely fixed than in this study.

An integrated method of video analysis and waveform observation
allowed for a comprehensive understanding of the PA cycles and their
EBI signal characteristics. Despite having access to videos, a large part of
the EBI signals would have been impossible to understand. However,
the proposed cycle extraction algorithm for squats and lunges requires
the calculation of baseline, mean, peak, and thresholding data for each
participant. This process is time-consuming and demands a significant
number of human resources since all signals and videos need to be
carefully checked. There is a need for a more automated approach to
reduce human intervention.

The variations in EBI signal characteristics provide valuable
insights into the different muscle activity patterns during PAs. In
sport and rehabilitation, there is an opportunity to use EBI signals to
see how the person executes a specific PA and thereby help the
person to execute the PA optimally.

Future work includes further investigation with more
participants to determine whether these EBI signal characteristics
vary for people in other age groups and across other PAs.
Additionally, data from other types of sensors needs to be
collected and analyzed in order to better understand differences
between people while performing the PAs.

5 Conclusion

This study highlights the potential of EBI as a novel technique
for analyzing and characterizing lower body muscle activity during
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PAs such as squats, lunges, balance walk, and short jumps. The
findings show unique EBI signal characteristics for each PA and
reveal insights into muscle activation patterns. However, the EBI
signal characteristics differ between participants and each cycle of a
PA for an individual participant. The result highlights the influence
of PAs complexity and shows larger amplitudes for larger muscle
mass and for the more engaged muscle.

The characteristics of EBI signals are promising for analyzing
lower body PAs. Each evaluated PA exhibited unique EBI signal
characteristics. The variability in how PAs are executed leads to
variations in the EBI signal characteristics, which, in turn, can
provide insights into individual differences in how a person
executes a specific PA.
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