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Introduction: The relationship between brain activity and respiration is recently
attracting increasing attention, despite being studied for a long time. Respiratory
modulation was evidenced in both single-cell activity and field potentials. Among
EEG and intracranial measurements, the effect of respiration was prevailingly
studied on amplitude/power in all frequency bands.

Methods: Since phases of EEG oscillations received less attention, we applied our
previously published carrier frequency (CF) mathematical model of human alpha
oscillations on a group of 10 young healthy participants in wake and drowsy
states, using a 14-channel average reference montage. Since our approach
allows for a more precise calculation of CF phase shifts (CFPS) than any
individual Fourier component, by using a 2-s moving Fourier window, we
validated the new method and studied, for the first time, temporal waveforms
CFPS(t) and their oscillatory content through FFT (CFPS(t)).

Results: Although not appearing equally in all channel pairs and every subject, a
clear peak in the respiratory frequency region, 0.21–0.26 Hz, was observed (max
at 0.22 Hz). When five channel pairs with the most prominent group averaged
amplitudes at 0.22 Hz were plotted in both states, topographic distributions
changed significantly—from longitudinal, connecting frontal and posterior
channels in the wake state to topographically split two separate
regions—frontal and posterior in the drowsy state. In addition, in the drowsy
state, 0.22-Hz amplitudes decreased for all pairs, while statistically significant
reduction was obtained for 20/91 (22%) pairs.

Discussion: These results potentially evidence, for the first time, the respiratory
frequency modulation of alpha phase shifts, as well as the significant impact of
wakeful consciousness on the observed oscillations.
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1 Introduction

Breathing, one of the fundamental life rhythms, occurs at a
frequency of approximately 0.25 Hz in humans at rest and consists
of active inspiration and mostly passive expiration (Fleming et al.,
2011). For many years, the relationship between brain activity and
respiration has attracted researchers’ attention, and different
quantitative measures, referring to this relationship, have been
applied (Harper et al., 1998; Heck et al., 2017; Herrero et al.,
2018; Del Negro et al., 2018; McKay et al., 2003; Nakamura
et al., 2023). Due to its nature, respiration could be easily tracked
and recorded, while the brain acts as an incomparably richer
source of information, resulting in numerous methods applied
to monitor its respiration-related activity. In addition to
electroencephalography (EEG), most common methods include
(BOLD) fMRI (Damoiseaux et al., 2006; Jung and Kang, 2021),
intracortical recording (Viczko et al., 2014; Väyrynen et al., 2023), or
magnetoencephalography (MEG) (Hsu et al., 2020; Kluger and
Gross, 2020). Within that framework, EEG oscillations are the
most relevant approach, at least for our research. Although
several studies have been conducted to investigate the
relationship between EEG oscillations and respiratory signals, it
is still unclear how respiration and human alpha activity are related.
In a recent review paper, Brændholt et al. (2023) presented a list that
included authors, objects (models), frequency, and brain regions.
Among all the frequency bands analyzed (LF, delta, theta, alpha,
beta1, beta2, and gamma), only three studies refer to human alpha
activity: (Perl et al., 2019) EEG alpha and beta, the parietal cortex,
and hippocampus; (Kluger and Gross, 2021) MEG delta, theta,
alpha, beta, gamma; cortical/subcortical structures, and (Kluger
et al., 2021) MEG alpha and parieto-occipital cortex. However,
even in studies where the alpha activity was registered, the
measured quantity was mostly amplitude or power (Bing-Canar
et al., 2016; Herrero et al., 2018; Perl et al., 2019; Kluger et al., 2021).
Since their discovery, alpha waves are maybe the most studied
cortical oscillations. Current research suggests that they are
generated by inhibitory thalamic interconnection, thalamo-
cortical feedback loops, and cortico-cortical networks (Da Silva
et al., 1980; Nunez et al., 2001). According to new research,
cortical structures lead the thalamus, while alpha propagates
from higher-order to lower-order areas in both the visual and
somatosensory cortex (Halgren et al., 2019). Its amplitude is
inversely proportional to the level of cortical activity; strong
alpha activity is associated with cortical and behavioral
deactivation (e.g., Klimesch, 1999; Klimesch et al., 2007; Rihs
et al., 2007). Its involvement in perceptual and memory processes
was also studied (Klimesch, 1999; Ergenoglu et al., 2004; Klimesch
et al., 2005).

Phases of cortical oscillations play a significant role in brain
information processing since they are related to the exact timing of
neural activity (Sauseng and Klimesch, 2008). EEG phase
synchronization shows communication between distant but
functionally related neural populations, where information is
exchanged between global and local neuronal networks, as well as
the sequential temporal activity of neural processes in response to
incoming sensory stimuli (Sauseng and Klimesch, 2008). The
relationship between respiratory and EEG alpha phases was
studied by Hsu et al. (2020). In their MEG study, the authors

explored the effect of slow and normal-paced breathing
(0.125 and 0.25 Hz, respectively) on the cosine similarity version
of the inter-trial phase coherence (Tallon-Baudry et al., 1996)
between respiratory and alpha phases. Based on simultaneous
magnetoencephalography and respiratory measurements, they
reported that while participants performed slow-paced compared
to normal-paced breathing, this condition modulated alpha phase
activity, allowing it to appear more organized across a wide range of
brain areas. This suggested that slow-paced inspiration was able to
organize the cortical alpha phase in a more regularized pattern than
the phase associated with normal-paced breathing. Since we found
no studies where a respiratory frequency rhythm directly modulates
alpha phases (phase differences) in a strictly spontaneous breathing
regime, we tried to attempt this research. In our previous papers
(Kalauzi et al., 1998; Kalauzi et al., 2009; Kalauzi et al., 2012b;
Kalauzi et al., 2018), we proposed, by applying the variable
amplitude carrier frequency (CF) mathematical model for human
alpha (or rat theta) activity, a procedure to calculate more precisely
phase shifts (PS) between any two alpha activity EEG channels than
using any Fourier component (FC) phase shift. In this work, for the
first time, we applied fast Fourier transform (FFT) on CFPS time
courses, FFT (CFPS(t)), in order to examine their oscillatory content.

Body–brain interactions in different states of alertness are
recently gaining attention. In addition to the normal resting wake
state, these interactions were studied in normal (Abdalbari et al.,
2022) and disordered (Faes et al., 2016) sleep. In contrast, a network
approach was applied to quantify the cardio–respiratory–EEG
relationship in states of heightened alertness: information
dynamics (storage and transfer; Zanetti et al., 2019) and
multivariate correlation (Pernice et al., 2021). We could not find
the analysis of these interactions in the state of drowsiness, a
transient state between wakefulness and sleep. Moreover,
although several papers address the dependence of human
cognition on the respiratory phase (Perl et al., 2019), the
topographic dependence of alpha inter-channel phase shift
oscillations in different states of alertness was not studied.
Therefore, after a detailed validation of the method, topographic
distributions of the most prominent amplitudes from this analysis,
calculated in wake and drowsy states, are presented and their
difference is statistically compared. The state of drowsiness (or
hypnagogic state) is divided into nine stages (Hori et al., 1990).
Psychophysiological studies have revealed that the main
characteristics of this state include decay of alertness, decreased
attention, vigilance, and sensory signal detection (Naatanen and
Picton, 1987; Ogilvie and Wilkinson, 1984; Ogilvie et al., 1991,
respectively). Ogilvie and Wilkinson, (1984) discovered that the
transition from wakefulness to sleep is a gradual process. Ogilvie
et al. (1991) and Harsh et al. (1994) concluded that the first
significant changes in the attention level occurred during Hori’s
stages 2 and 3. These data suggest that the first half of the hypnagogic
period (Hori’s stages 1–4, where stage 1 has maximal and stage
4 minimal alpha power, without other frequency bands), with its
distinct characteristics of decreased attention and dream-like
mentation (Nielsen et al., 2005), warrants particular scientific
investigation. In our experiments, the state of alertness was
monitored by a neurologist who prevented subjects from
transitioning to S1 of NREM sleep (N1), i.e., passing beyond
Hori’s stage 4. This was confirmed by the fact that the two sets
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of spectra showed only alpha band amplitude attenuation, without
any frequency shift (Bojić et al., 2010).

It should be noted that in this work, we hypothesize that the
main rhythm depicted in the respiratory frequency range is caused
by respiration. However, since we did not analyze concurrent EEG
and respiratory recordings from the same group of individuals, at
this stage, we cannot definitely confirm the hypothesis. Therefore, all
considerations about body–brain interactions included in this work
should be considered conditional, assuming that our hypothesis
is correct.

2 Methods

2.1 Subjects, experimental protocol, and
data preparation

2.1.1 EEG recordings
Signals analyzed in this work were originally recorded by

Vuckovic et al. (2002) and used in our previous works (Bojić
et al., 2010; Kalauzi et al., 2012a; 2012b; 2015; 2018). All
recordings were performed in accordance with the medical
ethical standards after the subjects signed the informed consent
form approved by the local ethical committee. Ten adult healthy
human subjects (seven male and three female individuals), age
25–35 (mean ± SD = 28.3 ± 6.5) years, of normal intelligence
and without mental disorders were reported after passing a
neurological screening. The subjects were lying in a dark room
with their eyes closed (standard eyes closed no-task condition; Stam
et al., 2002; Stam and van Dijk, 2002). A neurologist monitored their
state of alertness and prevented them from falling asleep beyond
S1 of NREM sleep. The participants were not previously subjected to
sleep deprivation or deviation from their circadian cycles. They were
not taking any medication. Based on a visual inspection, artifacts
were removed manually. Other details about data collection and
preparation can be found in Vuckovic et al. (2002). Two neurologists
were independently classifying all signals into wake and drowsy
periods. The study included only those sequences that were classified
as clearly awake or drowsy by both experts (60 s for each state and
each subject).

An EEG machine (MEDELEC 1A97 EEG system, MEDILOG
BV, Nieuwkoop, the Netherlands) was used in an
electromagnetically shielded room during each 30 min session.
EEG electrodes (Ag/AgCl; impedances R _ 5 k_) were positioned
at 14 locations (F7, F8, T3, T4, T5, T6, F3, F4, C3, C4, P3, P4, O1, and
O2), following the International 10–20 system, with an average
reference. The recordings were band-pass filtered between 0.5 and
70 Hz. The EEG recordings were digitized using 12-bit resolution
and a sampling rate of 256 Hz per channel (A/D PCI board, Data
Translation 2801, Marlboro, MA, USA).

2.1.2 Respiratory signal recordings
We conducted the experimental protocol on 20 healthy adult

human subjects (13 male and 7 female individuals), with mean ±
SD = 34.4 ± 7.4. The protocol was approved by the Ethical
Committee of the Faculty of Medicine, University of Belgrade
(No. 2650/IV-24). The inclusion criteria are as follows: age
between 20 and 45 years and absence of any health problems.

The exclusion criteria are as follows: patients receiving any
medical therapy; a history of pulmonary, cardiovascular, or any
other disease at the time of or leading up to the experiments (such as
cold, flu, pollen allergy, high temperature, and migraines); and the
presence of pathological symptoms during the measurements (high
blood pressure, arrhythmias, headache, fatigue, etc.). An additional
criterion of exclusion for female participants was the second part of
the menstrual cycle (because of its impact on cardiovascular
autonomic regulation; Bai et al., 2009; Javorka et al., 2018). All
participants were advised to refrain from food and drink for 4 h
prior to the start of measurements, to relax and stay attentive, and
not to exercise (running, gym, yoga, etc.). Five participants (out of
25) were excluded because of pathological symptoms being
discovered during the recordings.

The protocol was executed under controlled laboratory
conditions at the Laboratory for Biosignals, Institute for
Biophysics, Faculty of Medicine, University of Belgrade. It was
conducted between 8 and 12 a.m. in a quiet, refreshing
environment at a constant temperature (22°C ± 1°C). All
participants were subjected to 10 min of relaxation in a supine
position before recording, with no restriction imposed on the air
flow. Subjects were advised to adjust the ventilation at the most
comfortable rate. They were also instructed not to talk during the
recording. Respiration signals were recorded for 20 min. Acquisition
was done using the BIOPAC MP100 system (BIOPAC System, Inc.,
Santa Barbara, CA, USA; AcqKnowledge 3.91 software). The belt
with a resistive strain gauge transducer for the continuous recording
of breathing was placed slightly above the costal line. All signals were
sampled at a frequency rate of 1,000 Hz. We adjusted filters
according to Biopac’s instructions for general measurements: gain
setting 10, low pass filter with 10 Hz, and no high pass filter (DC-
absolute respiratory measurement). Breath-to-breath (BB) intervals
were calculated by subtracting the time coordinates of successive
inspiration onsets.

2.2 Data analysis

All programs implementing methods described in this work are
original and were developed in MATLAB 2010a (MathWorks Inc.,
Natick, MA, United States). Statistical tests (Wilcoxon matched-
pairs test) were performed using STATISTICA 8.0 (Stat Soft Inc.,
Tulsa, OK, United States).

2.2.1 A short reminder on the CFPS calculation
It is assumed that two oscillations, with equal stable frequencies

but variable amplitudes, are being analyzed. The task of determining
their phase shift, regardless of whether it be at a single point in time
or during the whole recorded time course, is hampered by the fact
that each of the two oscillations is spread across a frequency region.
The question as to which FC phase shift to rely on is raised. As
described in detail in our previous works (Kalauzi et al., 1998;
Kalauzi et al., 2009; Kalauzi et al., 2012b; Kalauzi et al., 2018), there
are two reasons why a single oscillatory activity, with a stable
frequency but variable amplitude, occupies a range of frequencies
(rather than only one) when subjected to a concrete FFT analysis.
The first reason is that its frequency is positioned between two
adjacent FCs’ frequencies (which is almost always the case) and

Frontiers in Physiology frontiersin.org03

Kalauzi et al. 10.3389/fphys.2024.1511998

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1511998


which we conveniently named “inter-componentality.” The second
reason originates from the variability of amplitudes, where this
variability raises to two sidelobes in the amplitude spectrum (in
radio communications termed double sideband amplitude
modulation, DSBAM).

For the first cause, let us observe a cosine wave with constant
frequency fc = ωc/(2π) (usually termed carrier frequency, CF),
constant amplitude Ac, and initial phase φc:

u t( ) � Ac cos ωct + φc( ).
If such a signal of duration T is subjected to FFT analysis, then

CF can be expressed as

ωc � kω0 + Δω,

where ω0 = 2π/T and kω0 denotes the nearest lower Fourier
component frequency. The amplitude spectrum of the signal u(t)
can then be expressed as

Am nω0( ) �
������
x2
n + y2

n

√
, (1)

where real and imaginary parts of the spectrum are

xn � 4A
T

kω0 + Δω( )
kω0 + Δω( )2 + nω0( )2 cos φc + π

Δω
ω0

( ) sin π
Δω
ω0

( ), (2)

yn � −4A
T

nω0( )
kω0 + Δω( )2 + nω0( )2 sin φc + π

Δω
ω0

( ) sin π
Δω
ω0

( ). (3)

It is clear from Equations 1–3 that this single-frequency
oscillation occupies the whole available frequency range, with the
largest amplitudes occurring next to ωc and decreasing as one moves
away from it.

Subsequently, let us observe two such oscillations with equal
carrier frequencies:

uc1 t( ) � Ac1 cos ωct + φc1( ); uc2 t( ) � Ac2 cos ωct + φc2( ).
Equations 1–3 yield the following phase shift spectrum:

Δφ nω0( ) � tan−1 nω0S1ωcC2 − ωcC1nω0S2
ωcC1ωcC2 + nω0S1nω0S2

( ),
where

Si � sin φci + π
Δω
ω0

( ); Ci � cos φci + π
Δω
ω0

( ); i � 1, 2. (4)

Based on Equation 4, the expansion of Δφ(nω0) into Taylor
series around ωc shows that there is an approximately linear
dependence of Δφ(nω0) on nω0 in the vicinity of ωc, with FC
phase shift values being around the carrier frequency phase shift
Δφc = φc2 – φc1 (Kalauzi et al., 2012b, Appendix B). “Being around”
means that Δφ(nω0) – Δφc changes sign when nω0 – ωc does.
Therefore, by angularly averaging FC phase shifts around ωc, we
can obtain a more accurate estimate of CFPS, or Δφc, than by relying
on any of the single FC phase shifts.

Regarding the second cause, i.e., the influence of amplitude
variability on FC phase shifts, let us again observe two CF signals,
this time both with variable amplitudes, where amplitude variability
is achieved by applying amplitude modulation on both signals:

uci t( ) � 1 + umi t( )[ ]Uci cos ωct + φci( ), i � 1, 2, (5)

where umi stands for the two modulating functions. After expanding
both modulating functions into Fourier series and keeping the first n
FCs, Equation 5 can be approximated with

uci t( ) ≈ 1 +∑n
j�1
Umj,i cos ωmjt + φmj,i( )⎡⎢⎢⎣ ⎤⎥⎥⎦Uci cos ωct + φci( ), i � 1, 2,

where Umj,i, ωmj, and φmj,i stand for the amplitude, frequency, and
initial phase of the jth FC of the ith modulating function,
respectively (please note that the modulating FC frequency ωmj

does not depend on i).
After multiplication, if we transform cosine products into sums,

we obtain

uci t( ) ≈ Uci cos ωct + φci( ) + 1
2
∑n
j�1
Umj,iUci[cos ωc + ωmj( )t(

+ φci + φmj,i) + cos ωc − ωmj( )t + φci − φmj,i( )]. (6)

Notably, Equation 6 contains three terms: one component at CF,
ωc, and two sidebands at ωc + ωmj and ωc–ωmj. Components at the
two sidebands have initial phases φci + φmj,i and φci–φmj,i, with an
opposite sign of the second term. Therefore, the CF initial phase, φci,
can again be obtained by angularly averaging phases of FCs around
the carrier frequency, ωc. The same is valid for two signals, where by
angular averaging of FC phase shifts around CF, we can calculate
CFPS more accurately than by relying on any of FC phase shifts.
Finally, according to both Equations 4, 6, in order to calculate CFPS
of two signals as accurately as possible, both causes of the signals
occupying a frequency range can be overcome by the same
procedure–angular averaging of FC phase shifts around the CF.
Accuracy of this calculation is further increased if we perform a
weighted averaging with FC amplitudes as weights.

2.2.2 Angle range extension method
In our previous works, we treated CFPS as a random variable,

working mostly with distributions and histograms and deriving
basic statistical properties from them (Kalauzi et al., 2009;
Kalauzi et al., 2012b). Exploring time dependence of this
quantity, CFPS(t), and its FFT spectral properties was not
studied until now. In order to do a successful FFT analysis, we
must first introduce some new procedures for preprocessing
CFPS(t). One important step in that direction is described in
the following section.

In this work, we performed two FFT procedures: the first
procedure (“primary”) on initial EEG recordings. Since the
duration of each recording was 60 s, with a primary sampling
frequency of 256/s, 15360 samples were generated. They were
subjected to a moving window FFT analysis, using 2-s long
overlapping moving windows that advanced at a 0.25 s
step. With these parameters, for each subject and each EEG
channel, 233 spectra could be obtained, producing CFPS(t)
waveforms with the same number of points. Secondary FFT
analysis was done on these waveforms, but because they were
relatively short, each of the 910 CFPS(t) signals was analyzed as a
whole, without any moving windows, but after previous detrending.
Although we expected relatively slow CFPS(t) oscillations to appear,
we chose overlapping windows in order to generate a sufficiently
high secondary sampling frequency (4 Hz), allowing us to detect
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CFPS(t) oscillations of up to 2 Hz. Analysis parameters of both levels
(primary and secondary) are summarized in Table 1.

When calculating formulas involving angles, it is often the case
that the results are limited to the range of [-180°, 180°] or, alternatively,
[0°, 360°]. An example of this fact is the often applied MATLAB
atan2 command. In some physiological experiments dealing with
oscillations, relatively small angle deviations around the zero baseline
appear, requiring no correction of angle range. However, in many
other cases, deviations of phases or phase-shifts of EEG signals are
substantial. If time courses of angles are being recorded, a considerably
artificial limitation to the abovementioned ranges causes frequent and
big, abrupt jumps of angle values, as shown in angle time plots
(Figure 1A). In order to achieve a more natural time dependence of
angles, a correction procedure, named angle range extension (ARE), is
proposed for the first time. This procedure is essentially aimed to
detect these “abrupt jumps”, i.e., differences between two adjacent
CFPS(t) points, which are above a certain critical value (we named it
“critical phase shift difference”, Cpsd). If CFPS(i) is the CF phase shift
calculated at the ith Fourier window position, then if CFPS(i+1) <
CFPS(i) and abs (CFPS(i+1) - CFPS(i)) > Cpsd, then CFPSc(i+1) =
CFPS(i+1) +360°, where CFPSc(i+1) stands for the corrected value.
Alternatively, if CFPS(i+1) > CFPS(i) and abs (CFPS(i+1) - CFPS(i)) >

Cpsd, then CFPSc(i+1) = CFPS(i+1) −360°. Therefore, addition is
performed in case of a sudden decrease and subtraction in case of
an increase. However, determining the optimal value ofCpsd remains a
challenge. It can be assumed that the corrected CFPS(i) waveform
should have a smaller line length, ∑iabs(CFPS(i + 1) − CFPS(i)),
than the uncorrected line since long jumps, supposedly, were
eliminated during the procedure. Therefore, for each waveform,
we applied a series of ARE corrections, where Cpsd was varied. For
each Cpsd, the corrected line length was calculated, and Cpsd, where
the line had a minimal length, was taken as the optimal
value (Figure 2).

2.2.3 FFT analysis of carrier frequency phase
shifts, CFPS(t)

In our previous work (Kalauzi et al., 2012b), we studied
statistical properties of CFPS of 10 test individuals in the wake
and drowsy states, treating it as a random variable. In this study, we
aimed at investigating probability distributions of phase shifts or
phase potentials, from which properties such as the average value,
most probable value, and standard deviation could be derived. At
that stage, we did not analyze oscillatory properties of CFPS(t)
waveforms, which could yield information about possible links of
EEG with other physiological rhythms, such as ECG and respiration
(so-called “mind–body” relationship).

Currently, we tried to combine two methods:

a) By treating alpha EEG activity as a carrier-stable inter-
componential frequency and amplitude variable signal, we
perform CFPS calculation, integrating Fourier component
phase shifts from the whole alpha frequency range
(8–12 Hz), according to the procedure described in our
previous work (Kalauzi et al., 2012b).

b) On these “raw” CFPS waveforms, we apply the ARE method in
order to obtain the waveforms suitable for further FFT analysis
(parameters shown in Table 1).

TABLE 1 Summary of parameter values for the two levels of analysis.

Primary Secondary

Input signal EEG CFPS(t)

Output signal CFPS(t) FFT (CFPS(t))

Sampling frequency 256/s 4/s

Window length (FFT
epoch)

2 s (60–2)/0.25 + 1 = 233 spectra
233*0.25 = 58.25 s

Window step 0.25 s No moving window, whole
signal FFT

FIGURE 1
Representative example of the ARE method, in which the procedure, applied on the CFPS(t) waveform, had a substantial effect. (A) Uncorrected,
derived from subject one between channels T3 and O2, where a contra-phase was present (CFPS values grouped approximately ±180°). (B) Corrected
after applying the ARE procedure, wheremost of the “abrupt jumps”were eliminated, making it more suitable for further FFT analysis. The contra-phase is
present usually when fronto-occipital or temporo-occipital pairs are being analyzed.
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2.2.4 Method validation
In this work, we tried to validate our method by subjecting an

artificial, mathematically generated signal to the same procedure as
the recorded CFPS(t) time dependencies. To achieve this, we first
simulated the profiles of relative FFT amplitudes of typical CFPS(t)
spectra. Two of them are presented in Figure 3.

As can be noticed, spectra are complex, consisting of different
individual oscillations superimposed on a noisy background.
However, these individual peaks did not appear in all
910 spectra. Specifically, they were more visible in spectra of
some of the channel pairs than those in others, while altogether
missing in some. In addition, inter-individual variability prevented
them from appearing in all subjects for a given pair of EEG channels.

Despite this complex behavior, in order to validate the method, it is
necessary to perform the following five steps:

a) Generate an appropriate simulated background (of the
corresponding fractal nature), as well as one individual
artificial oscillation, preferably in the frequency range 0 <
f < 0.5 Hz (according to the profiles shown in Figure 3), and
add them mathematically.

b) Generate two synthetic 10-Hz carrier frequency “alpha”
signals, with arbitrary constant (or random) amplitudes
(Bojić et al., 2010).

c) Perform phase modulation of one of the signals in b) with the
signal described in a).

d) Perform phase demodulation, i.e., calculate CFPS(t)
(according to the procedure described in our previous
works, Kalauzi et al., 1998; Kalauzi et al., 2012b) between
the modulated and unmodulated synthetic “alpha” signals,
perform the ARE procedure, and calculate the FFT spectrum
of the resulting CFPS(t) time series.

e) Compare and statistically test the original signal in a) against
the demodulated CFPS(t), as well as their FFT spectra.

2.2.4.1 Simulating the CFPS(t) background activity
In order to identify to which type of signals, such as two

CFPS(t) examples shown in Figure 1, belong to, we reverted to the
well-known but simple criteria explained in some previous
papers (Eke et al., 2000) and employed in some of our
previous works (Bojić et al., 2010), where the value of the
exponent β determines its fractal nature. This exponent is
given by the linear regression slope of the signals’ power vs.
the frequency log–log plot:

A f( )∣∣∣∣ ∣∣∣∣2 ∝ cf−β, (7)

where c stands for the proportionality factor. According to this
classification, the critical value of β is 1 since for −1 < β < 1, the signal
is identified as the fractal Gaussian noise (fGn), which is a stationary

FIGURE 2
Example of dependence of the correctedCFPS line length on the
critical phase shift difference,Cpsd. OptimalCpsd, above which the ARE
procedure is to be applied, corresponds to the minimal CFPS line
length and is marked with a red dot. This example refers to the
CFPS waveform presented in Figure 1A to produce the corrected
waveform shown in Figure 1B.

FIGURE 3
Two representative examples of relative amplitudes of CFPS(t) FFT spectra. Profiles are similar, exhibiting different individual oscillations
superimposed on an fGn + fBm type noisy background. (A) Channel pair F8, T4 recorded in subject 7. (B) Channel pair F8, O2 is recorded in subject 9.
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signal with constant variance. On the other hand, if 1 < β < 3, the
time series is regarded as the non-stationary fractal Brown motion
(fBm), in which signal variance increases with its length:

var X t( )( )∝ t2H,

where X denotes the current signal value and H is the Hurst
exponent (Mandelbrot and van Ness, 1968; Eke et al., 2000).

As we could not find any specific data about the fractal
nature of CFPS(t) in the literature, we performed linear
regressions of all 1820 log–log power vs. frequency CFPS(t)
signals (91 channel pairs × 10 subjects × 2 states) and
histogrammized the corresponding beta values. The results
are presented in Figure 4.

Let βc1,c2s,st denote this quantity between channels c1 and c2 of
subject s in state st = {wake, drowsy}, which was obtained from
CFPS(t) using Equation 7. As shown in Figure 4A, all 910 such values
were histogrammized, showing a unimodal distribution around
mean(β) = 1.6596 ± 0.2741. Interestingly, the majority (98.57%)
of the values were 1 < β < 2.5 and could be characterized as fBm, with
only 13 (1.43%) belonging to the fGn type (β < 1). However, we
average individual beta values for each channel pair across the tested
group and denote them as

βc1,c2st � 1
10

∑10
s�1
βc1,c2s,st . (8)

The corresponding histogram (Figure 4B) points to a bimodal
distribution: one mode localized at approximately β1 = 1.59 and
the other at approximately β2 = 1.72. In this case, the overall mean is
(β) = 1.6741 ± 0.1242. However, all these β-values, although not
originating from individual signals but were a result of averaging,
had an “fBm nature” (1 < β < 2).

There are different ways to generate a synthetic signal with
desired fractal properties, such as using Weierstrass functions
(Esteller et al., 2001; Kalauzi et al., 2005), in which the signal
fractal dimension (D) is theoretically given and directly linked to
one of the two parameters (γ, H):

Wγ
H t( ) � ∑

t

γ−iH cos 2πγit( ),
where 0 < H < 1, γ > 1, and H = 2 - D.

However, the range of β, found in the histogram abscissa of
Figure 4A, suggests that both fGn and fBm contribute to the FFT
background of CFPS(t) signals. This circumstance may point to an
alternative way of generating a signal with the desired β-value—a
composite fGn/fBm. This fractal signal can be obtained by summing
the two componential signals with various relative amplitude
contributions. For this purpose, we used the approach described
in Kalauzi et al. (2012a), where two signals with inverse amplitudes
were summed while keeping the amplitude of the sum constant:

AfGnfBm � 1 − ka( )AfGn + kaAfBm, (9)

where AfGnfBm stands for the amplitude of the composite fGn + fBm
signal, AfGn and AfBm denote amplitudes of the two componential
signals, and ka is the relative amplitude attenuation factor (0 ≤ ka ≤
1). A customMATLAB program was made to calculate how β of the
composite fGn + fBm signal depends on ka. The result is presented
in Figure 5. In order to cover the whole beta range (0 < β < 2), fGn
was represented by a synthetic white noise Wn(i), i = 1,.,233, acting
as a random variable with the uniform probability distribution U
(−0.5, 0.5). Then, we derived the Brown motion signal, Bm(j), j =
1,.,233, representing the fBm component, by numerically summing
white noise samples: Bm(j) � ∑j

i�1Wn(i), j = 1,.,233.
Subsequently, we aimed to establish a β = f (ka) dependence,

from which, using it as a sort of calibration line, the value of ka,
corresponding to the mean β-value, obtained from the 910 CFPS(t)
signals (mean(β) = 1.6596; Figure 4A), could be determined. Since
both Wn and Bm signals, generated with a relatively small number
of samples in order to match the recorded signals, might show some
statistical variability, we repeated the construction of the β = f(ka)
calibration line using 20 Wn and 20 Bm signals, obtaining a field of
400 combination lines (Figure 5A). In addition, since these lines also
depend on the initial amplitudes of both Wn and Bm components,
amplitude normalization had to be carried out:

FIGURE 4
(A)Histogram of all 910 β-values (91 channel pairs × 10 subjects) calculated according to Equation 7. (B)Histogram of 91 β-values calculated for each
channel pair by averaging the values across the group of 10 subjects, according to Equation 8. Vertical red lines mark the mean β.
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yN i( ) � y i( ) −mean y( )
std y( ) ,

where y(i) stands for the ith sample value of either of the fractal
signals (Wn or Bm).

The importance of precisely determining the coefficient ka for
generating a successful background simulation is illustrated in
Figure 6. Figure 6A shows an example of the recorded CFPS(t)
(subject 1; EEG channels F8, T4), while Figures 6B, C contain
simulated background activity for ka = 0.92 and ka = 0.5,

FIGURE 5
(A)Dependence of exponent β (Equation 7) on the relative amplitude attenuation factor ka (Equation 9) for 20 repeatedly generated white noise and
20 Brownian motion signals. Thin lines represent 400 of these repetitions, whereas the thick black line represents their average. (B) Average (solid) ±
standard deviation (dashed) of the same set of lines as shown in panel (A). Mean β (1.6596), from the histogram shown in Figure 4A, is plotted as a thin
horizontal line in order to determine the corresponding ka value (≈0.92) to be used in the CFPS(t) background simulation.

FIGURE 6
Comparison between recorded and simulated CFPS(t) background activities in the time domain. (A) Recorded from subject 1: channels F8, T4. (B)
Simulation containing Wn and Bm, with ka = 0.92. (C) Simulation with ka = 0.5. (D) Relative amplitude FFT spectra of 400 repeated simulations generated
using ka = 0.92. Thin colored lines represent individual simulations, whereas the thick black line represents their average.
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respectively. The similarity of signals shown in Figures 6A, B is
obvious, which is contrary to Figures 6A, C.

Finally, to the background presented in Figure 6B, a
mathematically synthesized sinusoid of 0.22 Hz frequency was
added in order to simulate the situation where both the
background and the most prominent recorded oscillation was
present (such as those shown in Figures 3, 7A). Relative FFT
spectra of the simulated, as well as an example of one of the
recorded signals, are shown in Figure 7. It is important to note
that since the recorded CFPS(t) signals differed among themselves, it
was not necessary to simulate any of them exactly; for method
validation, it was sufficient that the simulation reproduced signal’s
main properties.

Once generated, the simulated signal was used to follow the
procedures described in steps a)–e) in Section 2.4 and also used as
the input to the CFPS(t) calculation described in detail in our
previous papers (Kalauzi et al., 1998; Kalauzi et al., 2009; Kalauzi
et al., 2012b) and in this study in Section 2.2. For the method to be
validated, the input signal should resemble, as much as possible,
the output signal obtained after completing the abovementioned
steps. Their comparison is shown in Figure 8. The coefficient of
linear correlation between the input and output signals was r =
0.9421, and it was highly significant (p = 1.46 × 10–111). The
resulting (output) signal shows (Figures 8A, B) that some
higher frequency oscillations were attenuated due to the low-
pass filtering effect of the 2-s moving Fourier window (Kalauzi
et al., 2023a). However, this attenuation has little effect on our
main finding regarding the presence of CFPS(t) oscillations
because they are positioned at ≈ 0.22 Hz, while the first filter
zero is at 0.5 Hz. Moreover, this attenuation is equal for all
91 channel pairs so that CFPS(t) waveforms and their FFT
amplitudes could be directly compared.

If we denote with Ac1,c2
s,st (f) the FFT amplitude spectra of

CFPS(t) waveforms between channels c1 and c2, recorded in
subject s in state st (analogously to the notation of Equation 8),
and average them across the tested group and all channel pairs in
order to get one resulting spectrum, we obtain

Ar( )st f( ) � 1
910

∑91
c1,c2�1

∑10
s�1

Ar( )c1,c2s,st f( ), (10)

where Ar stands for the relative amplitude:

Ar f( ) � A f( )∑
f
A f( ).

Finally, spectra averaging across the group for each channel pair
result in the following expression:

Ar( )c1,c2st f( ) � 1
10

∑10
s�1

Ar( )c1,c2s,st f( ). (11)

A custom MATLAB program was made to select the given
number of channel pairs with spectra having the maximal sum of
relative amplitudes in the chosen frequency region.

3 Results

3.1 Results of FFT analysis applied on ARE-
corrected alpha CFPS(t) waveforms of a test
group in the wake state

The spectrum defined in Equation 10 is presented in Figure 9A.
The profile of this spectrum shows some particular oscillations
superimposed on the formerly analyzed background activity,
consisting of mixed fGn and fBm fractal signals, with the
corresponding β exponents’ histogram presented in Figure 4A.
Amplitude variability visible at f > 0.5 Hz belongs to sidelobes,
which result from the low-pass filtering effect of the 2-s FFT moving
window. The most visible individual peak is the one positioned at
0.2232 Hz (13th FC). However, individual spectra (from the pool of
910 available) differ among each other in amplitudes and exact
positions of these peaks, which appear in the 0 < f < 0.5 Hz region. In
order to explore which channel pairs exhibit most prominent

FIGURE 7
(A) Representative example of a relative amplitude spectrum of recorded CFPS(t) activity, with pronounced individual oscillations superimposed on
the background, obtained from subject 9, between channels O1 and O2. (B) Simulation of the activity shown in A, consisting of a fGn + fBm (represented
by Wn + Bm) fractal background, with ka = 0.92 and summed with a 0.22-Hz artificial sinewave.
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FIGURE 8
(A) Simulation of a typical CFPS(t) waveform, containing two fractal background components, Wn and Bm, and a 0.22-Hz sinewave. The simulation
served as the input to the procedure of calculating CFPS(t), which is part of the steps a)–e) in Section 2.4. (B)Output from the CFPS procedure, having a
high correlation with the input (r = 0.9421). Inlet: input–output waveforms superimposed.

FIGURE 9
(A) Average of all 910 (10 subjects x 91 channel pairs) FFT CFPS(t) spectra according to Equation 10; no selection applied. A peak at the 13th FC
(0.2232 Hz) is small but visible. (B) Average of five spectra, previously averaged across 10 subjects (Equation 11), selected to have maximal sum of relative
amplitudes between 12th and 15th FCs (0.2060–0.2575 Hz). The same peak appeared, with an increased S/N ratio compared to the ratio in panel (A). (C)
Average of five spectra, with no previous group averaging (i.e., directly from the pool of 910 spectra), again characterized by the maximal sum of
relative amplitudes between 12th and 15th FCs. Main peakswere in the range of 0.2060–0.2403 Hz, as well as one appearing at sixth FC (0.1030Hz). Inlet:
an example of recordedCFPS(t), subject 9, channels O1 andO2, where respiratory frequency oscillation could be noticed by the naked eye. (D)Histogram
of 5450 BB (breath-to-breath) frequencies recorded from 20 healthy subjects in the supine position. Vertical red lines, with mean ± st. dev., also drawn in
panel (C). Thin colored lines in panels (B, C) originate from five individual spectra, whereas the thick black line represents their average.
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relative FFT amplitudes on f = 0.2232 Hz and hopefully increase the
signal-to-noise ratio (S/N), the first step was to perform spectra
averaging across the group for each channel pair according to
Equation 11. If we choose to average and present five channel
pairing with the maximal sum of relative amplitudes in the
region of 12th–15th FCs (0.2060–0.2575 Hz), according to
Equation 11, the resulting spectrum is presented in Figure 9B,
where the improved S/N ratio is apparent compared to that
shown in Figure 9A. The list of these five channel pairs, as well
as the corresponding values of (Ar)c1,c2w (0.2060 – 0.2575), is listed in
Table 2, while the topographic distribution of these channel pairs is
plotted in Figure 10A, where mostly longitudinal (fronto-occipital)
channels are connected. Analogous calculation was carried out for
one FC (13th) by applying (Ar)c1,c2w (0.2232). The result is also given
in Table 2 and shown in Figure 10B. As can be seen, pairs of
connected EEG channels were similar in both cases.

Finally, if we want to eliminate the influence of inter-individual
variability on oscillation detection and appearance, and perhaps even
further improve the S/N ratio, no primary averaging should be
performed, and five spectra with the maximum sum of relative
amplitudes in the 0.2060–0.2575 Hz region should be selected
directly from the pool of all 910 available spectra. The resulting
average of these five finally selected spectra is presented in Figure 9C.
In this case, main peaks were in the range of 0.2060–0.2403 Hz;
however, a peak at the sixth FC (0.1030 Hz) also appeared. A further
increase in the S/N ratio was herewith achieved, with even less fractal-
type background activity present. In order to identify, not conclusively
but to a reasonable degree of probability, the possible physiological
origin of the oscillation positioned at ≈ 0.21–0.24 Hz, we used breath-
to-breath (BB) interval data from our previous experiments (Matić
et al., 2020; Matić et al., 2022; Kalauzi et al., 2023b), where respiratory
signals from 20 healthy subjects in the supine position were recorded.
A histogram of their 5,450 pooled instantaneous breathing
frequencies (Bf), which were obtained as the inverse of the
corresponding BB intervals, is presented in Figure 9D. These

pooled data had a mean (Bf) = 0.2552 ± 0.0715 Hz and are
indicated as vertical red lines in Figures 9C, D. From this
comparison, it can be seen that the position of the ≈0.21–0.24 Hz
FFT CFPS(t) peak lies within the expected frequency boundaries of
relaxed healthy human breathing, although slightly shifted toward
lower frequencies. If the breathing origin hypothesis is adopted, the
small shift could be explained by the fact that the 10 EEG subjects were
more relaxed than the 20 respiratory signal subjects (Matić et al., 2020;
Matić et al., 2022) as the former were in the wake state but not far from
the drowsy state (Vuckovic et al., 2002; Kalauzi et al., 2012b). Final
confirmation of the respiratory connection of detected CFPS(t)
oscillations is expected to be obtained by simultaneously recording
both respiratory and EEG signals from a sufficient number of subjects,
preferably in different cardio-respiratory conditions, where frequency
matching and phase locking between respiratory and CFPS(t)
oscillations can be accurately established.

In addition to topographic distributions on Figures 10A-C, show
group averages of relative FFT amplitudes for all 91 channel pairs,
arranged in descending order using Equation 11. Ordinates of the
red line (referring to 1 FC) were derived from Table 2 andmultiplied
by 4 to make them comparable to the blue line, which depicts the
group average of four summed FC (12th–15th) amplitudes. Notably,
first five channel pairs of the red line are marked with black circles
because they correspond to the pairs plotted in Figure 10B. Five pairs
were chosen because they belong to the part of the line where an
abrupt decrease occurs.

3.2 Results of FFT analysis applied on ARE-
corrected alpha CFPS(t) waveforms of a test
group in the drowsy state

The same procedure was applied to the recorded signals from
the same 10 subjects in the drowsy and wake states, allowing the
results to be directly compared.

TABLE 2 Upper part: Five channel pairs withmaximal sum of 12th–15th FC relative FFT amplitudes and their corresponding (Ar )c1,c2st (f) values (groupmean ±
st. dev.). Lower part: The same calculation for only one (13th) FC.

Wake Drowsy

Channel (Ar)c1,c2w (0.2060–0.2575) Channel (Ar)c1,c2d (0.2060–0.2575)
F8, 02 0.1214 ± 0.0396 F8, F4 0.0913 ± 0.0249

F4, 02 0.1187 ± 0.0486 C3, 02 0.0911 ± 0.0223

01, 02 0.1185 ± 0.0503 01, 02 0.0898 ± 0.0372

F3, 01 0.1154 ± 0.0441 C4, P4 0.0872 ± 0.0300

F3, 02 0.1144 ± 0.0354 T5, 01 0.0850 ± 0.0156

Channel (Ar)c1,c2w (0.2232) Channel (Ar)c1,c2d (0.2232)
F8, 02 0.0427 ± 0.0123 F8, F4 0.0285 ± 0.0132

F8, T6 0.0373 ± 0.0194 C3, 02 0.0280 ± 0.0091

F4, 02 0.0367 ± 0.0170 01, 02 0.0279 ± 0.0145

F3, 02 0.0348 ± 0.0157 C4, P4 0.0257 ± 0.0106

P4, 02 0.0332 ± 0.0140 F8, F3 0.0252 ± 0.0131
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Drowsy state results are displayed in Figures 11, 12. Figures 11A–C
essentially show the same information as that presented in Figures
9A–C. Figure 11D shows a direct comparison of averaged spectra from
those shown in Figures 9C, 11C. From all panels, as shown in Figure 11,
one can observe a reduction in individual peaks in the low frequency
region (f < 0.3 Hz) compared to the wake peaks shown in Figure 9.

The topographic distribution of channel pairs, characterized by five
greatest group averages of summed four relative FFT amplitudes in the
range of 0.2060–0.2575 Hz (12th to 15th FCs; Figure 12A), or one FC
positioned at 0.2232Hz (13th FC; Figure 12B), wasmutually similar but
differed significantly from the two distributions obtained in the wake
state (Figures 10A, B). Specifically, pairs connecting fronto-occipital
regions, recorded in the wake state, did not emerge in the drowsy state.

3.3 Statistical testing of relative amplitude
differences between the wake and
drowsy states

The channel pairs shown in Figure 12C were not arranged and
presented in the same order since each line reflected its own descending
order, rendering them unsuitable for statistical testing. Therefore, we
rearranged the order of channel pairs of the drowsy state (corresponding
to the order on the brown line shown in Figure 12C) to match the

descending wake order (corresponding to the red line on the same
panel). Using the Wilcoxon matched-pairs test, we tested differences
between wake and drowsy group ensembles of FFT (CFPS(t)) relative
amplitudes at 0.2232 Hz (13th FC) for each of the 91 channel pairs.
Therefore, each of the two input ensembles for the 91 tests consisted of
10 values, one for each subject, defined in Section 3.1 as (Ar)c1,c2s,w (f)
and (Ar)c1,c2s,d (f), with s = 1,.,10. Here, c1 and c2 stand for the two EEG
channels, while w and d subscripts denote wake and drowsy states,
respectively. Of the 91 tested pairs, 20 appeared to have significantly
greater (p < 0.05) amplitudes in the wake state. All group ensemble
values, averages of relative amplitudes in wake and drowsy states, and
the corresponding p-values can be obtained upon request from the
authors. In this study, we shall present only five pairs with the most
significant differences (p < 0.01): F402 and T4F4, p = 0.0051; T3T6 and
F7F8, p = 0.0069; and F8T6, p = 0.0093. The topographic distribution of
all 20 pairs is presented in Figure 13. As can be seen, diagonal directions
were preferred, withmore lines connecting left anterior to right posterior
scalp regions than those in the opposite direction.

4 Discussion

In this work, the carrier frequency mathematical model of
human EEG alpha oscillations was applied to 10 young healthy

FIGURE 10
Topographic view of the selection of five channel pairs with a maximal group average of relative FFT amplitudes in the wake state, according to
Equation 11. (A) Channel pairs with the maximal sum of four relative amplitudes (12th–15th FCs), corresponding to the frequency range of
0.2060–0.2575 Hz. (B) Analogous topography shown in panel A drawn for one (13th FC) at a frequency of 0.2232 Hz. (C) Relative FFT amplitudes for all
91 channel pairs (Equation 11) plotted in the descending order. Ordinates of the red line (representing one FC) were taken fromTable 2 andmultiplied
by four to make them comparable to the blue line (corresponding to summed amplitudes of 4 FCs). The first five channel pairs of the red line are marked
with black circles because they correspond to the pairs plotted in panel (B). Their abrupt decrease explains why we chose five pairs for the topographic
presentation. For the sake of clarity, error bars were omitted.

Frontiers in Physiology frontiersin.org12

Kalauzi et al. 10.3389/fphys.2024.1511998

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1511998


participants in wake and drowsy states to calculate the time course of
CF phase shifts CFPS(t) for all 91 channel pairs. After the validation
of the method, their oscillatory content was studied through FFT
(CFPS(t)). Although not appearing equally in all channel pairs and
every subject, a clear peak in the respiratory frequency region,
0.21–0.26 Hz, was observed (max at ≈ 0.22 Hz). When five
channel pairs with the most prominent group averaged
amplitudes at 0.22 Hz were plotted in both states, topographic
distributions changed significantly—from longitudinal,
connecting frontal and posterior channels in the wake state to
topographically split two separate regions—frontal and posterior
in the drowsy state. Moreover, in the drowsy state, 0.22-Hz
amplitudes decreased for all pairs, while statistically significant
reduction was obtained for 20/91 (22%) pairs.

4.1 Alpha waves and neuronal excitability

Both the alpha amplitude and instantaneous phase influence
neuronal excitability in the cortex. Sauseng et al. (2009) found that a
motor-evoked potential was elicited more easily when alpha power

immediately preceding the transcranial magnetic stimulation (TMS)
pulse was low and vice versa. Similarly, Romei et al. (2008) reported
that low pre-stimulus alpha-band power resulted in TMS reliably
inducing positive responses, whereas high pre-stimulus values
caused the same TMS stimuli to fail to evoke a visual percept
during spontaneous fluctuations in posterior alpha activity.
However, there are some contradicting results concerning the
pre-stimulus amplitude (but not the phase). Berger et al. (2014)
applied single-pulse transcranial magnetic stimulation (TMS) over
the left sensorimotor cortex while simultaneously recording EEG.
Results indicate that the instantaneous phase, but not amplitude, of
oscillations in various frequency bands at the stimulation site during
the time of TMS pulse correlates with different levels of excitability.
The fact that neuronal excitability was dependent on the
instantaneous alpha phase had been recognized for quite some
time. Callaway and Yeager (1960) found that visual reaction time
depended on different phases of the alpha cycle. More recently,
Mathewson et al. (2009) showed that both subsequent visual
detection and stimulus-elicited cortical activation levels in a
metacontrast masking paradigm can be reliably predicted by the
phase of alpha rhythmmeasured over posterior brain regions. When

FIGURE 11
(A–C) Spectra corresponding to those shown in Figures 9A–C, but here, they refer to the drowsy state. (A) CFPS oscillation peaks in the low-
frequency region f < 0.5 Hz are reduced or even diminished compared to the wake state, as shown in Figure 9A. (B) After averaging across the 10 subjects,
in five selected spectra, a reduced 13th FC (0.2232 Hz) peak appeared in the drowsy state as well. (C) The sixth FC peak at 0.1030 Hz, which was present in
the wake state shown in Figure 9C, disappeared in the drowsy state. (D) Averaged spectra from Figures 9C, 11C are superimposed so that they can be
directly compared.
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a target was presented during the trough (minimum) of an alpha
wave, cortical activation was suppressed 100 m after the
presentation, and participants were less likely to detect the target.
They concluded that during one alpha cycle, the human brain goes
through rapid oscillatory shifts in excitability, directly influencing
whether an environmental stimulus will reach conscious
awareness or not.

4.2 Respiration and neuronal excitability

On the other hand, respiration exerts its own impact on
neuronal excitability. Neuronal activity phase-locked to
respiration has been evidenced in many published results.
Respiratory modulation of the power of gamma frequency
oscillations was found in the whisker barrel cortex of wake mice
(Ito et al., 2014; Heck et al., 2017). Jung F. et al. (2023) stated that
“rhythmic body processes strongly influence activity patterns
throughout the brain,” further mentioning respiration as a major
factor. This influence is extended to both local field potential and
single-cell levels. However, according to the authors, it is not known
how respiratory-driven rhythms interact or compete with internal
brain oscillations, especially if the frequency ranges overlap, such as
respiratory and theta rhythms in mice. They report state-
dependence of parietal cortex unit spike modulation by both

FIGURE 12
(A, B) Same topographic distribution of five channel pairs is shown in Figures 10A, B, obtained for the drowsy state. As shown in the wake state, the
two distributions are mutually similar but differ significantly from the distributions in the wake state. (C) Relative FFT amplitudes for all 91 channel pairs
(Equation 11) plotted in the descending order, superimposed for the wake (w) and drowsy (d) states and for two frequency regions (13th and 12th – 15th
FCs). As shown in Figure 10C, ordinates of the brown line (one FC) weremultiplied by four to be comparable to the black line (summed amplitudes of
4 FCs). For all channel pairs, amplitudes in the drowsy state are smaller than those in the wake state, pointing to the fact that wakefulness is necessary for
the respiratory frequency alpha CFPS to be present in full capacity across the whole scalp.

FIGURE 13
Topographic distribution of channel pairs which had significantly
greater (p < 0.05) relative FFT amplitudes of CFPS(t) oscillations at
0.2232 Hz in the wake state than those in the drowsy state.
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rhythms: during REM sleep, theta dominated unit discharge, while
respiration exerted greater influence during active waking. Heck
et al. (2017) argued that “respiration, via multiple sensory pathways,
contributes a rhythmic component to the ongoing cortical activity,”
suggesting that “this rhythmic activity modulates the temporal
organization of cortical neurodynamics, thereby linking higher
cortical functions to the process of breathing.” Let us note that
measurements of respiratory influence on the power of field
potential oscillations or unit discharges, such as those in these
three studies, differ in one important aspect from the approach
involving phases, obtained by, e.g., Hsu et al. (2020) or ours,
presented in this work. In other words, in the former case, each
particular result originates from one static electrode, resulting in
“static” results on the receiving end. In the phase (shift) approach,
the results are “dynamic,” describing the interaction of phases of two
oscillations: respiratory and field potential.

The combined results of these two lines of research indicate that
in this work, we are dealing with two very complex interacting
oscillatory systems, each one altering the excitability of extensive
neuronal networks and affecting simultaneously all cortical areas. At
this stage, when the phase–frequency interaction of the two
excitability altering oscillations has only recently been detected, it
is not easy to give a valid interpretation or give a meaningful
proposal for either anatomical or physiological mechanisms that
underlie the phenomenon.

However, some aspects of the issue can still be discussed even in
this preliminary phase. Logically, minimal anatomical and
consequently functionally active set of structures should include
the PreBötzinger complex (preBötC) locus coeruleus and thalamo-
cortical system. Influences between respiratory centers and the
cerebral cortex are known to be bilateral. PreBötC projects
respiratory afferents to cortical brain areas, e.g., via the locus
coeruleus, from olfactory nuclei and through the vagus nerve
(Del Negro et al., 2018; Kluger and Gross, 2020). In addition, the
inspiratory rhythm originating from the preBötC activity
coordinates associated conditional oscillators for other phases of
the breathing cycle, for sighing and orofacial behaviors.
Furthermore, the preBötC influences arousal, cognitive function,
and emotion (Del Negro et al., 2018). In turn, brain states (such as
anxiety) lead to changes in respiration. However, even if these
structures and communication between them are included in the
respiratory modulation of the alpha CFPS(t) oscillations, at this
stage, it remains unclear through which particular mechanism could
respiration, assuming our hypothesis is valid, be influencing the
observed CF phase shifts.

In addition to neurons in the PreBötzinger complex, respiration
is actively influenced by groups of neurons in the pons and medulla,
as well as central and peripheral chemoreceptors,
mechanoreceptors, and metaboreceptors. Pontine neuronal
groups incorporate the pneumotaxic and apneustic centers, which
participate in control of the speed of breathing and perform fine-
tuning of the rate of respiration (Webster and Karan, 2020). Dorsal
medullar neurons are responsible for inhalation and airway defense,
while the ventral neurons control exhalation (Bolser et al., 2015;
Pagliardini et al., 2011). However, althoughmutually well-connected
and functionally well-organized, the main external connection of
these medullar groups with cortical structures is achieved through
the PreBötzinger complex and locus coeruleus (Del Negro et al.,

2018; Webster and Karan, 2020). This fact allows us to further
hypothesize that their role in the emergence of the detected CFPS(t)
rhythm is indirect. In contrast, sensory receptors project to the
breathing centers not the cortex itself (Berger and Averill, 1983; Del
Negro et al., 2018), so their role could also be considered indirect.
Future investigations will determine whether and to what extent any
of the abovementioned structures participate in generating and/or
sustaining the detected 0.2232 Hz rhythm. At this stage, it is worth
noting that, despite appearing in the cortex, the new phase shift
rhythm was detected during spontaneous breathing, implying that
the breathing process was not influenced by an active and conscious
subject. How and whether this rhythmwill be modified during paced
breathing remains an important question to be answered in our
future experiments.

A major limitation in the present work is the fact that we did not
record both respiratory and EEG signals from the same subjects
simultaneously and consequently have not been able to prove that
the detected CFPS(t) oscillation at ≈ 0.22 Hz was phase-locked to the
respiration. Understandably, this is our first objective for future
research. However, according to our view, the reasonable
congruence of the recorded frequencies between the two subject
groups participating in two different sets of experiments, as shown
in Figures 9C, D, leaves little doubt that the detected CFPS(t)
oscillation originates from the subjects’ respiratory activity.
However, respecting scientific rigor, we abstained from naming it
“respiratory rhythm” but rather used the term “respiratory
frequency rhythm” in the title and throughout this work.

4.3 Alpha activity and respiration in different
states of vigilance

If we compare the topographic distribution of five channel pairs
with maximal FFT (CFPS(t)) oscillation amplitudes at 0.2232 Hz in
wake and drowsy states (Figures 10B, 12B), one can see that in the
wake state, they are predominantly longitudinal and laterally
asymmetrical, positioned on the right side of the scalp. This
particular distribution indicates that neural networks and
populations positioned under and/or connecting anterior (frontal,
F3, F4, and F8) and right posterior (P4, T6, and O2) scalp areas act in
an organized way (underlying mechanisms unknown and remain
yet to be elucidated) to participate in the respiratory frequency
modulation of the detected alpha phase shifts. Considering the fact
that neuronal excitability changes in synchrony with the
instantaneous alpha phase (Romei et al., 2008; Sauseng et al.,
2009; Mathewson et al., 2009; Berger et al., 2014), it follows that,
for each channel pair, time delay of the excitation degree between
these two large neuronal ensembles varies according to the
respiratory frequency rhythm. This time delay, Δt, depends on
the carrier frequency of the alpha activity, f∝ (≈10 Hz), and the
instantaneous value of CFPS(t), Δφ: Δt � Δφ 1

f∝
360°

. Therefore, for each
10° of CFPS, Δt ≈ 2.78 m (compared to the CFPS waveform shown in
the inlet of Figure 9C). The physiological significance of this
rhythmically varying time delay is also not clear, but it obviously
involves a more complex underlying mechanism related to, among
others, the state of alertness and cognitive processes. However, since
subjects did not perform any particular tasks, the topographic
distribution of this rhythmicity in neuronal excitability may be
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more related to a state of readiness for incoming tasks, a kind of
“phase shift resting state.”What appeared to be evident was that the
large-scale respiratory frequency rhythmical integration of neuronal
ensembles, involving anterior and posterior regions, seemed to exist
in the wake state (Figures 10A, B). However, this picture was
significantly altered in the drowsy state, where frontal regions
appeared not to be rhythmically coupled with the posterior
regions (Figures 12A, B). In terms of rhythmicity, anterior
(frontal) and posterior regions became disentangled. The role of
the frontal and prefrontal cortices across different states of alertness
was already known (Muzur et al., 2002; Brown et al., 2012). Muzur
et al. stated in their study that “functions of the prefrontal cortex are
more relevant to the self-conscious awareness that is lost during
sleep.” Similar results, pointing to the biggest amount of changes
occurring in the frontal regions, were obtained in our previous
analyses performed on the same set of signals during the wake to
drowsy transition (Kalauzi et al., 2012b; 2015). Figures 10C, 12C
present an additional result regarding the difference between the two
states of vigilance: amplitudes of respiratory frequency CFPS(t)
oscillations are greater in the wake state than those in the drowsy
state, and this is valid for all channel pairs. Therefore, full
wakefulness appeared to be necessary for this alpha phase shift
oscillations to appear in their full capacity.

4.4 Volitional control of breathing and alpha
phase shifts

It was found that, besides the cortex, breathing rates can be
influenced by stimulation of the hippocampus, amygdala, and insula
(Frysinger and Harper, 1990; Harper et al., 1998; Herrero et al.,
2018), indicating a complex network of different brain structures
during the volitional control of breathing. In contrast, scalp EEG
(Fumoto et al., 2004), as well as TMS (Locher et al., 2006), and
neuroimaging techniques (McKay et al., 2003) revealed the role of
premotor, motor, and supplementary motor cortices in the process.
All results presented in our work were obtained in the regime of
spontaneous breathing. Within this experimental framework and at
this moment, it is not possible to predict how these results,
specifically profiles (oscillatory content) of CFPS(t) spectra and
topographic distribution of their most prominent amplitude
peaks, would appear within a paced breathing paradigm.
Potential appearance of peaks at the frequencies of paced
breathing would certainly strengthen the hypothesis that it is
linked to the breathing process and point to its possible role in
the volitional control. Nevertheless, in order to elucidate the effect of
volitional control, future experiments using topographic analyses of
CFPS(t) respiratory frequency amplitudes under paced breathing
should take care to place scalp electrodes over the cortical structures
mentioned above.

Regarding the results of statistical tests presented in Figure 13,
we found that, although amplitudes of alpha activity are reduced in
the drowsy state compared to the wake state (Bojić et al., 2010),
CFPS(t) oscillations did not disappear but still persisted at the
frequency of 0.2232 Hz (although also reduced; Figures 10C,
11D, 12C). However, let us point out that we obtained an
unexpectedly high number of channel pairs (20/91), which
exhibited respiratory frequency amplitudes significantly larger in

wake than in the drowsy state. To have 22% of such pairs, with only
10 subjects analyzed, seems encouraging and raises expectations that
future experiments, if performed on a wider group of subjects, might
produce more information and offer new insights into this newly
discovered oscillation. For example, since our results point to a ≈0.2-
Hz rhythmical variability of time delays between occurrences of
extremal (minimal or maximal) neuronal excitability between
different scalp regions, with simultaneously recorded EEG and
respiratory signals, we would be able to determine whether these
delays are (or not) locked to extremal values of the neuronal
excitability caused by respiration, allowing us a clearer and more
detailed picture of the interaction between respiration and alpha
waves. In addition, a high percentage of channels with significantly
different FFT respiratory frequency amplitudes between the two
states of vigilance points to an important role of wakefulness and
conscious awareness in the dynamical organization of respiratory
modulation of alpha brain activity.

4.5 Network approach: how to connect the
brain, respiration, and cardiac activity

Cardiac rhythm and its causal relationship with EEG were
studied in different sleep stages by different methodological
approaches (e.g., by Granger causality; Abdalbari et al., 2022). In
the course of this study, we searched for the presence of cardiac-like
rhythm (around 1 Hz) in our FFT (CFPS(t)) spectra but could not
detect it in any pair of electrodes. In contrast, in the case of
simultaneous EEG and respiratory recordings, CFPS(t) time series
may be included into multivariate predictability analyses such as
those performed by Faes et al. (2016) in different sleep or
pathological experimental paradigms (apnea-related conditions
are particularly interesting states to explore).

Another set of situations where phase relations between
respiration and CFPS(t) could be studied comprises different
emotional psychological states since they involve both the brain
and cardiovascular systems. It was shown that emotional response is
initially caused by sympathovagal activity, in which ascending
modulations precede efferent information transfer and correlate
with the level of arousal (Candia-Rivera et al., 2022).

In course of the brain–body interaction studies, a network
approach was employed involving multivariate correlation
analysis (Pernice et al., 2021) and information dynamics
(information storage and information transfer; Zanetti et al.,
2019). More relevant to us was the work of Pernice et al., who
calculated multivariate correlations within and between the human
brain–body subnetworks in three experimental conditions
representing different levels of mental stress: rest, sustained
attention, and mental arithmetic. The quantities of interest to our
present approach were the heart rate (η), respiration amplitude (ρ),
and amplitudes of four EEG bands: δ, θ, α, and β. The authors found
that internal subnetwork linkages were most common (mainly η–ρ;
δ–θ; θ–α; and α–β). However, two inter-subnetwork correlations
were also significant (η–β and η–δ). Therefore, when only
amplitudes were being studied, neither alpha nor respiration was
found to be mutually correlated. It would be an interesting
alternative to probe whether alpha phases (phase shifts) are
correlated with respiration phases in these states of heightened
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alertness as we found a considerable topographic redistribution of
channels with maximal alpha FFT (CFPS(t)) peaks at 0.2232 Hz in
the state of reduced alertness (drowsiness), compared to the nominal
state (resting wakefulness).

Spontaneous breathing induces diverse autonomic rhythms that
modulate cardiovascular control including arterial blood pressure
and cerebral blood flow—heart rate and stroke volume— which, in
turn, can influence EEG oscillations (Rau et al., 1993; Liu et al.,
2019). Respiratory sinus arrhythmia, which has been intensively
studied for decades (Hirsch and Bishop, 1981; Larsen et al., 2010), is
an important part of this rhythmicity. All of the abovementioned
rhythms initially originate from the breathing process itself,
although the situation is more complex, as studies of causal
relationships between cardiovascular and respiratory systems
revealed a bidirectional influence (Tzeng et al., 2003; Cairo et al.,
2023; Platiša et al., 2023; Porta et al., 2024). Therefore, having this
network complexity in mind, if our hypothesis were to be proven, it
would be a challenge to explore the role of RSA in the causal chain of
these rhythmic processes. One possible approach might be to search
for the link/correlation between the amplitude of RSA and FFT
(CFPS (t)) peak height at ≈ 0.22 Hz in various experimental
conditions and different physiological states.

Cardiorespiratory variables like the respiratory rate, heart rate,
systolic arterial pressure, mean arterial pressure, and mean cerebral
blood flow are main candidates for mediators by which the brain and
respiration exert mutual influence. For instance, it has been shown
that respiratory activity can act as a confounder or suppressor of the
causal relationship between different cardiovascular and
cerebrovascular variables. By applying the confounding/suppression
test on propofol-based general anesthesia patients and controls, Porta
et al. (2022) concluded that respiration behaved systematically as a
confounder for cardiovascular and cerebrovascular controls. Causal
relationships between the abovementioned variables can be
quantitatively assessed by applying well-established methods both
in time (Granger, 1980) and frequency (Geweke, 1982) domains. By
studying postural syncope propensity, Porta et al. (2023) found that
the postural syncope is favored by a loss of coordination between the
baroreflex feedback and mechanical feedforward pathway in response
to head-up tilt (HUT) in the LF band and by a weaker ability of
cerebral autoregulation to limit mean cerebral blood velocity
variability driven by mean arterial pressure changes in the
respiratory rate during HUT. Having these results in mind, it
cannot be a priori excluded that the respiratory impact on alpha
phase shifts is mediated through pressure-to-flow at the cerebral level
and baroreflex at the respiratory rate. Moreover, the relationship
between the cerebral blood flow and alpha EEG activity (especially
their phases; see Jann et al., 2009) must be modeled quantitatively in
order to complete this cause–effect chain. Hopefully future analyses,
specifically Geweke spectral causality applied to CFPS(t) and other
abovementioned simultaneously recorded variables (primarily
respiration), in spontaneous and paced breathing, will shed some
new light on the causal relationships in the respiratory frequency
range within and between respiratory, cardiovascular, and
cerebrovascular systems. A carefully designed experimental setup,
able to assess possible concomitant influences from respiration to EEG
alpha activity (and vice versa), by mean arterial pressure to mean
cerebral blood flow and to the heart period through baroreflex, at the
frequencies of respiration and heart rate (respectively), is necessary.

4.6 Potential future use of the
detected rhythm

It is known that changes in cardiorespiratory coupling (CRC) are
most expressed in stressful conditions. In some pathological states, such
as type 2 diabetes mellitus, it was shown that they could be used as an
early marker of cardiac autonomic dysfunction (Da Silva et al., 2023).
The other set of conditions where CRC becomes increasingly strained
involve physical exercise and sports training, where universal
methodological standards have not yet been fully established (de
Abreu et al., 2023; de Abreu et al., 2024). If our hypothesis is to be
confirmed, wewould have a newly detected EEG rhythm, probablymore
firmly correlatedwith respiration than existing EEG rhythms, in addition
to conventional EEG–ECG–respiration recordings. In that case, present
CRC could be extended to cardiorespiratory–brain coupling (CRBC),
making it more sensitive to the changing conditions or pathological
situations such as tumors, multiple sclerosis, or even degenerative
diseases. We expect that in future experiments with CFPS(t)–
ECG–respiratory signals, additional information could be acquired to
enable us to reach those standards more easily.
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