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Purpose of review: The thick ascending limb (TAL) of loop of Henle is essential for
NaCl, calcium and magnesium homeostasis, pH balance and for urine
concentration. NKCC2 is the main transporter for NaCl reabsorption in the
TAL and its regulation is very complex. There have been recent advancements
toward understanding how NKCC2 is regulated by protein trafficking, protein-
protein interaction, and phosphorylation/dephosphorylation. Here, we update
the latestmolecular mechanisms and players that control NKCC2 function, which
gives an increasingly complex picture of NKKC2 regulation in the apical
membrane of the TAL.

Recent Findings: Protein-protein interactions are required as a regulatory
mechanism in many cellular processes. A handful of proteins have been
recently identified as an interacting partner of NKCC2, which play major roles
in regulating NKCC2 trafficking and activity. New players in NKCC2 internalization
and trafficking have been identified. NKCC2 activity is also regulated by kinases
and phosphatases, and there have been developments in that area as well.

Summary: Here we review the current understanding of apical trafficking of
NKCC2 in the thick ascending limb (TAL) which is tightly controlled by protein-
protein interactions, protein turnover and by phosphorylation and
dephosphorylation. We discuss new proteins and processes that regulate
NKCC2 that have physiological and pathological significance.
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Highlights

✓ NKCC2 at the apical membrane is a key regulator of salt reabsorption and water
homeostasis.

✓ Protein-protein interactions mediate trafficking that controls NKCC2 surface
expression and its functional activity.

✓ Post-translational modification of NKCC2 alters its trafficking steps.
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Introduction

In the kidney, the thick ascending limb (TAL) plays an essential
role to control NaCl homeostasis, calcium and magnesium
reabsorption, extracellular fluid volume, and pH balance (Zacchia
et al., 2018). In the TAL, the major luminal Na+ transport pathway is
provided by the Na+-K+-2Cl- cotransporter type 2 (NKCC2), which
belongs to the member of the superfamily of electroneutral cation-
coupled cotransporters (CCCs) encoded by the solute carriers family
12A (SLC12A1) genes (Hebert and Andreoli, 1984; Molony et al.,
1989; Gamba et al., 1994). Intracellular N- and C-terminal domains
in CCCs play a role transport and trafficking activities while
transmembrane domains of CCCs are responsible for ion
translocation (Markadieu and Delpire, 2014). NKCC2 is
exclusively expressed in the TAL and macula densa cells. In the
TAL, this cotransporter is the main gateway for NaCl reabsorption
via the apical membrane (Nielsen et al., 1998; Bazúa-Valenti et al.,
2016) thereby playing an essential role in the TAL and renal
function. In the macula densa, it acts as a sensor of luminal
NaCl concentration and initiates the signaling required for
tubulo-glomerular feedback (TGF) when NaCl concentration is
low. While NKCC2 itself does not directly control plasma
osmolality nor final urine osmolality, NKCC2-mediated NaCl
reabsorption by the TAL is essential for water reabsorption
because it maintains a high interstitial osmolarity. The TAL is
one of the most water-impermeant segments in the nephron and
its water permeability is not increased by AVP. As such, NaCl
reabsorption through NKCC2 dilutes the forming urine in the
tubule lumen while increasing interstitial osmolality. A high
interstitial osmolality (ranging from 350 to 1,000 mOsm) is
necessary for countercurrent multiplication and water
reabsorption in the thin descending limb and water reabsorption
by the collecting ducts (in the presence of vasopressin) (Layton,
2011; Layton and Layton, 2011; Gamba and Friedman, 2009; Ares
et al., 2011). Therefore, NKCC2 activity is crucial for NaCl
conservation, interstitial osmolality, regulating water balance, and
blood pressure (Ares et al., 2011).

NKCC2-dependent NaCl entry from the tubule lumen is driven
by the electrochemical gradient generated by basolateral Na-K-
ATPase. Intracellular Cl exits the cell via basolateral chloride
channels (CLCKa, CLCKb), K/Cl cotransporters (KCC4) while
apical K recycling occurs via ROMK channels across the apical
membrane. All these components are required to complete net
transcellular transport of NaCl in the TAL (Castrop and
Schnermann, 2008). Loss-of-function mutations in NKCC2 have
illustrated the fundamental role of NKCC2 in human physiology
and blood pressure regulation. These inactivating mutations cause
Bartter syndrome type I, characterized by hypokalemic alkalosis,
hypomagnesemia, hypercalciuria, excessive loss of urine NaCl,
inability to concentrate urine, polyuria, and critically low blood
pressure (Gamba and Friedman, 2009; Simon et al., 1996; Haas and
Forbush, 1998; Takahashi et al., 2000; Welling, 2014; Gamba, 2005).
At least six homozygous mutations (G193R, A267S, G319R, A508T,
del526N and Y998X) have been reported in NKCC2 in patients with
Barter Syndrome type I. Similarly, genetic deletion of NKCC2 in
mice leads to death unless salt and volume are maintained
(Takahashi et al., 2000). When expressed in Xenopus oocytes,
NKCC2 mutants show impaired sodium transport activities

compared with wild type (WT) (Starremans et al., 2003). In
contrast, abnormally enhanced NKCC2-mediated NaCl
reabsorption is associated with hypertension in humans (Aviv
et al., 2004; Jung et al., 2011; Gonzalez-Vicente et al., 2019) and
animal models (Haque et al., 2011; Ares et al., 2012; Capasso et al.,
2005; Sonalker et al., 2007) of spontaneous and salt-sensitive
hypertension (Ortiz et al., 2003). Increased NKCC2 activity is
thought to impair pressure-natriuresis resetting blood pressure to
a higher level to maintain appropriate NaCl excretion. However,
there have been very few studies that directly test this hypothesis.
Lately, there has been great interest in identifying factors that
regulate NKCC2 activity and provide a physical scaffold for
NKCC2 trafficking, signaling, and apical membrane residence-
time, since any of these pathways could be involved in salt-
sensitive hypertension. A comprehensive molecular model for
NKCC2 interactions that control these pathways is just starting
to emerge but requires additional research and development of new
methods to advance this faster.

The activity and expression levels of NKCC2 in TAL are
regulated by multiple hormones including vasopressin (AVP),
parathyroid hormone (PTH), calcitonin, glucagon, and
catecholamines acting as agonists. In contrast, prostaglandins and
extracellular Ca2+ act on the inhibitory component to
counterbalance the physiological regulation of NKCC2
(Gunaratne et al., 2010). Transgenic rats with TAL-specific
suppression of vasopressin V2 receptors (V2R) showed markedly
impaired urinary concentration (Mutig et al., 2016). These data
suggest AVP acts through the V2R to maintain the NKCC2 activity
(Mutig et al., 2016). In addition, other factors besides expression
levels, including alternative splicing, NKCC2 trafficking at the apical
surface, protein-protein interaction, protein turnover and
phosphorylation/dephosphorylation determine overall NKCC2-
mediated NaCl reabsorption in TALs (Ares et al., 2011).
Alternative splicing of the variable exon 4 of the SLC12A1 gene
gives rise to the full-length isoforms of the NKCC2: NKCC2A,
NKCC2B, and NKCC2F (Castrop and Schnermann, 2008). These
splice isoforms differ from the localization and their characteristics,
including ion affinities, transport kinetic, and distribution patterns
along with the TAL (Castrop and Schnermann, 2008; Carota et al.,
2010). Localization of NKCC2 splice isoforms and their
characterization are discussed elsewhere (Castrop and Schießl,
2014; Schießl and Castrop, 2015). Like other members of the
CCCs, post-translational modification is essential to regulate
NKCC2 activity via phosphorylation/dephosphorylation at the
N-terminus of threonine and serine residue (Gimenez, 2006;
Richardson et al., 2011). Kinases such as SPS1-related proline/
alanine-rich kinase (SPAK, STK39) and oxidative stress-
responsive kinase 1 (OSR1, OXSR1) has been reported directly
phosphorylate the regulatory sites Thr95, Thr100, and
Thr105 whereas Protein Kinase A phosphorylates Ser126 in the
N-terminus tail of NKCC2, significantly increasing NKCC2 activity
(Richardson et al., 2011). Phosphorylation at any of these sites could
increase NKCC2 activity in Dahl salt sensitive animals where
abnormally elevated salt reabsorption in the TAL was reported
on normal or high salt diets. Increased NKCC2 in the apical
surface and phosphorylation at Thre96,101 activity and chloride
reabsorption have been found in these hypertensive rats, indicating
that NKCC2 overactivation may be involved in hypertension
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(Alvarez-Guerra and Garay, 2002). However, the molecular
mechanisms and genes leading to enhanced NKCC2 activity are
not clear.

NKCC2 is the primary pharmacological target of loop diuretic
drugs used worldwide to treat edematous states (Caceres and Ortiz,
2019). These loop diuretics including bumetanide, furosemide and
torsemide are all powerful blockers of ion transport through NKCC2
(Zhao et al., 2022), but they are not specific an also potently inhibit
NKCC1 (SLC12A2). In the past 2 decades, substantial effort has
been made to understand the molecular mechanisms regulating the
co-transporter since they could be critical to controlling blood
pressure under physiological or pathological conditions (Caceres
and Ortiz, 2019). Several recent reviews can provide an overview of
NKCC2 regulation (Ares et al., 2011; Caceres and Ortiz, 2019;
Mutig, 2017). Even though NKCC2 is of great importance in
renal function, the molecular mechanisms by which
NKCC2 expression is regulated in health and disease still needs
to be determined. In this review, we will mainly discuss recent
developments on molecular mechanisms of NKCC2 regulation,
including apical trafficking of NKCC2 to the apical membrane
and phosphorylation, protein-protein interactions with regulatory
factors, and ubiquitination. These new pathways open exciting new
avenues to modulate NKCC2 activity which would eventually evolve
to controlling blood pressure (BP).

Protein trafficking of NKCC2 to the
apical membrane

Our laboratory previously showed that a small portion (3%–5%)
of NKCC2 is expressed at the surface of the apical membrane (Ortiz,
2006), the rest being in an intracellular fragment (Nielsen et al.,
1998). It is tightly regulated via trafficking into and out of the
membrane, which is maintained by exocytosis, endocytosis, and
recycling (Ares et al., 2012; Ortiz, 2006; Ares et al., 2008; Ares and
Ortiz, 2010; Caceres et al., 2009; Caceres et al., 2014a; Caceres et al.,
2016; Jaykumar et al., 2016). Little was known about the regulation
of NKCC2 by the proteasome or lysosomes after internalization.
However, recent work has suggested an additional mechanism that
acts on the degradation of the internalized NKCC2 pool to regulate
NKCC2 at the apical surface (Ares, 2019). Furthermore, the
degradation of internalized NKCC2 is enhanced by the second
messenger, cyclic guanosine monophosphate (cGMP), via the
ubiquitin-proteasome system (Ares, 2019). A recent study from
our group indicated that cullin-RING E3 ubiquitin ligase (CRL)
complex may be involved in the cGMP-dependent increase in
NKCC2 ubiquitination in TALs (Ares, 2023). Ares et al. argued
that the neuronal precursor developmentally downregulated protein
8 (Nedd8) is responsible for CRL complex activity. Moreover,
Cullin-associated and neddylation-dissociated 1 protein (CAND1)
protein is also required for CRL activity. Inhibition of CAND1 by
using a pharmacological inhibitor enhances baseline
NKCC2 ubiquitination and exacerbated the cGMP-dependent
increase in NKCC2 ubiquitination. These data suggested that
cGMP-dependent ubiquitination of NKCC2 is regulated by a
CRL complex (Ares, 2023). However, the detailed process of
degradation and how ubiquitin dependent regulation of
NKCC2 levels affect NKCC2 trafficking has yet to be studied.

These observations are fascinating because they suggest that
apical trafficking of NKCC2 and protein turnover are maintained
by inhibitory signaling (cGMP, NO) that puts a brake on stimulatory
signaling like cAMP and reactive oxygen species (Saez et al., 2018).
These signaling cascades are fundamental for the regulation of TAL-
mediated NaCl absorption by hormones, neurotransmitters, and
variation in luminal flow. In addition to hormonal-mediated
signaling, NKCC2 may be regulated by physical factors such
shear stress and flow. Recent evidence shows that luminal flow
increases superoxide generation by NADPH oxidases, which then
stimulates NKCC2-mediated Na absorption by the TAL (Haque and
Ortiz, 2019). Luminal flow-stimulated NKCC2 activity was blocked
by tetanus toxin, a protease that blocks vesicle fusion and trafficking
by cleaving vesicle-associated membrane fusion protein
VAMP2 and 3 (Caceres et al., 2016; Caceres et al., 2014b). These
data suggest that multiple pathways are involved in the control of
NKCC2 trafficking. How the signaling form these pathways are
integrated in vivo, in conditions of varying flow, luminal NaCl and
hormonal state, is still poorly understood. Supposedly, there are
trafficking pathways that more “constitutive” or less sublet to
regulation (Caceres et al., 2016), whereas there are trafficking
pathways that strictly dependent on specific signals. For example,
ubiquitin-dependent modulation of NKCC2 levels may specifically
affect post-endocytic or recycling pathways, while signaling that
requires fast stimulation act on exocytosis from a “reserve” pool of
vesicles or from am apical recycling compartment.

Recent reports suggested that melanoma-associated antigen D2
(MAGED2) is a novel regulator of NKCC2, a gene identified by
whole-exome sequencing in families affected by transient antennal
Bartter’s syndrome with polyhydramnios (Laghmani et al., 2016).
Interestingly, patients with a mutation in MAGED2 have reduced
surface expression of NKCC2 with more prominent NKCC2 in the
cytoplasm and colocalized with an endoplasmic reticulum marker
(Laghmani et al., 2016). Using coimmunoprecipitation ofMAGED2,
the authors demonstrated that MAGED2 interacts with Hsp40 and
G-protein Gs-alpha, which opens new possibilities for control of
NKCC2 activity (Laghmani et al., 2016). This lab also showed that
Hsp40 might protect NKCC2 from endoplasmic reticulum-
associated degradation (ERAD) and regulate NKCC2 exit from
the endoplasmic reticulum in OK and HEK-293 cell lines
(Zaarour et al., 2009; Seaayfan et al., 2016; Seaayfan et al., 2022).
Gs-alpha activates cAMP production by adenylyl cyclases which we
showed stimulate NKCC2 exocytic delivery and recycling in TALs
(Caceres and Ortiz, 2019). cAMP, is also known to increase the total
expression of NKCC2, therefore it is plausible that one of the main
mechanism to increase NKCC2 expression is to prevent its ERAD
and shuttle a greater fraction of NKCC2 to the TGN for continued
maturation. This connection between NKCC2, cAMP,
MAGED2 and ERAD is a very interesting observation that needs
to be studied further, in particular, to understand molecular
mechanisms that control NKCC2 expression at the apical
surface of TAL.

Moesin, a protein belonging to the ezrin family, interacts with
c-NKCC2 (NKCC1 backbone with swapped NKCC2 C-terminus
driving apical trafficking) in LLC-PK1 cells. Silencing of moesin by
short interfering RNA significantly reduced the expression of
c-NKCC2 at the apical surface and accumulated it in the
intracellular fraction (Carmosino et al., 2012a). In contrast,
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another group found the opposite observation in moesin knock-out
mice. The authors demonstrated that knock-out mice have increased
surface expression of NKCC2 at the apical surface of TAL than
control (Kawaguchi et al., 2018). Moreover, the deletion of moesin
seem to impair NKCC2 endocytosis, based on subcellular
fractionation studies, and decrease the association with lipid rafts.
These data suggested that moesin regulates the internalization of
NKCC2 (Kawaguchi et al., 2018). However, the precise mechanism
remains unclear. Moesin binds over 300 proteins (BioGrid
database), many of which are involved in trafficking and actin
crosslinking. Therefore, it is likely that deletion of moesin from
whole animal has multiple pleiotropic effects and experiments
should be designed to specifically increase or decrease expression
of moesin in TALs to study NKCC2 trafficking.

In addition to the dynamic balance between NKCC2 apical
trafficking and post-translational modifications, there are several
dietary factors, metabolites, and hormones that affect
NKCC2 activity by enhancing/decreasing the apical trafficking
of NKCC2 in the TAL. To understand new dietary factors that
affect NKCC2, our laboratory studied the effects of a high salt diet
and the impact of dietary sugars, particularly fructose, because of
its increased consumption of the western diet. In addition,
elevated fructose consumption together with a high salt diet
indices hypertension in rodents and has been linked to the
development of hypertension in patients (Cabral et al., 2014;
Huang et al., 2017). We specifically found that fructose, but not
glucose, directly added to suspensions of medullary TALs,
increased surface NKCC2 expression. Fructose added to the
lumen or bath of isolated perfused TALs also increased
NKCC2 activity (Ares et al., 2019). However, the specific
signaling activated by fructose, and how it affects
NKCC2 trafficking to increase NKCC2 activity is unclear and
requires additional research.

Protein-protein interactions
regulate NKCC2

A handful of proteins were identified as NKCC2-binding
partners using mass spectrometry and liquid chromatography in
the last decades (Ares et al., 2011; Caceres and Ortiz, 2019; Mutig,
2017). The C-terminus of NKCC2 is unique and contains the
conserved domain of dileucine-like motifs, which is not present
in NKCC1, NCC, or other mammalian proteins (Gamba and
Friedman, 2009) and confers NKCC2 apical targeting, such that
when deleted, NKCC2 traffics to the basolateral membrane
(Carmosino et al., 2008; Carmosino et al., 2012b; Carmosino
et al., 2010). This dileucine-like motif is responsible for apical
trafficking and its recognition by other interacting proteins of
NKCC2 (Zaarour et al., 2009; Carmosino et al., 2008; Zaarour
et al., 2012). The ability of regulatory proteins to bind a specific
region of the carboxyl-terminus of the NKCC2 domain of
approximately 70 amino acids. These interacting proteins
regulate NKKC2 by either increasing the expression level of
NKCC2 at the apical surface, such as MAL (Carmosino et al.,
2010), VAMP2 (Caceres et al., 2014a), VAMP3 (Caceres et al.,
2016), Annexin A2 (Dathe et al., 2014), moesin (Carmosino et al.,
2012b) or decreasing the surface expression of NKCC2, such as

Aldolase B (Benziane et al., 2007), SCAMP2 (Zaarour et al., 2011),
OS9 (Seaayfan et al., 2016), ALMS1 (Jaykumar et al., 2018) and
ACTN4 (Maskey et al., 2019).

Our laboratory identified vesicle fusion proteins VAMP2 and
VAMP3 as important interacting proteins of NKCC2 involved in
physiological NaCl reabsorption (Caceres et al., 2016).
VAMP2 mediates cAMP-stimulated NKCC2 exocytic delivery
and apical surface expression in TALs (Caceres et al., 2014a). A
recent report suggested that moesin interacts with NKCC2 and is
also involved in exocytic delivery of NKCC2. This was demonstrated
by knocking down moesin with short interfering RNA, which
significantly reduced the expression of NKCC2 at the apical
surface and accumulated it in the intracellular fraction
(Carmosino et al., 2012a). It is not known if moesin interacts
with the SNARE protein pathway in the kidney. The BioGrid
database does not show any interaction of moesin with SNAREs,
suggesting that it may affect NKCC2 trafficking primarily by
modulating signaling.

Recently, our laboratory identified Alström Syndrome 1
(ALMS1) as a novel protein that interacts with a specific region
of the carboxyl terminus of NKCC2 (Jaykumar et al., 2018) at a
sequence its binding partner recognizes. We investigated the role of
ALMS1 in NKCC2 regulation in the apical surface of TAL and blood
pressure control in rats with genetic deletion of ALMS1 and after in
vivo shRNA-mediated gene silencing in TAL in vivo. We observed
that the expression of NKCC2 was higher in the apical surface of
TALs in ALMS1 KO rats, leading to increased NKCC2 activity.
Importantly, the rate of NKCC2 endocytosis was slower in ALMS1-
deleted rats, and ALMS1 co-localized with internalized NKCC2-
containing vesicles (Jaykumar et al., 2018), indicating that ALMS1 is
involved in some part of the endocytic pathway. It remains to be
determined, precisely at which step of endocytosis ALMS1 interacts
with NKCC2. We found that ALMS1 bound proteins from both the
clathrin- and lipid raft-dependent pathways in TALs (Jaykumar
et al., 2018). We also showed that NKCC2 undergoes endocytosis by
both clathrin-, and lipid raft-mediated mechanisms (Ares and Ortiz,
2012) suggesting that ALMS1 may act at early endocytic steps of
vesicle formation to mediate NKCC2 endocytosis. However, these
specific questions need further study and the molecular mechanisms
by which ALMS1 mediates endocytosis is unclear. In that paper, we
also found that ALMS1 bound ACTN4. ACTN4 mutations cause
focal glomerulosclerosis (FSGS) protein, but its function in the
nephron was unknown. Our unpublished data show that in vivo
silencing of Actinin-4 (ACTN4) in TALs caused
NKCC2 accumulation at the apical surface of TALs, suggesting it
also mediates NKCC2 endocytosis in TALs (Maskey et al., 2019). In
addition, specific in vivo silencing of ACTN4 in TALs using
CRISPR/Cas9, increased surface NKCC2 expression and
enhanced NaCl reabsorption by TALs (maskey and Ortiz, 2022;
Maskey et al., 2024). This is important because SNPs in ACTN4 are
associated to hypertension in the general population (Chiang et al.,
2014) and it is possible that ACTN4 is also involved in hypertension
by modulating the ALMS1-NKCC2 interaction or acting
independently on ALMS1 on NKCC2 to mediate its endocytosis.
These mechanisms have not been directly studied but require
clarification given that both ALMS1 and ACTN4 may be
associated to hypertension in patients through the regulation
of NKCC2.
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NKCC2 is regulated by phosphorylation

To date, 20 residues in the amino and carboxy terminus in
human NKCC2 have been reported to be phosphorylated in high
throughput and low throughput published reports, according to
Phosphosite.org. Details about the characterization of these sites and
physiological relevance are described in previous reviews (Ares et al.,
2011; Schießl and Castrop, 2015; Caceres and Ortiz, 2019; Mutig,
2017) and Phosphosite.org. It is important to stress the significant
physiological relevance of phosphorylation at T100 and
T105 residues (equivalent to T96 and T101 in mice and rats) in
the amino terminus of NKCC2, which have been shown to be
essential for baseline transport activity (Giménez and Forbush, 2005;
Giménez and Forbush, 2007; Hannemann and Flatman, 2011).
Mutation of either T95 or T100 reduced
NKCC2 phosphorylation, and mutation of both threonines,
abolished phosphorylation detected with a T95/T100 antibody
(Richardson et al., 2011). Importantly, phosphorylation at these
residues is detectable, at baseline unstimulated conditions, in thick
ascending limbs or kidney lysates of mice and rats (Giménez and
Forbush, 2005; Giménez and Forbush, 2003).

Another well described phosphorylated site in NKCC2 is S126 at
the amino terminus. Fraser et al. (2007) described AMP-activated
protein kinase (AMPK) phosphorylate NKCC2 on S126 in vitro.
They also demonstrated that mutating the S126 site significantly
reduced rubidium influx under isotonic conditions in X. laevis. This
data suggests that p-S126 maintains NKCC2-mediated transport
under basal conditions in oocytes. S126 is also a target of another
kinase, protein kinase A (PKA), as reported by Gunaratne et al.
(2010), with the annotation that AMPK has a much lower ability to
phosphorylate S126 since it has a preference for methionine or
leucine. They also reported S874 as a target for PKA in vivo, and
virtually nothing is known about the function of this site. STE20/
SPS1-related proline-alanine-rich protein kinase (SPAK) and
oxidative stress-responsive kinase-1 (OSR1) were the kinases
found to phosphorylate NKCC2 at the T96 and T101 (Piechotta
et al., 2002). They are the most recognized and studied targets of
WNK kinases. WNK1 and WNK4 interact through their RFx [V/I]
motif with the highly conserved CCT domain of SPAK and OSR1
(Vitari Ac Fau - Deak et al., 2005; Moriguchi et al., 2005). Then,
WNK1 and WNK4 phosphorylate T-loop threonine within SPAK
(T233) andOSR1 (T185) kinase domains to activate them (Piechotta
et al., 2002; Vitari Ac Fau - Deak et al., 2005; Moriguchi et al., 2005).
In turn, SPAK/OSR1 phosphorylate CCCs to activate them (NCC,
NKCC1, NKCC2) or deactivate them (KCC3) (Piechotta et al., 2002;
Gagnon and Delpire, 2010; Chiga et al., 2008).

It has been shown that activated SPAK and OSR1 phosphorylate
NKCC2 at a stoichiometry of ~0.3 and ~0.7 mol of phosphate per
mol of NKCC2 in vitro, respectively (Richardson et al., 2011). SPAK
and OSR1 belong to the Sterile20-related protein kinase family and
the GCKs subfamily, which has a 5′ or amino-terminal catalytic
domain (Richardson et al., 2011; Boyce and Andrianopoulos, 2011;
Gagnon and Delpire, 2012). The National Center for Biotechnology
Information lists the gene STK39 encoding human SPAK and
OXSR1 encoding for human OSR1, which share 67% homology
in their amino acid sequence. The Human Protein Atlas reports
medium to high protein expression of SPAK in the brain, respiratory
system, gastrointestinal tract, liver, gallbladder, liver, kidney, and

male and female tissue. A wider distribution is detected for OSR1. In
the kidney, SPAK is localized in the medullary and cortical TAL, the
DCT (Rafiqi et al., 2010) and lowere levels in collecting ducts, while
OSR1 is expressed along the nephron (Yang et al., 2010; Mercier-
Zuber and O’Shaughnessy, 2011). STK39 has been identified as a
hypertension susceptibility gene in Amish, Han Chinese Europeans,
and East Asian subjects (Wang et al., 2009; Chen et al., 2012; Xi et al.,
2013). but no such association has been found for OSR1. Because its
high homology, similar tissue distribution and the fact that
OSR1 can also be activated by WNKs and can phosphorylate
CCCs, OSR1 is studied in parallel with SPAK. It is worth
mentioning that an indication of activated SPAK/OSR1 is the
phosphorylation of S383 and S325, respectively (Richardson and
Alessi, 2008; Susa et al., 2012). Given the high homology between the
kinases, all antibodies directed to the phosphorylated forms
recognize both SPAK and OSR1, most studies in the kidney
measure both SPAK and OSR1 phosphorylation at this site as an
index of activation. The differential effects of SPAK and OSR1 in
different nephron segments still require additional study.

Over the past 20 years since Piechotta’s publication, whose
valuable contribution was providing a link between monogenic
BP syndromes and the CCCs, several knock-in and knock-out
animal models have been generated to explore the regulation of
the CCCs phosphorylation by SPAK and OSR kinases in vivo
(Piechotta et al., 2002). Table 1 summarizes the experimental
models and findings in them. Different genomic manipulation
was made to disrupt either SPAK or OSR1 genes. Notably, there
are more models for SPAK than OSR1, the former are real animal
knock-out or knock-ins.

Genetic deletion of SPAK alone in mice results in a phenotype
characterized by hypotension, hypocalciuria and hypokalemia,
known as Gitelman-like syndrome on a regular sodium diet
(Rafiqi et al., 2010; Yang et al., 2010; Grimm et al., 2012), or low
sodium diet (McCormick et al., 2011). In all models, NCC
phosphorylation at T53, T58, T71, and/or S81 are reduced,
varying between 61% and 90% concerning WT and a reduction
of total NCC. For NKCC2, the results are disparate. Rafiqi’s group
knock-in mouse is the only one reporting a decrease in total and
phospho-NKCC2 (Chiga et al., 2008), whereas other groups report
no change, which may be explained under Dr. McCormick’s
hypothesis of various SPAK isoforms. Another interesting fact to
note is that total OSR1 expression is unchanged during SPAK
deletion while OSR1 phosphorylation rises between 93% and
216%. These data suggest that SPAK plays a fundamental role in
the DCT and a less prominent role in TAL when whole kidney
homogenates from mice are used for blotting. It is also possible that
SPAK deletion drives compensatory phosphorylation of OSR1 that
is different in TALs or DCT. Opposed to these findings, our group
generated a SPAK KO rat model on a Dahl Salt sensitive background
that exhibits lower blood pressure than theWT and a 60% reduction
of T96,101 NKCC2 phosphorylation in suspensions of medullary
TALs (unpublished data). One possible explanation is the antibody
specificity used in mouse studies, which may recognize both pNCC
and pNKCC2 in whole kidney lysates. Another explanation could be
that different regulatory pathways operate SPAK and OSR1 in the
rat versus mice, requiring further study. Concerning the single
genetic deletion of OSR1, only one model was reported. This
may arise from the difficulty of disrupting OSR1, since
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OXSR1 absence is lethal in embryos and only heterozygous or
kidney-specific animals are viable (Rafiqi et al., 2010; Yang et al.,
2010; Lins et al., 2021) bred global heterozygous OSR1 (+/−) and
kidney-specific knockouts (KSP-OSR1−/−). OSR1 (+/−) mice only
showed relative hypotension with no electrolyte abnormalities, while
the KSP-OSR1−/− displayed Bartter-like syndrome and hypotension
on a low sodium diet. Phosphorylation of NKCC2 was dramatically
reduced (68%), but phospho-T58,71 NCC was increased, together
with SPAK phosphorylation. A similar conclusion is drawn for
OSR1 disruption, apparently being important for TAL

NKCC2 phosphorylation in the absence of SPAK, accompanied
by the compensatory phosphorylation of SPAK in the DCT.

McCormick et al. introduced the concept of different isoforms of
SPAK with other effects in the distal nephron to explain the
disparities in NKCC2 and NCC phosphorylation among the
models (McCormick et al., 2011). The full-length SPAK is more
abundant in the DCT and phosphorylates NCC, while the truncated
form (absent kinase domain, ks-SPAK) is mainly expressed in the
TAL and inhibits phosphorylation of NKCC2 (Park et al., 2013). So,
when completely deleting SPAK, ks-SPAK is deleted, and

TABLE 1 SPAK and OSR1 genetic edition effect on NKCC2 phosphorylation.

Experimental
model

Generation of
experimental

model

Phenotype* NKCC2 and NCC
phosphorylation*

SPAK/
OSR1 phosphorylation

References

Knock-in mouse
SPAK243A/243A

Mutation Thr243 in
SPAK protein

Hypotensive on normal diet
Mild hypomagnesemia and
moderate hypocalciuria on
normal diet (0.3% Na+)

Mild hypokalemia,
hyperaldosternonism,

↑plasma corticosterone on low
Na diet (0.03% Na+)

Total NKCC2 — ↓37%
pNKCC2(T96) — ↓82%
Total NCC — ↓30%
pNCC(T53) — ↓61%
pNCC(T58) — ↓86%
pNCC(S89) — ↓78%

NS Rafiqi et al.
(2010)

SPAK−/− mice Deletion of exons 9 and
10 of Stk39

hypotensive,
hyperaldosteronism,
hypocalciuria, mild

hypokalemia
(Gitelman Syndrome)

normal diet

Total NKCC2 — ↑130%
pNKCC2(T96) — ↑360%
Total NCC — ↓58%
pNCC(T58) — ↓76%
pNCC(T71) — ↓63%

Total OSR1 — unchanged
pOSR1— ↑93%

Yang et al. (2010)

Global OSR1+/−mice
KSP-OSR1−/− mice

NS Global OSR1+/−

hypotensive on normal and
low Na diet (0.05% Na+)

Total NKCC2 — unchanged
pNKCC2(T96) — ↓28%
Total NCC — ↑35%
pNCC(T58) — ↑ 21%
pNCC(T71) — ↑56%

(Normal diet 0.4% Na+)

Total OSR1 — ↓25%
pOSR1— ↓31%
KSP-OSR1−/−

Total SPAK — unchanged
pSPAK —↑28%

(Normal diet 0.4% Na+)

Lins et al. (2021)

KSP-OSR1−/−
normotensive on a normal diet
(0.4% Na+) and hypotensive
low Na diet (0.05% Na+),

hypokalemia, ↑FEK,
hypercalciuria, ↓urine

osmolarity
(Bartter Syndrome like)

Total NKCC2 — unchanged
pNKCC2(T96) — ↓68%
Total NCC — ↑58%
pNCC(T58) — ↑38%
pNCC(T71) — ↑27%

(Normal diet 0.4% Na+)

Total SPAK — ↑30%
pSPAK —↑38%

(Normal diet 0.4% Na+)

SPAK−/− mice Duplication of exon 6 Normotensive on a normal
diet (0.49%), hypotensive on a
low Na diet (0.01%NaCl)
Trend to hypokalemia and

hypomagnesemia,
hypocalciuria on normal

diet, ↑PRA

Total NKCC2 — unchanged
pNKCC2(T96,101)

— ↑400%
Total NCC — ↓90%
pNCC(T53) — ↓90%

(Normal diet 0.4% Na+)

Total OSR1 — unchanged
pOSR1— ↑216%

(Normal diet 0.4% Na+)

McCormick et al.
(2011)

SPAK−/− mice Duplication of exon 6 Hypotensive, ↑FEK, ↑FEMg,
↑BUN, aldosterone
Normal Na diet

↑UNaV on a low Na diet

Total NKCC2 — unchanged
pNKCC2(T96,101)

— ↑225%
Total NCC — ↓78%
pNCC(T58) — ↓79%

Total OSR1 — unchanged
pOSR1 — NS

Grimm et al.
(2012)

SPAK−/−•ksOSR1−/−
(Double knock-out)

Pax8-rtTA/LC1 system
Exons 1–4 of OXSR1

**Hypotensive, hypokalemia
↑BUN and hematocrit on a

low Na diet

Total
NKCC2 — unchanged*
pNKCC2(T96,101)
— ↑400%*, 1,200%**
pSer126 — ↓50%**

Total NCC — unchanged**
pNCC (T53) — ↓80%**

— Ferdaus et al.
(2016)

*Respect to WT, littermates, ** Respect to SPAK−/− mice. NS, not studied/not reported; BUN, blood urea nitrogen; FEK, fractional excretion of potassium; FEMg, fractional excretion of

magnesium; PRA, plasma renin activity; UNaV, urinary sodium excretion.
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NKCC2 phosphorylation increases. Grimm et al. further confirmed
this hypothesis, adding that the hyperphosphorylation of
NKCC2 may be further elevated due to AMPK since they found
pAMPK was significantly increased in the medulla of SPAK−/− mice
(Grimm et al., 2012).

In most papers, authors measure the phosphorylation of
T96 and T101 to indicate activity. However, Hannemann,
Flatman et al. point out that an increase in phosphorylation does
not always accurately reflect an increase in transport activity (and
vice versa), as they found with calyculin. HEK-293 cells, stably
expressing ferret NKCC1(fNKCC1) and ferret NKCC2
(fNKCC2), were treated with calyculin, causing a 5-fold increase
in phosphorylation of fNKCC1 and fNKCC2, but only a 30%
increase of Rb + transport in fNKCC1 and a small drop of Rb +
transport in fNKCC2. Since an increase in phosphorylation may be
due to phosphatase activity (e.g., calyculin A), experiments
examining actual ion transport (Wang et al., 2009) Rb + uptake,
Tl + influx, intracellular Cl, or Na with fluorescent dyes (such as
SBFI) must be performed together with phospho-NKCC2 blotting.

Some other factors should be considered for an accurate and
reproducible NKCC2 phosphorylation measurement in mice,
especially those with a C57BL/6 mouse background. (Moser
et al., 2021) tested different tissue processing protocols and found
that the pNKCC2 band at 170 KDa became more intense when fresh
kidney lysates were used compared to frozen samples. Also, using a
lysis buffer impacted the intensity of band detection, with the DFLB
buffer better than RIPA in obtaining a good signal intensity.
However, one of the major problems they encountered was that

the existing anti-p-NKCC2 antibodies were directed to the T96 and
T101 in mouse models, but the C57BL/6J mouse NKCC2 lacks five
amino acids 97–101 which may affect reactivity of some antibodies
in mice. The second problem was the cross-reaction of existing anti-
p-NKCC2 antibodies (pT212/T217 NKCC1 R5 a-Human, pT96/
T101 NKCC2 9934 AP a-Rat, pT96/T101 a-Mouse) with the
phosphorylated forms of NCC (T53 and T58) given the
similarities in the phospho region. In response to this gap, they
produced a new antibody directed to the amino acids surrounding
the T96, YYLQ(p)TMDA. They thoroughly validated the new anti-
p-NKCC2 antibody by comparing its specificity with previously
reported anti-pNKCC2 and anti-p-NCC antibodies (Moser et al.,
2021). This work stresses that simple technicalities, the use of whole
kidney vs. dissected tubule suspensions or different strains may
greatly impact the results.

SPAK and OSR1 are known targets of the With No Lysine
Kinase 4 (WNK4) kinase pathway in the distal convoluted tubule.
However, the effect of WNK4 in the TAL is still obscure, as many
groups have reported different results, partly due to the cross-
reaction of the pNKCC2 antibody with pNCC. Meoka et al.
attempted to clarify the role of the WNK4-SPAK/OSR1 pathway
on NKCC2 phosphorylation (Maeoka et al., 2024), with the new
pT96-NKCC2 antibody. Wnk4−/− deletion in mice did not lower
pT96-NKCC2 abundance and minimally reduced the
phosphorylated activated forms of SPAK and OSR1 (pSPAK/
pOSR1) in the TAL. This last finding led the authors to ask why
the kinases were still phosphorylated with Wnk4 deletion. To
answer their question, they used immunofluorescence to detect

FIGURE 1
Molecular mechanism of NKCC2 regulation by trafficking, protein-protein interactions, and phosphorylation at the apical surface of TALs.
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Wnk1, which is highly expressed in the TAL and DCT, they found
that Wnk1 was localized to apical side of the TAL, suggesting this
isoform would be responsible for the SPAK/OSR1 phosphorylation,
and not Wnk4.

Hormones and other molecules modifying
NKCC2 phosphorylation

Even though phosphorylation of T96,101 occurs at baseline
conditions, it is enhanced by physiological stimuli. Many
hormones that stimulate NKCC2 activity and phosphorylation,
e.g., Arginine Vasopressin (AVP) (Rieg et al., 2013) and β-
adrenergic receptor stimulation (Garg et al., 1992; Plato and
Garvin, 2001; Haque et al., 2012), increase intracellular levels of
the second messenger cAMP.

AVP is essential in body electrolyte homeostasis by controlling,
in part, the kidney’s ability to reabsorb water in the distal nephron.
However, in the TALs receptors to AVP, V2R are expressed
(Nonoguchi et al., 1995), suggesting AVP has some stimulatory
effect on NKCC2. Having this hypothesis in mind, Gimenez and
Forbush (2003) tested an acute stimulation (1 h) with dDAVP in
CD-1 mice; using the R5 antibody (an anti-phospho-
NKCC1 antibody) they found dDAVP enhanced
NKCC2 phosphorylation at T96,101 and also increased apical
fraction in TALs. These data showed that AVP regulates
NKCC2 activation but leaves doubt about the kinase-mediated
phosphorylation. To answer this last question, Sarita et al.
(2013), using a short dDAVP stimulation again, found that
DAVP modulates the interaction of NKCC2 with SPAK
isoforms. dDAVP reduces the binding of KS-SPAK and increases
the binding of FL-SPAK. In addition, dDAVP-V2R stimulation with
desmopressin mainly induces phosphorylation of SPAK but to a
lesser extent of OSR1 in mTAL, leading to NKCC2 phosphorylation
at T96/T101 (Saritas et al., 2013). To put another piece in the puzzle,
Vallon’s group investigated the downstream pathway of AVP. They
generated a knock-out for Adenylyl Cyclase 6 (AC6−/−) and tested
the effect of dDAVP. The isoform AC6 accounts for part of the
dDAVP-induced NKCC2 expression and phosphorylation at S126.
AC6−/− mice have a 50% reduction in total NKCC2 expression
compared to wild-type animals. Treatment with dDAVP, increases
NKCC2 abundance two-fold compared to wild-type mice (Rieg
et al., 2013). AC6−/− mice also have lower S126-NKCC2
phosphorylation in response to dDAVP after overnight water
loading. AVP has also been involved in calcineurin-sorting
protein-related receptor with A-type repeats (SORLA) activation
of NKCC2 (Borschewski et al., 2016).

Another key axis regulating electrolyte and water homeostasis is
the renin-angiotensin system (RAS). In the distal nephron, chronic
Angiotensin II (Ang II) induces phosphorylation of NCC via the
WNK4-SPAK pathway (van der Lubbe et al., 2012; Castañeda-
Bueno et al., 2012). Ang II enhances Na reabsorption directly by
increasing Na transport along the nephron, including the TAL (Silva
and Garvin, 2008; Wu and Johns, 2002). 14 days infusion of Ang II
seems to regulate NKCC2 expression in the cortex and medulla
differentially; in the cortex, it increases total and
p-T96,101NKCC2 but decreased total and doesn’t change
p-T96,101 NKCC2 in the medulla (Nguyen et al., 2015). More

prolonged infusion of Ang II (42 days) also increases total cortical
NKCC2 expression (Lins et al., 2021). SPAK is also differentially
regulated, prolonged Ang II causes a greater total and
phosphorylated forms in the cortex but a lower expression in the
medulla (Nguyen et al., 2015). These data suggest that SPAKmay be
involved in the phosphorylation of NKCC2 by Ang II. It is
important to note that in those studies, whole kidney
homogenates where used, and is possible that p T96-101
antibodies cross-reacted with pT53 in NCC.

Growth hormone (GH) has sodium-retaining properties partly
mediated by insulin-like growth factor 1(IGF-1) (Haffner et al.,
1990). GH mainly acts by regulating ENaC transcription
(Kamenicky et al., 2008) and activation (Kamenicky et al., 2011),
it also appears to activate NKCC2 in the medullary TAL indirectly.
Administration of recombinant human GH to Wistar-Hannover
rats significantly increased phosphorylation of T96,101-NKCC2 in
the inner stripe of outer medulla thick ascending limbs.
Additionally, increased NKCC2 expression was observed in the
cortical region. The authors leave elusive the role of
NKCC2 activation on the anti-natriuretic effect of GH.

Uromodulin, or Tamm-Horsfall protein (THP), is highly
expressed in the kidney with the highest mRNA levels in the
cortical TAL followed by the medullary TAL where it localizes
with NKCC2 at the apical side (Nielsen et al., 1998; Bachmann et al.,
1985). It has been shown to play a minor role in water homeostasis
and salt reabsorption. THP knockout animals showed lower levels of
pNKCC2 compared toWT animals. Furthermore, a blunted sodium
excretion was observed when these mice were treated with
furosemide. Also, THP seems involved in NKCC2 response to
chloride depletion, which suggests SPAK/OSR1 kinases mediate
the interaction between THP and NKCC2 (Mutig et al., 2011).
Following these findings, transiently transfected HEK 293 with
uromodulin led to an increase of NKCC2 phosphorylation at
T96,101 and its activity. In transgenic TgUmod wt/wt mice
overexpressing THP, p-T243 SPAK and T185 OSR1 were
increased, supporting the upregulation of these kinases (Trudu
et al., 2013). However, whether the mechanism of
NKCC2 regulation by uromodulin is direct or indirect is unclear.
We could not immunoprecipitate UMOD with endogenous
NKCC2, and we have never identified it as interacting with the
amino-terminus or carboxyl terminus (unpublished observations),
suggesting that UMOD may control cAMP or WNK signaling in
TALs rather than binding NKCC2.

Mouse protein-25 (MO25) has been found to modulate SPAK
and OSR1 activity, hence NKCC2 phosphorylation. MO25 isoforms,
alfa, and beta, induce 100-fold activation of SPAK/OSR1, which
enhances their ability to phosphorylate NKCC2 (and other targets
such as NKCC1 and NCC) on the canonical residues, T95,101 but
also the sites Thr118 and Ser120 (Filippi et al., 2011).

Calcineurin is a ubiquitous serine/threonine protein
phosphatase that seems to regulate NKCC2 activity since
cyclosporine, a calcineurin inhibitor, induces hypertension and
impairs Na reabsorption in medullary TALs (Tumlin and Sands,
1993). Even though calcineurin has the potential to dephosphorylate
NKCC2 at T96-101 directly, this has not been shown. Cyclosporin-
treated rats (25 mg/kg) developed sodium retention, low urine
osmolarity after 7 days, and increased NKCC2 expression
(Esteva-Font et al., 2007). Cyclosporin increases phosphorylation
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of SPAK/OSR1 hence phosphorylation of NKCC2 at T96,101
(Borschewski et al., 2016). The Mutig group, previously showed
that genetic deletion of SORLA is associated with reduced
NKCC2 phosphorylation (Reiche et al., 2010). Later, they linked
SORLA and calcineurin in the same signaling pathway in the TAL to
modulate NKCC2 phosphorylation by modulating SPAK
(Borschewski et al., 2016).

As we described above, fructose increases NaCl transport via
NKCC2 in rat TALs by increasing the surface expression of NKCC2.
Interestingly, fructose, added acutely (30 min) did not affect
NKCC2 phosphorylation (Ares et al., 2019). Later, our laboratory
further explored the effect of fructose and high salt diet on NKCC2.
We found that chronic feeding of fructose (20% in drinking water)
with or without high salt diet increased NKCC2 phosphorylation at
T96,101 and S126, compared to baseline or salt-alone groups (Ares
and Ortiz, 2015). This was supported by transcriptome profiling
showing upregulation of SPAK and AMPK pathways genes (Kassem
et al., 2017).

Accumulating evidence links an enhanced p-T96,101 to increased
salt reabsorption in salt-sensitive hypertension. Micro-perfusion
experiments in Dahl Salt-sensitive rats (Dahl SS) show enhanced
absorption by the TAL exclusively (Kirchner, 1990; Hawk and
Schafer, 1991; Kirchner et al., 1995; García et al., 1999; Ares et al.,
2012) reported that NKCC2 phosphorylation at T96,101 is increased 5-
fold in Dahl SS compared to salt-resistant rats on a regular salt diet
(Roman and Kaldunski, 1991), and this was independent of the
hypertension observed in these rats during high salt. Additionally,
Dahl SS has a 60% increase of p-SPAK/OSR1, suggesting the
enhanced NKCC phosphorylation is due to enhanced activity of
SPAK and/or OSR1. Similarly, in Milan hypertensive (MHS) rats,
phosphorylation levels of NKCC2 were significantly increased
together with S325-SPAK increase phosphorylation (Carmosino
et al., 2011). It remains to be determined whether enhanced
NKCC2 phosphorylation, trafficking and activity are secondary to
SPAK, OSR1 or other kinases and which are the intrinsic
mechanisms that maintain an abnormally elevated NKCC2 even
during high salt diet. In addition, there is little data on
NKCC2 regulation in patients during hypertension, acute or chronic
kidney disease and the contribution of this pathways in human disease
should continue to be studied.

Conclusion

Altogether, recent data highlighted the critical steps of
NKCC2 trafficking. Most likely, it controls the regulation of
NKCC2 activity in the TAL. The molecular mechanism of

NKCC2 trafficking at the apical membrane of the TAL has
become a significant interest among researchers. We discussed
how NKCC2 activity is controlled by trafficking, protein-protein
interactions, and phosphorylation (Figure 1). Any gene or
interacting protein that affects NKCC2 trafficking, or its
phosphorylation could change the expression level of NKCC2 at
the apical surface of TAL, or its activity which may affect salt
reabsorption and BP control.
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