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Objectives: To evaluate the effectiveness of an MRI radiomics stacking ensemble
learning model, which combines T2-weighted imaging (T2WI) and contrast-
enhanced T1-weighted imaging (CE-T1WI) with deep learning-based automatic
segmentation, for preoperative prediction of the prognosis of high-intensity
focused ultrasound (HIFU) ablation of uterine fibroids.

Methods: This retrospective study collected data from 360 patients with uterine
fibroids who underwent HIFU treatment. The dataset was sourced from Center A
(training set: N = 240; internal test set: N = 60) and Center B (external test set: N =
60). Patients were categorized into favorable and unfavorable prognosis groups
based on the post-treatment non-perfused volume ratio. Automated
segmentation of uterine fibroids was performed using a V-net deep learning
models. Radiomics features were extracted from T2WI and CE-T1WI, followed by
data preprocessing including normalization and scaling. Feature selection was
performed using t-test, Pearson correlation, and LASSO to identify the most
predictive features for preoperative prognosis Support Vector Machine (SVM),
Random Forest (RF), Light Gradient Boosting Machine (LightGBM), and Multilayer
Perceptron (MLP) were employed as base learners to construct base predictive
models. These models were integrated into a stacking ensemble model, with
Logistic Regression serving as the meta-learner to combine the outputs of the
base models. The performance of the models was assessed using the area under
the receiver operating characteristic curve (AUC).

Results: Among the base models developed using T2WI and CE-T1WI features,
the MLP model exhibited superior performance, achieving an AUC of 0.858 (95%
CI: 0.756–0.959) in the internal test set and 0.828 (95% CI: 0.726–0.930) in the
external test set. It was followed by the SVM, LightGBM, and RF, which obtained
AUC values of 0.841 (95% CI: 0.737–0.946), 0.823 (95% CI: 0.711–0.934), and
0.750 (95% CI: 0.619–0.881), respectively. The stacking ensemble learning
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model, which integrated these five algorithms, demonstrated a notable
enhancement in performance, with an AUC of 0.897 (95% CI: 0.818–0.977) in
the internal test set and 0.854 (95% CI: 0.759–0.948) in the external test set.

Conclusion: The DL based automatic segmentation MRI radiomics stacking
ensemble learning model demonstrated high accuracy in predicting the
prognosis of HIFU ablation of uterine fibroids.

KEYWORDS

artificial intelligence, uterine fibroids, high intensity focused ultrasound, ensemble
stacking model, magnetic resonance imaging

1 Introduction

Uterine fibroids are the most prevalent benign tumors of the
female reproductive system, characterized by high vascularity, with
incidence rates increasing with age. The symptoms associated with
fibroids can appreciably impair women’s quality of life (Stewart
et al., 2017; Bulun, 2013). Traditional treatment modalities primarily
encompass hysterectomy, myomectomy, laparoscopic
myomectomy, and uterine artery embolization (Lethaby et al.,
2017; Donnez et al., 2015; Jacoby et al., 2020; McLucas et al.,
2001). Recently, non-invasive high-intensity focused ultrasound
(HIFU) has gained prominence in the management of
symptomatic uterine fibroids and is now included in treatment
guidelines in several countries, with its effectiveness extensively
corroborated (Lyon et al., 2020; Chen et al., 2018; Liu et al.,
2020). Nevertheless, due to the inherent properties of fibroid
tissue and technical constraints, HIFU may not be suitable for all
patients (Huang et al., 2019; Zhang et al., 2020; Verpalen et al., 2019;
Verpalen et al., 2020). Therefore, precise preoperative evaluation is
imperative for the successful application of HIFU. Enhancing the
accuracy of preoperative predictions regarding HIFU treatment
efficacy is crucial for clinicians to formulate optimal treatment
strategies.

Preoperative magnetic resonance imaging (MRI) with HIFU is
instrumental in the differential diagnosis of uterine fibroids, as well
as in assessing their location, morphology, and potential tissue
composition (Liao et al., 2023; Venkatesan et al., 2012). MRI is
recommended as an essential preoperative evaluation tool for HIFU
treatment of uterine fibroids. The imaging characteristics of fibroids
across various MRI sequences exhibit a notable correlation with
their tissue heterogeneity. Pervious research has elucidated that T2-
weighted imaging (T2WI) offers superior visualization of the
internal architecture and morphology of uterine fibroids,
facilitating the differentiation of cellular hydration levels from
fibrous tissue composition (Zhao et al., 2013; Zhao et al., 2015;
Funaki et al., 2007). Moreover, contrast-enhanced T1-weighted
imaging (CE-T1WI), achieved through the administration of
contrast agents, augments the delineation of fibroid boundaries
relative to the surrounding tissues, thereby enhancing the
assessment of vascularization (Keserci and Duc, 2017; Yoon
et al., 2010). Consequently, it assists in evaluating the
proliferative activity and invasive potential of the fibroids. These
imaging characteristics are instrumental in enabling clinicians to
subjectively assess the tissue characteristics of fibroids and forecast
the efficacy of ultrasound energy in inducing coagulative necrosis in
the targeted region. Despite these advances, challenges remain due

to the variability in clinical experience and the inherent limitations
of human visual assessment in accurately evaluating fibroid
morphology, spatial distribution, and lesion characteristics (Dou
et al., 2024).

Radiomics is revolutionizing medical imaging by enabling the
detailed analysis of tumor complexity at a microscopic level through
technological advancements (Guiot et al., 2022; Gillies et al., 2016).
By utilizing high-throughput imaging data, radiomics overcomes the
limitations of traditional imaging, revealing subtle features that are
often imperceptible to the naked eye (Lambin et al., 2017). This
cutting-edge technology not only enhances the precision of tumor
diagnosis but also facilitates personalized treatment, providing
unparalleled insight into the potential threats posed by tumors.
In the preoperative assessment of HIFU ablation of uterine fibroids,
radiomics models have demonstrated significant clinical potential.
However, previous studies have primarily relied on radiomics
features from single MRI sequences for efficacy prediction
(Cheng et al., 2024; Li et al., 2023). While some progress has
been achieved, single sequences often fail to comprehensively
represent the biological information of fibroids, leading to limited
predictive accuracy. By integrating information from different MRI
sequences, a more comprehensive understanding of the tissue
characteristics and biological properties of fibroids can be
achived, which significantly enhancing the accuracy and stability
of prediction models (Zheng et al., 2021). Nonetheless, existing
research has not fully incorporated the CE-T1WI sequence, which
most accurately reflects fibroid blood supply, and has overlooked the
importance of including diverse MRI sequences in the model to
enhance its performance. To facilitate this integration, deep learning
(DL) based automatic segmentation plays a crucial role by providing
precise delineation of fibroid boundaries and relevant anatomical
structures across multiple MRI sequences (Wang et al., 2014). As
Imran Iqbal demonstrated, deep learning can effectively extract
disease-related information and address challenges such as
limited annotated data by leveraging pre-trained models, which
has proven beneficial in detecting various medical conditions,
including joint abnormalities and skin cancer screening (Lqbal
et al., 2021; Iqbal et al., 2020). Such methodologies not only
enhance the accuracy of segmentation but also provide a solid
foundation for the subsequent extraction of radiomic features,
ensuring both the efficiency and consistency of the analysis. The
application of automated segmentation techniques allows
researchers to rapidly process large volumes of imaging data,
thereby improving the reliability and predictive power of model
construction. However, in the realm of machine learning
applications, traditional single algorithms and hyperparameter
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tuning methods, although effective, may not fully exploit the
potential of the radiomics features. Stacking, as an advanced
ensemble learning method, demonstrates substantial potential in
enhancing predictive performance (Naimi and Balzer, 2018).
Stacking first trains multiple types of base learners to capture
diverse features and patterns within the data. Subsequently, the
outputs from these base learners are used as inputs to train a meta-
learner, which integrates the strengths of the base learners and
addresses their shortcomings, ultimately producing more accurate
results. This method leverages the advantages of multiple models to
effectively handle complex data, reduce overfitting, and improve
prediction accuracy and stability (Sesmero et al., 2015). This study
aims to develop a multimodal MRI radiomics analysis method that
integrates automated segmentation and stacking ensemble learning
techniques to further enhance the predictive performance of HIFU
ablation of uterine fibroids.

2 Materials and methods

2.1 Patients

We conducted a retrospective analysis involving
1457 consecutive patients diagnosed with uterine fibroids across
two medical centers. To accurately assess the efficacy of HIFU
ablation for uterine fibroids while controlling for various factors

on efficacy, such as fibroid size, location, tissue composition,
abdominal wall thickness, and the presence of abdominal wall
scars. We established the following inclusion criteria (Stewart
et al., 2017): patients over 18 years old (Bulun, 2013); no prior
surgical interventions or relevant medication history (Lethaby et al.,
2017); fibroids located in the anterior uterine position (Donnez et al.,
2015); fibroids measuring between 3–8 cm in diameter (Jacoby et al.,
2020); abdominal fat thickness ranging from 1 to 3 cm; and
(McLucas et al., 2001) for patients with multiple fibroids, only
the largest fibroid was included. The exclusion criteria were
(Stewart et al., 2017): history of pelvic surgery or other
concurrent tumors; and (Bulun, 2013) imaging artifacts that
interfered with accurate assessment. A non-perfused volume ratio
(NPVR) ≥80% was used to define treatment efficacy, a threshold
validated across different levels of physician expertise (Gong et al.,
2022). Thus, an NPVR of ≥80% was considered indicative of a
favorable prognosis, while an NPVR <80% was deemed an
unfavorable prognosis. NPVR assessments were independently
performed by two radiologists: one with 4 years and the other
with 15 years of diagnostic experience. Discrepancies were resolved
in favor of the more experienced radiologist. After a stringent
screening process, we included 300 patients from Center A and
60 from Center B, dividing them into three groups: a training set
(N = 240), an internal test set (N = 60), and an external test set (N =
60). Approval for the study was granted by the Institutional Review
Boards of both centers (Center A: approval number 2022-K129,

FIGURE 1
Flowchart of patient enrollment and exclusion.
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Center B: approval number 2024-J-29), and the need for written
informed consent was waived. The patient enrollment process is
detailed in Figure 1.

2.2 Images acquisition

MRI scans were acquired from two centers: one using a 3.0 T
Signa HDxt MRI scanner and the other using a 1.5 T Signa Voyager
MRI scanner, both provided by General Electric. Patients were
positioned in the supine position and scanned using a dedicated

8-channel phased array coil for the abdomen. Detailed MRI
acquisition parameters are shown in Table 1.

2.3 Image segmentation and feature
extraction

This study employed a V-Net architecture for automatic
segmentation of pelvic MRI data, specifically targeting uterine
fibroids in T2WI and CE-T1WI (Milletari et al., 2016). The
network is based on an encoder-decoder architecture. The

TABLE 1 MRI acquisition parameters.

Parameters Signa HDxt Signa voyager

T2WI CE-T1WI T2WI CE-T1WI

Magnetic field strength 3.0 T 1.5 T

Repetition time (TR) 270 3.84 4,000 6

Echo time (TE) 2.1 1.81 68 2

Feld of view (FOV) 98.1 × 38 68.4 × 26.5 60 × 60 60 × 60

Slice thickness (mm)/gap (mm) 6/2 4/2 6/2 4/2

matrix 512 × 512 512 × 512 256 × 256 256 × 256

FIGURE 2
Schematic diagram of the segmentation model structure.
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encoder uses 3D convolutional modules to extract features from
medical images and adjusts the feature resolution through
convolution operations with a stride of 2. In the decoder, 3D
transposed convolutions are used to progressively restore the
deep semantic features extracted by the encoder to a higher
resolution. Skip connections are incorporated between the
encoder and decoder to effectively combine low-level and high-
level features, thereby enhancing segmentation accuracy. The
network includes three auxiliary loss layers and one main loss
layer; the main loss layer employs 3D transposed convolutions to
recover the feature maps to the original image size, ultimately
outputting the automatically segmented target regions. Figure 2
illustrates the architecture of the automatic segmentation network,
while Figure 3 presents the segmentation results. We evaluated the
model’s performance on the validation data set, which yielded an
average Dice Similarity Coefficient (DSC) of 0.883 for the T2WI
segmentation model and 0.809 for the CE-T1WI segmentation
model, indicating good performance in the automatic
segmentation for uterine fibroids.

After the automatic segmentation of the remaining MRI scans,
two independent radiologists evaluated the segmented regions. For
images with inaccurate outlines, manual corrections were made
using ITK-SNAP software (version 3.8, http://www.itksnap.org) to
create complete Regions of Interest (ROIs). Prior to feature
extraction, all MRI images and segmentations were resampled to
a voxel size of 1 × 1 × 1 mm3 using bilinear interpolation. Features
were extracted from the T2WI and CE-T1WI ROIs using Python
(version 3.10, https://www.python.org), focusing on both low-
dimensional and high-dimensional aspects. Low-dimensional
features comprised shape and first-order histogram metrics, while
high-dimensional features included texture characteristics derived
from various matrices: gray-level co-occurrence matrix (GLCM),
gray-level run-length matrix (GLRLM), gray-level size-zone matrix
(GLSZM), neighborhood gray-tone difference matrix (NGTDM),
and gray-level dependence matrix (GLDM). Additionally, texture

features were analyzed in the Gaussian Laplacian filter domain (core
sizes ranging from 2.0 to 5.0 mm) and the wavelet filter domain.

2.4 Feature selection

To assess the interobserver repeatability of radiomic features, the
intraclass correlation coefficient (ICC) was calculated using data
from 100 randomly selected patients at center A. Features with ICC
values greater than 0.8 were deemed highly consistent and were
included for further analysis. To harmonize radiomic features across
different MRI scanners, the ComBat method was applied (Orlhac
et al., 2022). To address biases introduced by imbalanced data
distributions, which could affect model performance, the
Synthetic Minority Over-sampling Technique (SMOTE) was
applied to increase the number of samples in underrepresented
classes, thereby improving model robustness (Chawla et al., 2002).
Subsequently, feature selection was conducted on the harmonized
T2WI and CE-T1WI features. Initially, a t-test was employed to filter
features with significant correlations to treatment outcomes,
retaining those with strong associations. Pearson’s correlation
coefficient was then computed to analyze the relationships
among these features, retaining features with coefficients above
0.8. Finally, the Least Absolute Shrinkage and Selection Operator
(LASSO) regression was applied for further refinement, aiming to
reduce dimensionality and select the most relevant features
for analysis.

2.5 Construction of stacking ensemble
learning model

Stacking ensemble learning is an advanced machine learning
technique that combines the outputs of multiple base learners using
a meta-learner to improve predictive performance. In this study,

FIGURE 3
Visual inspection of the segmentation results. (A) presents the automatic segmentation results on T2WI for a 48-year-old patient diagnosed with
uterine fibroids, while (B) presents the automatic segmentation results on CE-T1WI for a 39-year-old patient also diagnosed with uterine fibroids.
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four traditional machine learning algorithms were employed as base
learners: Support Vector Machine (SVM), Random Forest (RF),
Multilayer Perceptron (MLP), and Light Gradient BoostingMachine
(LightGBM). These base learners formed the first layer of the
ensemble model. A Logistic Regression (LR) algorithm was
selected as the meta-learner for the second layer due to its strong
generalization capabilities and effectiveness in combining the
predictions of the base learners, while addressing their biases and
reducing overfitting. Hyperparameters for each base learner were
optimized using Bayesian optimization, which efficiently searches
the hyperparameter space to enhance model performance (Snoek
et al., 2012). The predictive performance of the ensemble model was
evaluated by calculating the area under the receiver operating
characteristic curve (AUC). In addition, metrics such as accuracy,
sensitivity, and specificity were assessed using the maximum
Youden’s index to provide a comprehensive evaluation of model
performance. The radiomics analysis pipeline is shown in Figure 4.

2.6 Statistical analysis

All statistical analysis was performed using SPSS (version
26.0) and Python (version 3.10). The kappa test was used to
analyze the consistency of patient grouping results between two
radiologists (Kappa values in the range of 0.80–1.00, good
consistency; 0.40 to 0.79, fair consistency; less than 0.40, poor
consistency). Continuous variables were described as mean ±
standard deviation and compared by a Mann–Whitney U test or
t-test. Categorical variables were summarized as frequencies and
percentages using the chi-square test or Fisher’s exact test. The
AUC of different models were statistically compared using the
DeLong test. A P-value <0.05 was considered statistically
significant.

3 Results

3.1 Patient characteristics and outcome

In the study, a total of 354 patients were initially enrolled at
Center A. Out of these, 54 patients were excluded due to either
incomplete or artifact-ridden imaging data. The remaining cohort
comprised 172 patients with a favorable prognosis and 128 patients
with an unfavorable prognosis. At Center B, 65 patients were
screened, with 5 exclusions for the same reasons. This left
35 patients with a favorable prognosis and 25 with an
unfavorable prognosis. The inter-rater reliability between the two
radiologists was evaluated using the Kappa statistic, which yielded a
value of 0.894 (P < 0.001), reflecting a strong level of agreement. The
clinical characteristics of the patients are detailed in Table 2.

3.2 Feature selection

Initially, 2,394 features were initially extracted from the ROIs in
T2WI and CE-T1WI. After applying an ICC threshold of 0.8,
2,376 features were retained for further analysis. To address class
imbalance, the SMOTE algorithm was employed to increase the
number of unfavorable prognosis cases in Center A by 44 instances.
The t-test was performed to identify features significantly associated
with HIFU prognosis, resulting in 491 features. Then, Pearson
correlation analysis was used to filter out features with non-
significant correlations, reducing the list to 275 features. Finally,
LASSO regression was applied for further feature selection and
dimensionality reduction, narrowing the list to 36 features from
T2WI and CE-T1WI, which were then used to construct the stacking
ensemble learning model. The results of feature selection can be
found in Supplementary Material S1.

FIGURE 4
Workflow of the radiomics analysis in this study.
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TABLE 2 Clinical and radiological characteristics of patients.

Characteristics Traning set (n = 240) P-Value Internal test set (N = 60) P-Value External test set (N = 60) P-Value

NPVR ≥ 80%
(n = 137)

NPVR < 80%
(n = 103)

NPVR ≥ 80%
(n = 35)

NPVR < 80%
(n = 25)

NPVR ≥ 80% (n = 38)
NPVR < 80% (n = 25)

NPV < 80% (n = 22)
NPVR < 80% (n = 25)

Age (years) 39.63 ± 6.22 39.22 ± 6.17 0.496 39.69 ± 6.83 38.36 ± 7.33 0.475 38.18 ± 8.43 40.47 ± 7.67 0.287

Abdominal Fat
Thickness (mm)

16.02 ± 7.63 17.11 ± 9.62 0.108 15.89 ± 5.41 17.08 ± 6.31 0.776 20.44 ± 8.71 18.84 ± 5.94 0.69

Fibroid Type (n (%)) <0.001 0.306 0.165

Submucosal 3 (2.19) 2 (1.94) 1 (2.86) 2 (8.00) 3 (7.89) 0 (0.00)

Intramural 115 (83.94) 57 (55.34) 32 (91.43) 16 (64.00) 23 (60.53) 18 (81.82)

Subserosal 19 (13.87) 44 (42.72) 2 (5.71) 7 (28.00) 12 (31.58) 4 (18.18)

T2WI Signal Intensity 0.809 0.141 0.984

Hypointensity 74 (54.01) 57 (55.34) 15 (42.86) 12 (48.00) 29 (76.32) 17 (77.27)

Isointensity 27 (19.71) 17 (16.50) 2 (5.71) 5 (20.00) 5 (13.16) 3 (13.64)

Hyperintensity 36 (26.28) 29 (28.16) 18 (51.43) 8 (32.00) 4 (10.53) 2 (9.09)

T2WI Signal Homogeneity 0.044 1.000 0.951

Homogeneous 98 (71.53) 60 (58.25) 20 (57.14) 15 (60.00) 16 (42.11) 10 (45.45)

Inhomogeneous 39 (28.47) 43 (41.75) 15 (42.86) 10 (40.00) 22 (57.89) 12 (54.55)

CE-T1WI Signal Intensity <0.001 0.006 0.359

Hypointensity 70 (51.09) 67 (65.05) 17 (48.57) 19 (76.00) 21 (55.26) 8 (36.36)

Isointensity 49 (35.77) 5 (4.85) 14 (40.00) 1 (4.00) 8 (21.05) 6 (27.27)

Hyperintensity 18 (13.14) 31 (30.10) 4 (11.43) 5 (20.00) 9 (23.68) 8 (36.36)

CE-T1WISignal
Homogeneity

0.869 0.964 0.816

Homogeneous 44 (32.12) 35 (33.98) 14 (40.00) 11 (44.00) 8 (21.05) 6 (27.27)

Inhomogeneous 93 (67.88) 68 (66.02) 21 (60.00) 14 (56.00) 30 (78.95) 16 (72.73)
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3.3 Performance assessment of
different models

The selected features were utilized to construct models with four
base learners. Among these, the MLP model showed superior
performance, achieving an AUC of 0.858 (95% CI: 0.756–0.959)
on the internal test set and 0.828 (95% CI: 0.726–0.930) on the
external validation set. This was followed by SVM, LightGBM, and
RF, with internal validation set AUCs of 0.841 (95% CI:
0.737–0.946), 0.823 (95% CI: 0.711–0.934), and 0.750 (95% CI:
0.619–0.881), respectively (Figure 5). Detailed performance

evaluations of the models are provided in Table 3. The
integration of logistic regression with these four base learners to
form an ensemble model led to a substantial enhancement in AUC,
reaching 0.897 (95% CI: 0.818–0.977) on the internal test set and
0.854 (95%CI: 0.761–0.952) on the external validation set (Figure 6).

4 Discussion

In this study, a novel multimodal MRI stacking ensemble
learning model was developed and independently validated,

FIGURE 5
Comparing the AUC of different basemodels. The subfigures (A) and (B) respectively display the AUC curves of different basemodels on the internal
and external test sets.

TABLE 3 Performance metrics of base models and stacking ensemble models.

AUC(95%CI) Accuracy Sensitivity Specificity Precision P-Value

SVM Training set 0.949 (0.737–0.946) 0.879 0.856 0.896 0.864 -

Internal testing set 0.841 (0.737–0.946) 0.767 0.826 0.730 0.655 0.031

External testing set 0.801 (0.689–0.913) 0.750 0.593 0.879 0.800 0.017

RF Training set 0.897 (0.859–0.935) 0.824 0.817 0.830 0.787 -

Internal testing set 0.750 (0.619–0.881) 0.733 0.652 0.784 0.652 <0.01

External testing set 0.740 (0.612–0.867) 0.717 0.667 0.758 0.692 <0.01

MLP Training set 0.927 (0.8967–0.958) 0.849 0.837 0.859 0.821 -

Internal testing set 0.858 (0.756–0.959) 0.817 0.783 0.838 0.750 0.043

External testing set 0.828 (0.726–0.930) 0.750 0.852 0.667 0.676 0.028

LightGBM Training set 0.926 (0.893–0.959) 0.858 0.875 0.844 0.812 -

Internal testing set 0.823 (0.711–0.934) 0.833 0.783 0.865 0.783 0.026

External testing set 0.727 (0.598–0.8570) 0.683 0.897 0.484 0.619 0.020

Stacking Internal testing set 0.897 (0.818–0.977) 0.833 0.850 0.825 0.773 -

External testing set 0.854 (0.761–0.952) 0.767 0.741 0.788 0.741 -

P values were obtained by performing DeLong test between Stacking ensembel model and base models constructed.
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utilizing DL based automated segmentation and integrating
radiomics data from T2WI and CE-T1WI sequences. A
diverse array of machine learning algorithms, including SVM,
RF, LightGBM, and MLP, served as base learners, while LR was
utilized as the meta-learner to construct the ensemble model.
This approach notably enhanced the precision of predicting
HIFU ablation efficacy for uterine fibroids. Compared to
single-algorithm models, the ensemble model exhibited a
marked improvement in performance, with AUC values rising
to 0.897 (95% CI: 0.818–0.977) in the internal validation cohort
and 0.854 (95% CI: 0.759–0.948) in the external validation
cohort, thereby underscoring the model’s superior capability
in managing complex radiomics data.

In the field of radiomics, precise image segmentation is
crucial as it enhances the accuracy of data analysis and
provides a solid foundation for subsequent predictive
modeling. Current studies predicting the effectiveness of HIFU
therapy often rely on manual contouring (Li et al., 2023; Zheng
et al., 2021). This process is not only time-consuming but also
prone to human error. Therefore, incorporating automated
segmentation technologies is crucial to enhancing efficiency
and minimizing human-related biases. In this study, an
automated segmentation model based on V-Net was developed
specifically for rapid segmentation of uterine fibroids on T2WI
and CE-T1WI. This automated tool substantially reduces the
need for human intervention, freeing radiomics analysis from the
labor-intensive manual contouring and minimizing biases
introduced by human factors. This innovation advances the
prognostication of HIFU outcomes towards a more efficient
and automated future.

Our study has made notable advancements in the field of
multimodal MRI analysis by integrating T2WI and CE-T1WI. This
integrated approach shows improved predictive performance with

an AUC value of 0.858, compared to AUC values of 0.822 for T2WI
and 0.848 for CE-T1WI when used independently (Li et al., 2023;
Zheng et al., 2021). The multimodal integration strategy effectively
leverages the complementary information from different MRI
sequences, offering a more comprehensive description of fibroid
tissue characteristics and thus enhancing the accuracy of
predicting HIFU treatment efficacy. T2WI, with its superior
contrast resolution, reveals cellular dense areas and fibrotic
regions within fibroids. These regions manifests as high signal
intensity on T2WI and may affect ultrasound transmission
efficiency, while fibrotic tissue might interfere with ultrasound
propagation characteristics, impacting the effectiveness of HIFU
treatment (Zhao et al., 2013; Gong et al., 2017). Additionally,
T2WI can identify degenerative features such as necrosis,
ischemia, edema, and calcification within fibroids, all of which
significantly influence treatment outcomes (Andrews et al., 2019).
Moreover, CE-T1WI assesses the vascular density and blood flow
within fibroids, offering insights into ultrasound energy
distribution and the thermal effects of HIFU (Liu et al., 2018).
Regions with abundant vasculature may lead to the dissipation of
ultrasound energy, thereby reducing treatment efficacy (Lénárd
et al., 2008). Nevertheless, traditional MRI image analysis faces
challenges related to subjective interpretation and difficulties in
detecting subtle signal intensity variations. This study addresses
these limitations by introducing radiomics methods, which
overcome these issues by extracting a large number of
quantitative features from MRI scans, thereby offering an
objective and precise description of fibroid structural
heterogeneity (Gillies et al., 2016; Lambin et al., 2017). These
features not only enhance the analysis of fibroid morphology but
also improve predictive capabilities for HIFU treatment outcomes.
Furthermore, the combined use of multimodal MRI radiomic
features demonstrates the complementarity among different

FIGURE 6
The AUC of the stacking ensemble learning models. Subfigures (A) and (B) respectively show the AUC curves of the stacking ensemble learning
models on the internal and external test sets.

Frontiers in Physiology frontiersin.org09

Wen et al. 10.3389/fphys.2024.1507986

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1507986


MRI modalities, which is crucial for revealing the biological
characteristics of fibroids.

In the medical field, where precise treatment is essential, the
efficient and comprehensive utilization of multimodal MRI data is
critical for enhancing predictive model performance. However,
conventional single machine learning algorithms often fail to
fully harness the potential of these invaluable multimodal
radiomics datasets due to their disparate methodologies in
feature handling and focal points. To address this challenge, this
study employs four machine learning algorithms, each with a
distinctive modeling philosophy: SVM, RF, MLP, and LightGBM,
as base learners. SVM excels in managing small sample sizes and
nonlinear challenges by identifying optimal hyperplanes within
complex feature spaces (Cortes and Vapnik, 1995); RF enhances
model stability and mitigates overfitting through ensemble decision
trees and a voting mechanism (Breiman, 2001); LightGBM
demonstrates exceptional performance in large-scale data
processing by iteratively refining weak classifiers (Ke et al., 2017);
and MLP leverages deep neural networks to capture intricate
nonlinear features, thereby augmenting feature learning capacity
(Rumelhart et al., 1986). The study integrated these base models
using a meta-learner, LR, to construct a stacked ensemble learning
framework. This sophisticated approach not only amalgamates the
strengths of diverse models but also rectifies the limitations inherent
in individual algorithms with regard to multimodal MRI radiomics
features utilization. Consequently, it more effectively utilizes
multimodal MRI radiomic features to improve both the accuracy
and stability of preoperative predictions for HIFU treatment. This
robust and advanced tool improves the precision of preoperative
assessments, supports personalized treatment strategies, and is
expected to enhance treatment decision-making and patient
management in clinical practice.

4.1 Limitations

There are some limitations in this study. First, the sample size is
relatively small. Future studies should include a larger cohort of
patients to enhance the validity of the findings. Second, the effect of
HIFU for uterine fibroids is affected by multiple factors, and future
studies should integrate more clinical indicators to further improve
the performance and credibility of the model.

5 Conclusion

This study developed a radiomics stacking ensemble model
based on multimodal MRI, incorporating automatic segmentation
techniques to predict the efficacy of HIFU ablation for uterine
fibroids. It offers a comprehensive method for quantifying
uterine fibroid heterogeneity and serves as a more precise
supplementary tool for clinical practice.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

BW: Conceptualization, Writing–original draft. CL:
Conceptualization, Investigation, Software, Writing–review and
editing. QC: Conceptualization, Data curation, Writing–review
and editing. DS: Software, Validation, Writing–review and
editing. XB: Data curation, Software, Writing–review and editing.
FZ: Conceptualization, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the Yiyang Central Hospital Youth Science and
Technology Talent Program (2022QNYC10).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphys.2024.1507986/
full#supplementary-material

References

Andrews, S., Yuan, Q., Bailey, A., Xi, Y., Chopra, R., Staruch, R., et al. (2019).
Multiparametric MRI characterization of Funaki types of uterine fibroids considered for

MR-guided high-intensity focused ultrasound (MR-HIFU) therapy. Acad. Radiol. 26
(4), e9–e17. doi:10.1016/j.acra.2018.05.012

Frontiers in Physiology frontiersin.org10

Wen et al. 10.3389/fphys.2024.1507986

https://www.frontiersin.org/articles/10.3389/fphys.2024.1507986/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2024.1507986/full#supplementary-material
https://doi.org/10.1016/j.acra.2018.05.012
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1507986


Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi:10.1023/a:
1010933404324

Bulun, S. E. (2013). Uterine fibroids. N. Engl. J. Med. 369 (14), 1344–1355. doi:10.
1056/NEJMra1209993

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE:
synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357. doi:10.
1613/jair.953

Chen, J., Li, Y., Wang, Z., McCulloch, P., Hu, L., Chen, W., et al. (2018).
Evaluation of high-intensity focused ultrasound ablation for uterine fibroids: an
IDEAL prospective exploration study. BJOG 125 (3), 354–364. doi:10.1111/1471-
0528.14689

Cheng, Y., Yang, L., Wang, Y., Kuang, L., Pan, X., Chen, L., et al. (2024). Development
and validation of a radiomics model based on T2-weighted imaging for predicting the
efficacy of high intensity focused ultrasound ablation in uterine fibroids. Quant.
Imaging Med. Surg. 14 (2), 1803–1819. doi:10.21037/qims-23-916

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn 20,
273–297. doi:10.1007/bf00994018

Donnez, J., Arriagada, P., Donnez, O., and Dolmans, M. M. (2015). Current
management of myomas: the place of medical therapy with the advent of selective
progesterone receptor modulators. Curr. Opin. Obstet. Gynecol. 27 (6), 422–431. doi:10.
1097/GCO.0000000000000229

Dou, Y., Zhang, L., Liu, Y., He, M., Wang, Y., and Wang, Z. (2024). Long-term
outcome and risk factors of reintervention after high intensity focused ultrasound
ablation for uterine fibroids: a systematic review and meta-analysis. Int. J. Hyperth. 41
(1), 2299479. doi:10.1080/02656736.2023.2299479

Funaki, K., Fukunishi, H., Funaki, T., Sawada, K., Kaji, Y., and Maruo, T. (2007).
Magnetic resonance-guided focused ultrasound surgery for uterine fibroids:
relationship between the therapeutic effects and signal intensity of preexisting T2-
weighted magnetic resonance images. Am. J. Obstet. Gynecol. 196 (2), 184.e1–e6. doi:10.
1016/j.ajog.2006.08.030

Gillies, R. J., Kinahan, P. E., and Hricak, H. (2016). Radiomics: images are more than
pictures, they are data. Radiology 278 (2), 563–577. doi:10.1148/radiol.2015151169

Gong, C., Setzen, R., Liu, Z., Liu, Y., Xie, B., Aili, A., et al. (2017). High intensity
focused ultrasound treatment of adenomyosis: the relationship between the features of
magnetic resonance imaging on T2 weighted images and the therapeutic efficacy. Eur.
J. Radiol. 89, 117–122. doi:10.1016/j.ejrad.2017.02.001

Gong, X., Zhang, X., Liu, D., Yang, C., Zhang, R., Xiao, Z., et al. (2022). Evaluation of
physician experience in achieving non-perfused volume ratio of high-intensity focused
ultrasound ablation for uterine fibroids: a multicentre study. J. Int. Med. Res. 50 (5),
3000605221102087. doi:10.1177/03000605221102087

Guiot, J., Vaidyanathan, A., Deprez, L., Zerka, F., Danthine, D., Frix, A. N., et al.
(2022). A review in radiomics: making personalized medicine a reality via routine
imaging. Med. Res. Rev. 42 (1), 426–440. doi:10.1002/med.21846

Huang, H., Ran, J., Xiao, Z., Ou, L., Li, X., Xu, J., et al. (2019). Reasons for different
therapeutic effects of high-intensity focused ultrasound ablation on excised uterine
fibroids with different signal intensities on T2-weighted MRI: a study of
histopathological characteristics. Int. J. Hyperth. 36 (1), 477–484. doi:10.1080/
02656736.2019.1592242

Iqbal, I., Shahzad, G., Rafiq, N., Mustafa, G., and Ma, J. (2020). Deep learning-based
automated detection of human knee joint’s synovial fluid from magnetic resonance images
with transfer learning. IET Image Process. 14 (10), 1990–1998. doi:10.1049/iet-ipr.2019.1646

Jacoby, V. L., Parvataneni, R., Oberman, E., Saberi, N. S., Varon, S., Schembri, M.,
et al. (2020). Laparoscopic radiofrequency ablation of uterine leiomyomas: clinical
outcomes during early adoption into surgical practice. J. Minim. Invasive Gynecol. 27
(4), 915–925. doi:10.1016/j.jmig.2019.07.025

Ke, G., Meng, Q., Finley, T., Wang, T., et al. (2017). Lightgbm: a highly efficient
gradient boosting decision tree. Adv. neural Inf. Process. Syst. 30.

Keserci, B., and Duc, N. M. (2017). The role of T1 perfusion-based classification in
magnetic resonance-guided high-intensity focused ultrasound ablation of uterine
fibroids. Eur. Radiol. 27 (12), 5299–5308. doi:10.1007/s00330-017-4885-x

Lambin, P., Leijenaar, R. T. H., Deist, T.M., Peerlings, J., de Jong, E. E. C., van Timmeren, J.,
et al. (2017). Radiomics: the bridge betweenmedical imaging and personalizedmedicine.Nat.
Rev. Clin. Oncol. 14 (12), 749–762. doi:10.1038/nrclinonc.2017.141

Lénárd, Z. M., McDannold, N. J., Fennessy, F. M., Stewart, E. A., Jolesz, F. A.,
Hynynen, K., et al. (2008). Uterine leiomyomas: MR imaging-guided focused
ultrasound surgery--imaging predictors of success. Radiology 249 (1), 187–194.
doi:10.1148/radiol.2491071600

Lethaby, A., Puscasiu, L., and Vollenhoven, B. (2017). Preoperative medical therapy
before surgery for uterine fibroids. Cochrane Database Syst. Rev. 11 (11), CD000547.
doi:10.1002/14651858.CD000547.pub2

Li, C., He, Z., Lv, F., Liu, Y., Hu, Y., Zhang, J., et al. (2023). An interpretable MRI-based
radiomics model predicting the prognosis of high-intensity focused ultrasound ablation of
uterine fibroids. Insights Imaging 14 (1), 129. doi:10.1186/s13244-023-01445-2

Liao, L., Xu, Y. H., Bai, J., Zhan, P., Zhou, J., Li, M. X., et al. (2023). MRI
parameters for predicting the effect of ultrasound-guided high-intensity focused

ultrasound in the ablation of uterine fibroids. Clin. Radiol. 78 (1), 61–69. doi:10.
1016/j.crad.2022.09.112

Liu, X., Tang, J., Luo, Y., Wang, Y., Song, L., and Wang, W. (2020). Comparison of
high-intensity focused ultrasound ablation and secondary myomectomy for recurrent
symptomatic uterine fibroids following myomectomy: a retrospective study. BJOG 127
(11), 1422–1428. doi:10.1111/1471-0528.16262

Liu, Z., Gong, C., Liu, Y., and Zhang, L. (2018). Establishment of a scoring system for
predicting the difficulty level of high-intensity focussed ultrasound ablation of uterine
fibroids. Int. J. Hyperth. 34 (1), 77–86. doi:10.1080/02656736.2017.1325015

Lqbal, I., Younus, M., Walayat, K., Kakar, M. U., and Ma, J. (2021). Automated multi-
class classification of skin lesions through deep convolutional neural network with
dermoscopic images. Comput. Med. Imaging Graph 88, 101843. doi:10.1016/j.
compmedimag.2020.101843

Lyon, P. C., Rai, V., Price, N., Shah, A., Wu, F., and Cranston, D. (2020). Ultrasound-
Guided high intensity focused ultrasound ablation for symptomatic uterine fibroids:
preliminary clinical experience. Ultraschall Med. 41 (5), 550–556. doi:10.1055/a-0891-
0729

McLucas, B., Adler, L., and Perrella, R. (2001). Uterine fibroid embolization:
nonsurgical treatment for symptomatic fibroids. J. Am. Coll. Surg. 192 (1), 95–105.
doi:10.1016/s1072-7515(00)00738-9

Milletari, F., Navab, N., Ahma, d, et al. (2016). “V-net: fully convolutional neural
networks for volumetric medical image segmentation,” in 2016 fourth international
conference on 3D vision (3DV) (Ieee), 565–571.

Naimi, A. I., and Balzer, L. B. (2018). Stacked generalization: an introduction to super
learning. Eur. J. Epidemiol. 33, 459–464. doi:10.1007/s10654-018-0390-z

Orlhac, F., Eertink, J. J., Cottereau, A.-S., Zijlstra, J. M., Thieblemont, C., Meignan, M.,
et al. (2022). A guide to ComBat harmonization of imaging biomarkers in multicenter
studies. J. Nucl. Med. 63 (2), 172–179. doi:10.2967/jnumed.121.262464

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations
by back-propagating errors. nature 323 (6088), 533–536. doi:10.1038/323533a0

Sesmero, M. P., Ledezma, A. I., and Sanchis, A. (2015). Generating ensembles of
heterogeneous classifiers using stacked generalization.Wiley Interdiscip. Rev. Data Min.
Knowl. Discov. 5 (1), 21–34. doi:10.1002/widm.1143

Snoek, J., Larochelle, H., and Adams, R. P. (2012). “Practical Bayesian optimization of
machine learning algorithms,” in Paper presented at the 25th international conference on
neural information processing systems.

Stewart, E. A., Cookson, C. L., Gandolfo, R. A., and Schulze-Rath, R. (2017).
Epidemiology of uterine fibroids: a systematic review. BJOG 124 (10), 1501–1512.
doi:10.1111/1471-0528.14640

Venkatesan, A. M., Partanen, A., Pulanic, T. K., Dreher, M. R., Fischer, J., Zurawin, R.
K., et al. (2012). Magnetic resonance imaging-guided volumetric ablation of
symptomatic leiomyomata: correlation of imaging with histology. J. Vasc. Interv.
Radiol. 23 (6), 786–794. doi:10.1016/j.jvir.2012.02.015

Verpalen, I. M., Anneveldt, K. J., Nijholt, I. M., Schutte, J. M., Dijkstra, J. R., Franx, A.,
et al. (2019). Magnetic resonance-high intensity focused ultrasound (MR-HIFU)
therapy of symptomatic uterine fibroids with unrestrictive treatment protocols: a
systematic review and meta-analysis. Eur. J. Radiology 2 120, 108700. doi:10.1016/j.
ejrad.2019.108700

Verpalen, I. M., de Boer, J. P., Linstra, M., Pol, R. L. I., Nijholt, I. M., Moonen, C. T.
W., et al. (2020). The Focused Ultrasound Myoma Outcome Study (FUMOS); a
retrospective cohort study on long-term outcomes of MR-HIFU therapy. Eur.
Radiol. 30, 2473–2482. doi:10.1007/s00330-019-06641-7

Wang, H., Jin, Q., Li, S., Liu, S., Wang, M., and Song, Z. (2014). A comprehensive
survey on deep active learning in medical image analysis.Med. Image Anal. 95, 103201.
doi:10.1016/j.media.2024.103201

Yoon, S.-W., Lee, C., Kim, K. A., and Kim, S. H. (2010). Contrast-enhanced dynamic
MR imaging of uterine fibroids as a potential predictor of patient eligibility for MR
guided focused ultrasound (MRgFUS) treatment for symptomatic uterine fibroids.
Obstet. Gynecol. Int. 2010, 834275. doi:10.1155/2010/834275

Zhang, D. L., Wu, S. S., Chen, S., Liu, X. X., Tang, J. Q., Lin, N., et al. (2020).
Differences in the therapeutic effects of high-intensity focused ultrasound (HIFU)
ablation on uterine fibroids with different shear wave velocity (SWV): a study of
histopathological characteristics. Int. J. Hyperth. 37 (1), 1322–1329. doi:10.1080/
02656736.2020.1849827

Zhao, W. P., Chen, J. Y., and Chen, W. Z. (2015). Effect of biological characteristics of
different types of uterine fibroids, as assessed with T2-weighted magnetic resonance
imaging, on ultrasound-guided high-intensity focused ultrasound ablation. Ultrasound
Med. Biol. 41 (2), 423–431. doi:10.1016/j.ultrasmedbio.2014.09.022

Zhao, W. P., Chen, J. Y., Zhang, L., Li, Q., Qin, J., Peng, S., et al. (2013). Feasibility of
ultrasound-guided high intensity focused ultrasound ablating uterine fibroids with
hyperintense on T2-weightedMR imaging. Eur. J. Radiol. 82 (1), e43–e49. doi:10.1016/j.
ejrad.2012.08.020

Zheng, Y., Chen, L., Liu, M., Wu, J., Yu, R., and Lv, F. (2021). Prediction of clinical
outcome for high-intensity focused ultrasound ablation of uterine leiomyomas using
multiparametric MRI radiomics-based machine leaning model. Front. Oncol. 11,
618604. doi:10.3389/fonc.2021.618604

Frontiers in Physiology frontiersin.org11

Wen et al. 10.3389/fphys.2024.1507986

https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1056/NEJMra1209993
https://doi.org/10.1056/NEJMra1209993
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://doi.org/10.1111/1471-0528.14689
https://doi.org/10.1111/1471-0528.14689
https://doi.org/10.21037/qims-23-916
https://doi.org/10.1007/bf00994018
https://doi.org/10.1097/GCO.0000000000000229
https://doi.org/10.1097/GCO.0000000000000229
https://doi.org/10.1080/02656736.2023.2299479
https://doi.org/10.1016/j.ajog.2006.08.030
https://doi.org/10.1016/j.ajog.2006.08.030
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1016/j.ejrad.2017.02.001
https://doi.org/10.1177/03000605221102087
https://doi.org/10.1002/med.21846
https://doi.org/10.1080/02656736.2019.1592242
https://doi.org/10.1080/02656736.2019.1592242
https://doi.org/10.1049/iet-ipr.2019.1646
https://doi.org/10.1016/j.jmig.2019.07.025
https://doi.org/10.1007/s00330-017-4885-x
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1148/radiol.2491071600
https://doi.org/10.1002/14651858.CD000547.pub2
https://doi.org/10.1186/s13244-023-01445-2
https://doi.org/10.1016/j.crad.2022.09.112
https://doi.org/10.1016/j.crad.2022.09.112
https://doi.org/10.1111/1471-0528.16262
https://doi.org/10.1080/02656736.2017.1325015
https://doi.org/10.1016/j.compmedimag.2020.101843
https://doi.org/10.1016/j.compmedimag.2020.101843
https://doi.org/10.1055/a-0891-0729
https://doi.org/10.1055/a-0891-0729
https://doi.org/10.1016/s1072-7515(00)00738-9
https://doi.org/10.1007/s10654-018-0390-z
https://doi.org/10.2967/jnumed.121.262464
https://doi.org/10.1038/323533a0
https://doi.org/10.1002/widm.1143
https://doi.org/10.1111/1471-0528.14640
https://doi.org/10.1016/j.jvir.2012.02.015
https://doi.org/10.1016/j.ejrad.2019.108700
https://doi.org/10.1016/j.ejrad.2019.108700
https://doi.org/10.1007/s00330-019-06641-7
https://doi.org/10.1016/j.media.2024.103201
https://doi.org/10.1155/2010/834275
https://doi.org/10.1080/02656736.2020.1849827
https://doi.org/10.1080/02656736.2020.1849827
https://doi.org/10.1016/j.ultrasmedbio.2014.09.022
https://doi.org/10.1016/j.ejrad.2012.08.020
https://doi.org/10.1016/j.ejrad.2012.08.020
https://doi.org/10.3389/fonc.2021.618604
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1507986

	Multimodal MRI radiomics-based stacking ensemble learning model with automatic segmentation for prognostic prediction of HI ...
	1 Introduction
	2 Materials and methods
	2.1 Patients
	2.2 Images acquisition
	2.3 Image segmentation and feature extraction
	2.4 Feature selection
	2.5 Construction of stacking ensemble learning model
	2.6 Statistical analysis

	3 Results
	3.1 Patient characteristics and outcome
	3.2 Feature selection
	3.3 Performance assessment of different models

	4 Discussion
	4.1 Limitations

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


