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Objective: Congenital heart disease with pulmonary arterial hypertension (CHD-
PAH), caused by CHD, is associated with high clinical mortality. Hence, timely
diagnosis is imperative for treatment.

Approach: Two non-invasive diagnosis algorithms of CHD-PAH were put
forward in this review, which were direct three-divided and two-stage
classification models. Pre-processing in both algorithms focuses on
segmentation of heart sounds into discrete cardiac cycles. Both the dual-
threshold and Bi-LSTM (Bi-directional Long Short-Term Memory) methods
demonstrate efficacy. In the feature extraction phase, the direct three-divided
model integrate time-, frequency-, and energy-domain features with deep
learning features. While the two-stage classification model sequentially
extracts sub-band envelopes and short-time energy of cardiac cycle. In the
classification phase, considering the lack of CHD-PAH data, ensemble learning
was widely used.

Main results: An accuracy of 88.61% was achieved with direct three-divided
model and 90.9% with two-stage classification model.

Significance: By analyzing and discussing these algorithms, future research
directions of CHD-PAH assisted diagnosis were discussed. It is hoped that it
will provide insight into prediction of CHD-PAH. Thus saving people from death
due to untimely assistance.

KEYWORDS

congenital heart disease associated with pulmonary arterial hypertension, machine
learning, segmentation, heart sounds classification, ensemble learning

1 Introduction

1.1 Formation principle of CHD-PAH

Congenital Heart Disease (CHD) is the result of abnormal development of the heart
structure during fetal period (Liu, 2021). The incidence of CHD is related to the region, race,
gender, pregnancy environment and other factors, the incidence rate is roughly 6‰ ~ 8‰
globally, and 2.9‰ ~ 16‰ in China. Every year, 15 ~ 200,000 patients are newly added, and
Yunnan, as the hardest-hit area of CHD, is about 8 ~ ‰12‰ (Liyuan, 2022). In 2022,
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hospitals admitted 1,508,000 inpatients with CHD (Report and Hu,
2023). In congenital heart defects, the pressure and volume of the
pulmonary circulation are overloaded by large intracardiac and
extracardiac blood flow exchange. Unless intervention is made by
cardiac surgery in the early stage, most types of CHD develop with a
left-to-right shunt, which leads to excessive pressure in the
pulmonary circulation. Continued deterioration will lead to the
development of congenital heart disease associated with
pulmonary arterial hypertension (CHD-PAH) (Kuwana et al.,
2020). Approximately 10% of patients with CHD have PAH, and
patients with CHD-PAH account for nearly one-third of adult PAH
patients (Ferrero et al., 2024).

Long-term abnormal pulmonary blood flow movement will lead
to increased pulmonary vascular pressure and resistance, which may
be life-threatening. End-stage PAH patients are typically offered
heart-lung transplantation. In the current era, the median survival
following heart-lung transplantation, conditional on survival to
1 year post-transplantation, is 12.8 and 8.8 years, respectively. A
32-year analysis of the International Society for Heart and Lung
Transplantation (ISHLT) registry reported a 10-year survival rate of
52% in patients with Eisenmenger syndrome, the most extreme form
of CHD–PAH (Ferrero et al., 2024), particularly those with atrial or
ventricular septal defects. Recent studies of CHD-PAH patients
undergoing heart-lung or bilateral lung transplantation in France,
including a subset with complex anatomical abnormalities,
demonstrated a median survival of 11.2 years and a conditional
survival of 14.2 years. Notably, mortality on the waiting list was 34%
at 1 year (Jansen et al., 2021). However, a clinical cure can be
achieved at the early stage through cardiac surgery. Therefore, early
diagnosis of CHD-PAH is of great importance to reduce
clinical mortality.

1.2 Current diagnostic methods

Invasive right heart catheterization is the gold standard for
confirming CHD-PAH (Inampudi et al., 2019). However, this
method is not suitable for the screening stage, as it not only
technically demanding for the operators, but can also be
damaging (Elgendi et al., 2018).

In addition to this, echocardiography can be used for
screening (Humbert et al., 2022). Doctors use
echocardiographs to scan the blood flow in the patient’s heart
to draw an ultrasound picture, which allows them to observe
pathological features. This non-invasive test does not cause
damage to the human body, but echocardiography is
expensive and not widely available in every primary care
setting. Therefore, this method cannot be popularized.

Cardiac auscultation is also a common method in screening
CHD. As cardiac activity is cyclical, heart sounds are quasi-periodic
signals. A single heart sound often contains multiple cardiac cycles.
According to the order of appearance, a complete cardiac cycle
consists of four parts: S1, systole, S2, and diastole (Das et al., 2020;
Chen et al., 2020a). Of these, S2 is caused by the closure of the
semilunar valve, containing the aortic component (A2) and the
pulmonary artery component (P2) (Sun et al., 2023; Thiyagaraja
et al., 2018; Seepana and Vala, 2020). When pulmonary artery
pressure increases, the right ventricle requires more force to

pump blood into the pulmonary artery, which is accompanied by
longer blood injections. This results in the P2 component being
enhanced and appearing later than A2 (Aggarwal et al., 2021; Chen
et al., 2020b). Therefore, it is feasible to make a supplementary
diagnosis of CHD-PAH based on heart sounds. As an aid to
diagnosis, auscultation has the advantage of being non-invasive
and cheap. However, the number of physicians with auscultation
capabilities is limited, and the incomplete information recorded by
the human ear may lead to the omission of pathological information
(Deng and Han, 2016). Machine learning-based diagnostic
algorithms overcome issues like subjectivity in manual
auscultation. By digitizing heart sound acquisition and
automating diagnosis, they make screening more efficient.

1.3 Innovations

The innovation of this paper can be summarized as:

• Current academic researches on heart sound signals are
mostly on identifying CHD, with fewer studies on PAH,
and even fewer on CHD-PAH. Instead, this review paper
systematically summarized the research progress of our
research group in the field of computer-aided heart sound
detection for CHD-PAH.

• The two algorithms were analyzed in detail in this paper, and
possible improvement measures of the two algorithms
were listed.

• The future research directions of computer-assisted heart
sound detection technology were discussed.

2 Literature review

2.1 Related work

At present, domestic and foreign researchers mainly use the
phonocardiogram (PCG, graphical representation of heart sound
signals) to roughly determine whether the signal is CHD or not,
which generally includes three steps: preprocessing, feature
extraction, and classification. For example, in the preprocessing
stage of Xu et al. (2022), segmentation of the cardiac cycle was
achieved, which reduces the impact of local noise on the global
signal. Subsequently, 84 features were extracted from time and
frequency domain. Finally, the classification of CHD was
achieved by using Random Forest and Adaboost classifiers.
Although the existing studies are not specific to CHD-PAH, they
may serve as a cornerstone for related research. However, it is
questionable whether the above studies can be directly applied to
assisted diagnosis of CHD-PAH.

Since the heart sound frequency in PAH patients is significantly
reduced in relative power in the 21–22 Hz (Elgendi et al., 2014).
Elgendi et al. (2015) extracted the relative power, entropy and
sinusoidal formant energy of the relevant frequency bands in,
and finally used a linear discriminator to analyze whether PAH
was affected. However, most PAH patients develop from the
aggravation of CHD patients, so early detection of PAH in CHD
patients is particularly important.
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2.2 Datasets

Two heart sound datasets were used in the algorithms reviewed
in this paper.

• The PhysioNet/CinC 2016 public dataset (publicly available
dataset) (Liu et al., 2016): The dataset was divided into
8 subsets (a ~ i), where subsets a ~ f are public. A total of
3,240 heart sound recordings were included. These heart
sound recordings can be divided into two categories:
normal and abnormal, with a ratio of about 4:1. Abnormal
signal were not labeled with a specific disease.

• The heart sound dataset established by our research group and
the Fuwai Cardiovascular Hospital of Yunnan Province (self-
constructed dataset): The data were collected using two
generations of heart sound acquisition devices developed by

our research group. The first-generation device can collect
electrocardiogram (ECG) and PCG synchronously. ECG
records the electrical activity of the heart using electrodes
placed on the skin. It provides information about the heart’s
rhythm, electrical conduction, and potential abnormalities
such as arrhythmias or myocardial infarction. PCG records
the mechanical activity of the heart by capturing heart sounds
using a microphone or specialized sensor. It is primarily used
to detect S1, S2 and murmurs, providing insights into heart
valve functionality and blood flow. The second-generation
device only collected heart sounds from five cardiac
auscultation zones of an individual. A total of
54,650 normal and abnormal heart sounds were recorded,
and the age range of the subjects was limited to 6 months to
18 years. All abnormal heart sounds were labeled with
hospital-confirmed specific cases.

FIGURE 1
The general framework of the direct three-divided model.

Frontiers in Physiology frontiersin.org03

Gao et al. 10.3389/fphys.2024.1502725

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1502725


2.3 Direct three-divided model

Ge et al. (2023) proposed a direct three-divided model, in which
heart sound can be classified into three categories: normal, CHD, or
CHD-PAH. Its methodology was described in more detail in Ma
et al. (2023). The general framework of the algorithm is shown
in Figure 1.

2.3.1 Pre-processing
In the pre-processing phase, accurate segmentation of heart

sounds is necessary since the main pathologic features of CHD-PAH
patients are concentrated in the S2 component. In segmentation,
each state of the cardiac cycle is determined by localizing the S1 and
S2 onset positions (Moukadem et al., 2013). However, since heart
sound signals are accompanied by murmurs such as lung sounds,
breath sounds, and environmental noise, making accurate
segmentation of heart sounds a challenging problem.

According to Ge et al. (2023), Ma et al. (2023), the portion of the
heart sound signal below 1,000 Hz contains all the valid pathologic
information about PAH, so the heart sound signal was
downsampled from a sampling frequency of 5,000 Hz–2,500 Hz.
By reducing the number of sample points, the computing time was
greatly reduced without losing any useful information. Then the
threshold detection was used to locate S1 and S2. Finally, the cardiac
cycles and S2 components were saved.

The specific segmentation process is as follows:
A Hamming window with a window length of 0.1s and no

overlap was used to divide the heart sounds into frames. Next, the
short-time energy Ei and spectral spread Si of each frame were
calculated as Equations 1, 2. Let xi(n), n � 1/N represent the ith

frame of heart sounds with length N, fi denote its frequency, and si
the spectral value of the ith frame. The boundary values b1 and b2 are
used to compute the spectral spread, while μ1 refers to the
spectral centroid.

Since S1 and S2 exhibit significantly higher energy than systolic
and diastolic, histograms of short-time energy and spectral spread
were created separately. Based on these histograms, dynamic
thresholds were computed using Equation 3. Where M1 and M2

represent the positions of the first and second largest peaks in the
histogram, respectively, and W is a fixed constant. When the short-
time energy or spectral spread exceeded their corresponding
thresholds, candidate S1 or S2 were identified. If the distance
between adjacent candidates was less than a predefined merge
distance (set to 50 ms), the two candidates were merged. Finally,
the remaining candidate points were mapped to the original signal.
Based on the principle that the diastolic has the longest duration of
the four states in the cardiac cycle (Luisada et al., 1949), the starting
object of the longest segment was labeled as S2 and the ending object
as S1. Then the remaining points were labeled in turn. The flow of
the segmentation algorithm is shown in Figure 2. However, this
segmentation method relies on specific features and its robustness
has yet to be verified.

Ei � 1
N

∑N
n�1

∣∣∣∣xi n( )∣∣∣∣2 (1)

Si �

������������∑b2
i�b1

fi − μ1( )2si
∑b2
i�b1

si

√√√√√
(2)

FIGURE 2
Step-wise procedure of dual-threshold segmentation.

Frontiers in Physiology frontiersin.org04

Gao et al. 10.3389/fphys.2024.1502725

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1502725


T � W ·M1 +M2

W + 1
(3)

2.3.2 Feature extraction
When training data is limited, the performance and

computational efficiency of the model may be improved by using
traditional feature extraction. It does so by analyzing the data and

condensing the most important features. In the feature extraction
stage, a new fusion feature that can make full use of both traditional
methods and deep learning techniques has been proposed.

For time-domain features, the intensity, amplitude, duration,
and time interval are important factors in the judgment of
auscultation. In addition, the phase corresponding to the
maximum and second largest value, and the phase difference
between them of the cardiac cycle and S2 component were

TABLE 1 Feature variable list.

Item Textual description Mathematical
description

Number of
features

icc, is2 (Maknickas and Maknickas, 2017) Intensity of cardiac cycle and S2
i � ∑n

i�1
(xk(i))2

2

Iratio (Ge et al., 2023; Ma et al., 2023) The ratio of intensity between S2 and cardiac cycle Iratio � is2/iccy 1

lcc, ls2 (Ge et al., 2023; Ma et al., 2023) Interval of cardiac cycle and S2 — 2

Lratio (Ge et al., 2023; Ma et al., 2023) The ratio of interval between S2 and cardiac cycle Lratio � ls2/lccy 1

Ms2 (Ge et al., 2023; Ma et al., 2023) The maximum value of S2 — 1

avecc (Ge et al., 2023; Ma et al., 2023) Mean amplitude of cardiac cycle — 1

M2s2 (Ge et al., 2023; Ma et al., 2023) The second largest value of S2 — 1

pos2 (Ge et al., 2023; Ma et al., 2023) The phase difference between the maximum and second
maximum of S2

— 1

mfcc,mfs2 (Ge et al., 2023; Ma et al., 2023) median frequency of cardiac cycle and S2 — 2

iqrcc, iqrs2 (Ge et al., 2023; Ma et al., 2023) Inter quantile range of cardiac cycle and S2 — 2

skcc, sks2 (Nogueira et al., 2019) Skewness of cardiac cycle and S2 sk � E[(X−μ
σ )3] 2

kucc, kus2 (Nogueira et al., 2019) Kurtosis of cardiac cycle and S2 ku � E[(X−μ
σ )4] 2

escc, ess2 (Ge et al., 2023; Ma et al., 2023) Spectral entropy of cardiac cycle and S2 — 2

sfmcc, sfms2 (Chen et al., 2019) Spectral flatness of cardiac cycle and S2
sfm � [∏K

k�1 |es(K)|]
1
K

1
K∑K
k�1

|es(k)|

2

modecc, modes2 (Ge et al., 2023; Ma et al.,
2023)

Mode frequency of cardiac cycle and S2 — 2

affcc, affs2 (Ge et al., 2023; Ma et al., 2023) Average fundamental frequency — 2

minffcc, minffs2 (Ge et al., 2023; Ma et al.,
2023)

Minimum fundamental frequency — 2

maxffcc, maxffs2 (Ge et al., 2023; Ma et al.,
2023)

Maximum fundamental frequency — 2

ddcc, dds2 (Ge et al., 2023; Ma et al., 2023) Dominant frequency range — 2

spcc, sps2 (Ge et al., 2023; Ma et al., 2023) Spectrum — 40

acc, as2 (Ge et al., 2023; Ma et al., 2023) Sum of amplitudes — 40

srcc, srs2 (Ge et al., 2023; Ma et al., 2023) Spectral Roll-off — 32

wpt1cc (Ge et al., 2023; Ma et al., 2023) Energy features in 0–156 Hz — 1

wpt2cc (Ge et al., 2023; Ma et al., 2023) Energy features in 156–312 Hz — 1

wpt3cciqrs2 (Ge et al., 2023; Ma et al., 2023) Energy features in 312–625 Hz — 1

wpt4cciqrs2 (Ge et al., 2023; Ma et al., 2023) Energy features in 625–1,250 Hz — 1

Total number 148

The bold values indicate the total number of features.
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introduced as supplementary features to characterize the pathology
of CHD-PAH. A total of nine features were selected.

In the frequency-domain, features could be extracted based on
the increasing dominant frequency of P2 in CHD-PAH patients.
Firstly, the Hamming window was applied to frame the signal. Peaks
were found in the power spectral density of the signal in each frame
to obtain the dominant frequency. Thus a series of features were
extracted based on the dominant frequency of the cardiac
cycle and S2.

Different types of heart disease produce murmurs at different
periods of the cardiac cycle, while wavelet packets can be well used
for time-frequency localization analysis. Therefore, for heart sound
signal with a down-sampling frequency of 2,500 Hz, wavelet packet
decomposition (Kevric and Subasi, 2017) was used to divide the
signal into four frequency bands: 0–156 Hz, 156–312 Hz,
312–625 Hz and 625–1,250 Hz. Thus, the energy features of
cardiac cycle wavelet packets were extracted.

In order to reduce the increase in computation caused by a large
number of features, the above three types of features were filtered.
Features with variances less than 0.05 were filtered. Then XGBoost
was constructed to rank the importance of each feature, retaining the
most important 148 features. After filtering, time-domain features,
frequency-domain features, energy features, and descriptions of
them are shown in Table 1, as described in Ge et al. (2023), Ma
et al. (2023).

However, traditional feature extraction lacks the ability to
extract high-level features from raw data, which is available to
deep learning. For the case of insufficient data, the use of deep
learning to classify may result in poor performance on the test set.
Therefore, convolutional neural network (CNN) (LeCun et al., 1989)
was used as an automatic feature extractor to extract deep learning
features from the de-discrete power-normalized cepstral coefficients
(PNCC) (Kim and Stern, 2016). The structure of the CNN used in
Ge et al. (2023), Ma et al. (2023) is shown in Figure 3.

Ultimately, the 212 features were fused, which includes
148 traditional features, and 64 deep-learning features.

However, these features were simply stacked. Although this
method is simple, it may lead to some important features being
masked or ignored. Other feature fusion methods can be considered,
such as introducing an attentional mechanism. This involves
learning a set of weights to prioritize important features to
increase their impact.

2.3.3 Classification
In the classification phase, XGBoost (Chen and Guestrin,

2016) was used as a classifier since CHD-PAH samples were small
but valid pathological information are included in its features.
XGBoost reduces the risk of overfitting by adding a regular term
to the objective function that controls the complexity of
the model.

A 20-s heart sound signal may include 20 to 33 cardiac cycles.
The inputs of the XGBoost were features from a single cardiac cycle,
so multiple results may be generated for the same recording due to
noise interference. Therefore, the majority voting algorithm (Kui
et al., 2021) was used to combine the classification results. That is,
the classification result with the highest frequency in all cardiac
cycles of the sample is considered to be the final classification result
of the recording. This reduced the impact of misjudgement of
individual cardiac cycles, so the classification accuracy
was improved.

2.4 Two-stage classification model

A two-stage classification model was put forward in (Wang,
2022), in which binary classification of normal and abnormal was
performed firstly, then the abnormal heart sounds were classified as
CHD or CHD-PAH. The overall framework is shown in Figure 4.

FIGURE 3
The CNN structure for extracting deep features.
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2.4.1 The first stage classification model
The first stage classification model realizes the classification of

normal and pathological heart sounds. According to Wang (2022),
framing was performed in the pre-processing phase, with the aim of
increasing the amount of data for training. A Tukey window with a
length of 2s (to ensure that at least one full cardiac cycle was present)
and an overlap of 1s was used for framing.

Time-frequency domain features can provide a more
comprehensive description for signal analysis by simultaneously
describing information about changes of the signal in both time and
frequency dimensions. A novel time-frequency analysis method was
proposed, i.e., constructing time-frequency features by stacking sub-
band signal envelopes. The method is computationally simple and
effective, which is expected to be used in practical clinical
applications. The specific feature extraction process is as follows:

A Gammatone filter set Qi (2013) was used to filter and
decompose the framed heart sound signals. The sub-band

envelope was computed from the decomposed sub-band signal
by means of the Hilbert transform. Average down-sampling of
sub-band envelopes was performed to reduce computing time.
The logarithmic operation of the sub-band envelope after down-
sampling reduced the correlation between the data and
compressed the data to make it smoother and easier to
calculate. Finally, the sub-band envelopes were transposed and
stacked horizontally into a two-dimensional matrix. After
centralization and normalization, the sub-band envelope
feature map was obtained.

Finally, a shallow CNN was chosen for classification because of
the abundant data.

2.4.2 The second stage classification model
The second stage classification model is aimed at the recognition

of CHD and CHD-PAH, both of which are pathological signals with
weak differences that make classification difficult. Therefore,
accurate segmentation of heart sound signals by cardiac cycle
was necessary. Signal envelopes are often used in heart sound
segmentation. For example, in Xu et al. (2023), the Viola integral
envelope of the band-pass filtered signal was extracted and its low
amplitude peaks were highlighted with Shannon energy. The mean
values of the upper and lower envelopes were used as dynamic
thresholds to initially determine the S1 and S2 positions. Aiming at
the inevitable large number of omissions and misdetections in the
preliminary detection, K-means clustering classifies the distances
between the peak points, and removes error points by combining
Haar wavelet transform, resulting in the realization of segmentation.
In Jamal et al. (2021), a method based on mutation and peak points
of signal envelopment have been proposed. However, this method is
unable to deal with the interference of murmurs in abnormal
heart sounds.

InWang (2022), a Bi-LSTMnetwork (Song et al., 2023) was built
for heart sound segmentation, with envelope as the input to the
network. By comparing the results with those obtained by
autocorrelation, combined with the intrinsic state transition rules
of heart sounds, the segmentation results were further refined.

As is shown in Figure 5, the specific process of the heart sound
segmentation algorithm based on Bi-LSTM with state constraints is
as follows:

1. There are too many redundant components in the original
heart sound, which will directly affect the final heart sound
segmentation results. The envelope can reduce the interference
of noise, so envelopes of the heart sound signal were extracted,
namely the homomorphic envelope (Kamson et al., 2019) (The
signal can be regarded as the multiplication of the slowly
varying component and the vibrating component. After the
logarithmic transformation, the unwanted high-frequency
components can be removed using low-pass filtering.),
normalized Shannon energy envelope (Choi and Jiang,
2008) (characterize the energy distribution in a signal), and
PSD (Power Spectral Density) envelope (Rahman et al., 2021)
(The frequency components of S1 and S2 in the heart sound
signal are mostly distributed below 150 Hz and concentrated
around the 50 Hz frequency (Sharma, 2015). Therefore, the
average power spectrum between 40 and 60 Hz is used to form
the PSD envelope.).

FIGURE 4
The general framework of the two-stage classification model.
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2. Since the R-peak and T-wave endings in the ECG correspond
to S1 and S2 in the PCG respectively, the synchronously
collected ECG was used to accurately mark each state of
cardiac cycles in the PCG envelope signal (Schmidt et al.,
2010; Springer et al., 2015; Renna et al., 2019).

3. The Bi-LSTM network was built to establish bi-directional
connections at each time step, and the extracted envelope
morphological features were used for training. After the
initial segmentation is completed, the duration of each state
was counted.

4. Autocorrelation was calculated using the extracted envelopes
to obtain the duration of the cardiac cycle (Schmidt et al.,
2010). The autocorrelation analysis was performed on the
normalized Shannon energy envelope of the signal to
eliminate some noise-induced errors. The length of the
cardiac cycle can be determined from the origin to the first
peak point between 500 and 2,000 ms, while the length of the
systole was identified as starting from the origin to the highest
point between 200 ms and half the length of the cardiac cycle
(Yuenyong et al., 2011).

5. According to the comparison between the statistical duration
of the Bi-LSTM output and the duration calculated by the
autocorrelation, whether the Bi-LSTM output needs to be
corrected can be determined. If corrections are needed, the
median duration of each state and the mean duration of the
entire cardiac cycle should be calculated. Then, starting from
the position of the last correct cardiac cycle marker, the state
length was taken as the median of the four states, and was filled
in the order of S1, systolic, S2 and diastolic.

Based on the heart sounds of CHD-PAH are characterized by
long split tone intervals of S2 and hyperactivity of P2 (Chen et al.,
1996; Cobra et al., 2016), short-time energy was added, which is
commonly used to calculate the energy emitted by the signal at a
given time. By combining the two, not only the envelope
information was highlighted, but also the signal energy
fluctuation could be shown.

Since sub-band envelope was two-dimensional while short-time
energy was one-dimensional, it needs to be flattened before fusion.
Specifically, the two-dimensional sub-band envelope features are
flattened row-wise. For example, a feature map of size 32 × 16 is
flattened into a one-dimensional vector of size 1 × 512. Then, the
one-dimensional short-time energy feature, which has a length of
nFrame (where nFrame is determined by the signal length), is
concatenated to the flattened sub-band envelope vector,
completing the feature fusion. For instance, with a sub-band
envelope feature size of 32 × 16, the fused feature vector will
have a size of 1 × (512 + nFrame). The flow of feature extraction
is shown in Figure 6.

In order to obtain the optimal model, three classical machine
learning methods, K-Nearest Neighbor (KNN) (Cover and Hart,
1967) (a distance-based classification method, whose basic principle
is to search the K training samples closest to the given test point, and
the predicted category is the same as the category to which most of
the neighboring points belong), Random Forests (RF) (Breiman,
2001) (a classification algorithm based on decision trees. Firstly, n
training subsets are obtained to train n decision trees by randomly
extracting from the complete training set. The final result is obtained
by summarizing all the decision trees.), and support vector machines

FIGURE 5
The flow of the Bi-LSTM combined with state-constrained segmentation algorithm.
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(SVM) (Cortes and Vapnik, 1995) (SVM tries to find the maximum
interval boundaries between different classes and uses the decision
boundaries to classify or regress new sample.) were used to
compensate for each other, resulting in a reduction of the overall
error and an increase in accuracy. After the features had been passed
through the three learners, a soft voting method (Kurian and Jyothi,
2023) (using the average output probability of each learner for each
category as the final decision criterion) was used to combine the
outputs of the three learners.

After the training of the above two classification models was
completed, they were concatenated. That is, part of the outputs of
the first stage were used as the inputs of the second stage. Finally, the
signals were classified into three categories: normal, CHD and
CHD-PAH.

3 Results

3.1 Segmentation results

According to Wang (2022), in the heart sound segmentation
experiment, 542 synchronized ECG and PCG were collected from
publicly available dataset and self-constructed dataset, including
204 normal data and 338 abnormal signals. These signals were
divided into training and test sets according to 8:2.

In order to evaluate the ability of the segmentation algorithm,
the segmentation sensitivity (symbolized as Sef), the positive
detection rate (symbolized as P+), and the F1 score (symbolized
as Ff1) were used.

The expressions of these evaluation indicators are shown in
Equations 4–6. Where, TP (true positive) and TN (true negative) are
the number of correctly categorized positive and negative classes,
respectively. FP (false positive) is the number of negative classes
predicted to be positive and FN (false negative) is the number of
positive classes predicted to be negative.

Sef � TP/ TP + TN + FP + FN( ) (4)
P+ � TP/ TP + FP( ) (5)

Ff1 � 2 × Sef × P+( )/ Sef + P+( ) (6)

In order to further validate the effectiveness of the
algorithm, the following segmentation methods were used as
comparison groups: DHMM (Kui et al., 2021) (Duration-
dependent Hidden Markov Model), LSTM, and Bi-LSTM.

The performance comparison of the heart sound
segmentation algorithm proposed in Wang (2022) with the
commonly used algorithms is shown in Table 2. Among
them, DHMM-based heart sound segmentation is commonly
used nowadays. The HMM-based method is used to infer the
reasonable state sequence by the relationship between the
observed sequence and the hidden state sequence. However,
there is a limitation that the probability of heart sound
transferring to the next state is independent of the current
state duration. In DHMM, the state durations were modeled
by a Gaussian Mixture Model (GMM) (Rasmussen, 1999). By
adding state durations to HMM, it is possible to infer a more
reasonable state sequence. However, the Bi-LSTM is better than
DHMM in enhancing the information connection between the
preceding and following states, so the overall performance is
better. A single-layer Bi-LSTM consists of 2 LSTMs (Long
Short-Term Memory), one for processing the sequence
forwards and one for processing it backwards, so it has better
performance in identifying heart sound states than LSTM.

When constructing the Bi-LSTM, the number of input layer
units is set to 50, and the whole network has 4 hidden layers, each
with 100, 200, 100 and 50 units, respectively. Finally, a dense
layer with 4 neurons is connected to the network output. The
optimizer was chosen as Adam with an initial learning
rate of 0.001.

However, overfitting was observed during training, as evidenced
by the high accuracy achieved on the training data, while the
validation accuracy showed little improvement or even decreased
over epochs. This suggested that the model was not generalizing well
to unseen data. To address this issue, several mitigation strategies
were implemented. Firstly, dropout layers with a random
inactivation rate of 0.2 is added after the second and third
hidden layers. The addition of dropout layers helps prevent the
model from relying too heavily on any specific neuron, encouraging
the network to learn more robust features. Secondly, the robustness
of the model was further evaluated using a five-fold cross-validation
method. In this process, the two datasets used in the heart sound
segmentation experiments were randomly and unrepeatedly
sampled five times. Each time, four subsets were randomly
selected for training, and the remaining one was used as the test,
which was repeated five times. This approach helps ensure that the
model is exposed to different subsets of the data, providing a more
reliable estimate of performance and reducing the likelihood of
overfitting.

FIGURE 6
Feature extraction mechanism of single-cycle heart sound signal.
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3.2 Classification results

In Ge et al. (2023); Ma et al. (2023), a total of 483 symmetric
heart sound signals from self-constructed dataset were used, that is,
161 each of normal, CHD, and CHD-PAH, being randomly divided
into 55% training set, 20% validation set, and 25% test set. The
optimal XGBoost model parameters, determined through
experimentation, are as follows: 600 trees, a tree depth of
7 layers, a minimum leaf node weight of 1, L1 regularization
coefficient of 1, L2 regularization coefficient of 3, and a learning
rate of 0.01.With these settings, from the classification results shown
in Table 3, the model achieves an accuracy of 88.61% on the triple-
classification (normal\CHD\CHD-PAH) after majority voting.

Precision (that is, the P+ mentioned above), recall, and accuracy
were used to evaluate the algorithm’s performance. The calculated
expressions are shown in Equations 7, 8.

Recall � TP/ TP + FN( ) (7)
Accuracy � TP + TN( )/ TP + TN + FP + FN( ) (8)

In Wang (2022), for the first stage classification model, all
3,240 recordings from publicly available dataset and 5,000 symmetric
normal-CHD recordings from self-constructed dataset were used. These
recordings were divided into training set, validation set and test set at the

ratio of 0.65, 0.15 and 0.2. For the second stage classification model,
1,260 symmetric CHD andCHD-PAH recordings from self-constructed
dataset were used. Of these, 1,010 cases were used for the training set and
250 cases for the testing set.

As shown in Table 4, under 725 symmetric data, the
classification accuracy of the overall framework is 90.9%. While
under asymmetric data samples, that is, the ratio of normal, CHD,
and CHD-PAH was 7:2:1 for 600 cases, the overall recognition
accuracy was 93.3%. Moreover, the average test time for a recording
was 13.3s, ensuring real-time performance.

Experimental results demonstrate that the classification
performance is optimal when the number of time series slices is
set to 32 and the number of Gammatone filters is set to 16, resulting
in a subband envelope feature size of 32 × 16. Through grid search
tuning, the best hyperparameters for the three individual
learners—KNN, RF, and SVM—are as follows: for KNN, the
optimal K value is 5; for RF, the decision tree type is ID3, the
number of trees is 86, and the tree depth is 45; for SVM, the RBF
kernel is used with γ set to 0.1 and the penalty coefficient C set to 0.6.

4 Discussion

4.1 Analysis of relevant references and
possible improvement measures

1. Since the features are based on cardiac cycle and S2, the
precision of segmentation will greatly affect the final
classification results. Segmentation validity can be verified
by comparing the segmentation results with the precise
localization obtained from synchronized collected ECG
signals or other precise segmentation method. The

TABLE 2 Performance of each heart sound segmentation algorith (mean ± standard deviation).

Heart sound
segmentation
algorithm

Sef(%) P+(%) Ff1(%)

Publicly
available
dataset

Self-
constructed

dataset

Publicly
available
dataset

Self-
constructed

dataset

Publicly
available
dataset

Self-
constructed

dataset

DHMM 90.98 ± 1.89 91.20 ± 0.99 94.30 ± 1.44 92.92 ± 0.70 92.62 ± 1.63 92.05 ± 0.77

LSTM 89.75 ± 1.77 86.46 ± 2.97 93.60 ± 1.27 90.59 ± 1.16 91.63 ± 1.26 88.44 ± 1.57

Bi-LSTM 95.84 ± 0.58 93.14 ± 1.79 96.54 ± 0.65 93.26 ± 0.72 96.19 ± 0.48 92.98 ± 0.93

Bi-LSTM + constraint
algorithm

96.63 ± 0.47 93.54 ± 1.55 96.29 ± 0.69 93.17 ± 0.35 96.46 ± 0.57 93.28 ± 0.76

The bold rows highlight the performance of the segmentation algorithm used in Wang (2022).

TABLE 3 The classification results of direct three-divided model.

Type Precision Recall Accuracy

Normal 0.99 0.9268 0.8861

CHD-PAH 0.8571 0.8780

CHD 0.8536 0.8536

TABLE 4 The classification results of two-stage classification model (dataset A: publicly available dataset, dataset B: self-constructed dataset).

Model Precision Recall Accuracy Ff1

First stage classification model dataset A dataset B dataset A dataset B dataset A dataset B dataset A dataset B

0.92 0.944 0.96 0.96 0.94 0.952 0.94 0.951

Second stage classification model 0.92 0.944 0.932 0.931

Two-stage classification model — — Symmetric data Asymmetric data —

0.909 0.933
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effectiveness of segmentation can also be verified by comparing
the effect of the use of segmentation algorithms on the final
classification results through ablation experiments.

2. In the preprocessing phase of the second stage classification
model, the performance of the segmentation model greatly
depends on the Bi-LSTM network. In the subsequent study, the
algorithm can be further optimized by adding the heart sound
state constraint rules into the Bi-LSTM network. So that it has
the ability to restrict the state transfer.

3. In the classification phase of the second stage classification
model, when heterogeneously integrating the three learners,
the learning method can be considered instead of the voting
method. The learning method refers to the use of a single
learner to learn and train the outputs of different individual
learners and obtain the final result. By combining different
individual learners with learning methods, the model
generalization ability can be strengthened and the model
bias can be reduced.

4.2 Subsequent research directions

1. So far, the deficiency of heart sound samples in patients with
CHD-PAH greatly limits the development of aided diagnostic
studies of CHD-PAH. Therefore, traditional machine learning
was often used instead of deep learning in classification to
prevent overfitting. However, compared with traditional
machine learning, deep learning can learn features from
input signals on its own, which is simpler and more
convenient, but this depends on the background of big data.

2. At present, the signal acquisition work of our research group is
still in progress to expand the self-constructed dataset. So more
data will be used for algorithm optimization.

3. In the feature extraction phase of both algorithms, features were
selected based on hyperacusis and splitting of the S2 component in
patients with CHD-PAH. Additional features, such as pulmonary
valve features, may be added to further enrich the features,
according to clinical auscultation experience.

4. Current intelligent auscultation algorithms are based on
specific datasets that have already been collected and
selected. Therefore, in actual clinical screening, the
performance of the algorithm needs to be validated.

4.3 Limitations of this review

1. Lack of comparison of the two algorithms: since the two
algorithms use different datasets with different quality and
quantity, it is inappropriate to directly compare the two
algorithms by indicators such as classification accuracy.

2. Failure to analyze the most suitable algorithm in each stage of
CHD-PAH recognition due to fewer related studies.

5 Conclusion

CHD-PAH is associated with a high clinical mortality. However,
the current clinical diagnostic method—right cardiac catheterization

is invasive and unsuitable for mass screening. And there are few
academic studies on relevant classification algorithms. Therefore,
two novel models for early non-invasive diagnosis of CHD-PAH,
namely the direct three-divided model and two-stage classification
model, were proposed by our research group.

For the direct three-divided model, a dual-threshold
segmentation algorithm based on short-time energy and spectral
spread was proposed in Ge et al. (2023) to segment the heart sound
signal into cardiac cycles and S2. Based on them, time-domain
features, frequency-domain features, energy features and deep
features were extracted and combined into fusion features. In
view of the small sample size, XGBoost was selected as the
classifier. The majority voting algorithm synthesizes classification
results across multiple cardiac cycles within a heart sound signal,
achieving an accuracy of 88.61% on self-constructed dataset.

For the two-stage classification model, the experimental results
show that it is effective to identify CHD-PAH on the basis of
identifying pathological signals. The algorithm achieved an
impressive accuracy of 90.9% under symmetric data and 93.3%
under asymmetric data.

The above two models have a good performance in the aided
diagnosis of CHD-PAH. It is hoped that it can be used in screening
CHD-PAH. By considering the advantages and disadvantages of the
two algorithms, future research directions of CHD-PAH assisted
diagnosis were discussed. It is hoped that it will provide insight into
prediction of CHD-PAH. Thus improving CHD-PAH predictive
accuracy and reducing mortality.
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